

GENERAL ENGINEERING

Part A : Basic of Civil Engineering Part B: Basic of Electrical & Electronics Engineering Part C : Basic of Mechanical Engineering

Useful for- JSSC JE/ JDLCC JE/ BPSC AE/ MPSC AE/APPSC AE/ IERL JE/ RSMSSB JEN (Diploma) E & M RSMSSB JEN (Degree) E & M/ DSSSB AE/JE (E&M)/ MPSC Pre/DDA E&M/UP JAL NIGAM NHPC JE/ BHEL

Chapterwise Solved Papers

Chief Editor Mr. Anand Mahajan

Compiled & Written by YCT Engineering Expert Teams

Editorial Office 12, Church Lane Prayagraj-211002

S Mob : 9415650134

Email : yctap12@gmail.com website : www.yctbooks.com/ www.yctfastbooks.com ©All rights reserved with publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and printed by R.A. Security Printers In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

INDEX

PART- A : BASIC OF CIVIL ENGINEERING

Building Material9-30
Concrete Technology
Reinforced Cement Concrete 40-49
Strength of Materials 50-101
Steel Structures 102-110
Surveying 111-136
Public Health Engineering 137-171
Fluid Mechanics 172-205
Soil Mechanics and Foundation Engineering
Irrigation & Hydrology Engineering 222-231
Mechanics
Estimate, Costing & Valuation 244-249
Construction Management, Accounts and Entrepreneurship Development 250-259
Building Construction & Maintenance Engineering
Transportation Engineering
Engineering Drawing 272-272
PART- B : BASIC OF ELECTRICAL & ELECTRONICS
ENGINEERING
Basic Electricity 274-349
Electrical Instrument & Measurement

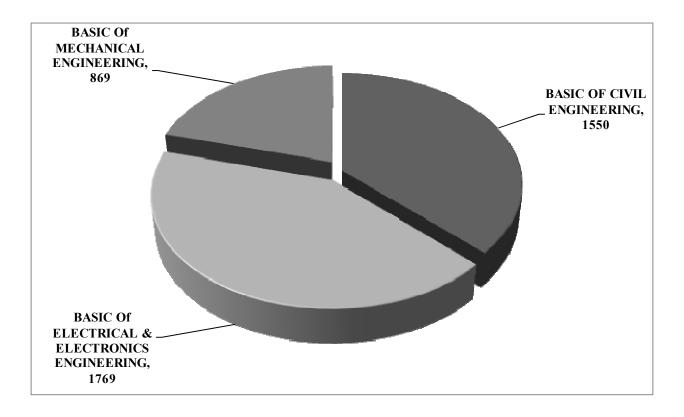
Synchronous Machine	. 408-415
Induction Machine	. 416-425
Power System	. 526-460
Analog Electronics	. 461-495
Digital Electronics	. 496-510
Power Electronics)	. 511-515
Control System)	. 516-523
Electrical and Electronics Engineering Material)	. 524-530
Utilization of Electrical Energy)	. 531-538
PART- C : BASIC OF MECHANICAL ENGINEERING	T T
Mechanics	. 540-553
Strength of Materials	. 554-574
Hydraulics and Hydraulics Machines	. 575-602
Thermodynamics	. 603-620
Power Plant Engineering	. 621-633
Heat and Mass Transfer	. 634-638
(Refrigeration & Air Conditioning	. 639-641
Theory of Machines	. 642-658
Machine Design	. 659-667
Engineering Materials	. 668-672
Production Technology	. 673-683
Industrial Engineering	. 684-684
Internal Combustion Engine and Automobile	. 684-699
Miscellaneous	. 700-704

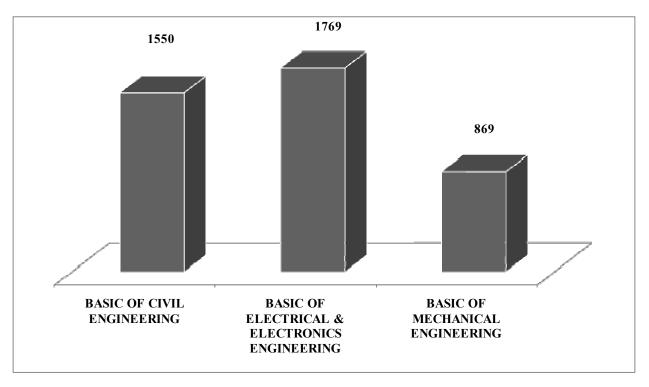
GENERAL ENGINEERING SYLLABUS

Civil Engineering Part A -Building Materials, Estimating, Costing and valuation, Surveying, Soil Mechanics, Hydraulics, Irrigation Engineering, Transportation Engineering, Environmental Engineering. Structural Engineering- Theory of Structures, Concrete Technology, RCC Design, Steel Design.

Electrical Engineering Part B - Basic concepts, Circuit law, Magnetic circuit, AC fundamentals, Measurement and Measuring Instruments, Electrical Machines, Fractional Kilowatt Motors and single phase induction Motors, ynchronous Machines, Generation, Transmission and Distribution, Estimation and Costing, Utilization and Electrical Energy, Basic Electronics.

Mechanical Engineering Part C- Theory of Machines and Machine Design, Engineering Mechanics and Strength of Materials, Properties of pure substances, 1st. Law of Thermodynamics, 2nd. Law of Thermodynamics, Air standard cycle for IC Engines, IC Engine performance, IC Engine Combustion, IC Engine Cooling & Lubrication, Rankine cycle of System, Boilers, Classification, Specification, Fitting and Accessories, Air Compressor and their cycles, Refrigeration cycles, Principle of Refrigeration Plant, Nozzles and Steam Turbines. Properties & Classification of Fluids, Fluid Statics, Measurement of Fluid Pressure, Fluid Kinematics, Dynamics of ideal fluids, Measurement of Flow rate basic principles, Hydraulic Turbines, Centrifugal Pumps. Classification of steels.


S.No.	EXAM NAME	EXAM DATE	No. of Questions
	Jharkhand Staf	f Selection Commission (JSSC	2)
1.	JSSC JE (General Engg.)	23.10.2022	1×80
2.	JSSC JE (General Engg.)	03.07.2022	1×80
3.	JSSC JE (General Engg.)	31.10.2022	1×80
4.	JSSC JE (General Engg.)	03.11.2022	1×80
5.	JSSC JE (General Engg.)	04.11.2022	1×80
6.	JSSC JE (General Engg.)	2017	1×120
7.	JPSC AE (General Engg.)	2013	1×50
		Service Commission (BPSC)	
8.	BPSC AE (General Engg.)	14.10.2022	1×50
9.	BPSC AE (General Engg.)	11.11.2022	1×50
10.	BPSC AE (General Engg.)	13.03.2022	1×50
11.	BPSC AE (General Engg.)	25.03.2022	1×50
12.	BPSC AE (Civil)	14.10.2022	1×50
13.	BPSC AE (Civil)	25.03.2022	1×50
14.	BPSC AE (General Engg.)	29.03.2019	1×50
15.	BPSC AE (General Engg.)	07.08.2019	1×50
16.	BPSC AE (Civil)	30.03.2019	1×50
17.	BPSC AE (General Engg.)	15.09.2018	1×50
18.	BPSC AE (General Engg.)	16.09.2018	1×50
19.	BPSC AE (General Engg.)	03.12.2012	1×50
20.	BPSC AE (General Engg.)	2006	1×50
21.	BPSC AE (General Engg.)	2001	1×50
22.	BPSC AE (General Engg.)	1995	1×50
		ctric Power Corporation (NH	PC)
23.	NHPC JE (ME)	06.04.2022, Shift-I	1×30
24.	NHPC JE (ME)	06.04.2022, Shift-II	1×30
25.	NHPC JE (EE)	05.04.2022, Shift-I	1×30
26.	NHPC JE (EE)	05.04.2022, Shift-II	1×30
27.	NHPC JE (Civil)	04.04.2022, Shift-I	1×30
28.	NHPC JE (Civil)	04.04.2022, Shift-II	1×30
	Rajasthan Subordinate and Mi	inisterial Services Selection Bo	oard (RSMSSB)
29.	RSMSSB JE (E&M) Degree	20.05.2022	1×160
30.	RSMSSB JE (E&M) Diploma	20.05.2022	1×160
31.	RSMSSB JE (E&M) Degree	26.12.2020	1×160
32.	RSMSSB JE (E&M) Diploma	26.12.2020	1×160
		lic Service Commission (MPS	C)
33.	MPSC AE Pre.	27.03.2021	1×60
34.	MPSC AE Pre.	23.06.2019	1×60
35.	MPSC AE Pre.	08.07.2018	1×60
36.	MPSC AE Pre.	09.07.2017	1×60
		Service Selection Board (DSS	
37.	DSSSB AE (E&M)	25.11.2022	1×160
38.	DSSSB AE (E&M)	21.03.2022 Shift-I	1×100
39.	DSSSB AE (E&M)	21.03.2022 Shift-II	1×61
40.	DSSSB AE (E&M)	08.03.2022 Shift-I	1×69
41.	DSSSB AE (E&M)	08.03.2022 Shift-II	1×73
	DSSSB JE (E&M)	28.12.2014	1×50
42.		lopment Authority (DDA)	•
42.	Delhi Deve	iopment Authority (DDA)	
			1×80
42. 43. 44.	DDA JE (E&M) DDA JE (E&M)	03.04.2023 Shift-I 03.04.2023 Shift-I	1×80 1×80


General Engineering JE/AE Previous Years Papers Analysis Chart

46.	DDA JE (E&M)	25.04.2018	1×80
	Railway Recrui	tment Board (RRB)	
47.	RRB JE 2015	30.08.2015 Shift-III	1×54
48.	RRB JE 2015	29.08.2015 Shift-I	1×70
49.	RRB JE 2015	29.08.2015 Shift-II	1×61
50.	RRB JE 2015	29.08.2015 Shift-III	1×63
51.	RRB JE 2015	28.08.2015 Shift-I	1×53
52.	RRB JE 2015	28.08.2015 Shift-II	1×54
53.	RRB JE 2015	28.08.2015 Shift-III	1×64
54.	RRB JE 2015	27.08.2015 Shift-I	1×59
55.	RRB JE 2015	27.08.2015 Shift-II	1×64
56.	RRB JE 2015	27.08.2015 Shift-III	1×56
57.	RRB JE 2015	26.08.2015 Shift-I	1×63
58.	RRB JE 2015	26.08.2015 Shift-II	1×60
<u>50.</u>	RRB JE 2015	26.08.2015 Shift-III	1×55
<u> </u>	RRB JE 2015	16.09.2015 Shift-III	1×61
61.	RRB JE 2015	04.09.2015 Shift-II	1×01
62.	RRB JE (Ranchi) 2015	04.01.2015	1×68
63.	RRB JE (Ranchi) 2015 RRB JE (Ranchi) 2015	04.01.2015	1×68
03.	RRB JE (Kallelli) 2015		1~02
64.	(Bilaspur/Kolkata/Mumbai/Guwahati) 2014	14.12.2014	1×39
65.	RRB JE (CHENNAI) 2014	14.12.2014	1×56
66.	RRB JE (Bilaspur/Guwahati/Patna) 2014	14.12.2014	1×59
67.	RRB JE (Muzaffarpur) 2014	14.12.2014	1×50
68.	RRB JE (Bilaspur/Guwahati) 2014	14.12.2014	1×62
69.	RRB JE (Patna/Muzaffarpur/Chennai/Ahmedabad/ Bangalore) 2014	14.12.2014	1×59
70.	RRB S.S.E. 2015	01.09.2015 Shift-II	1×56
71.	RRB S.S.E. 2015	01.09.2015 Shift-III	1×60
72.	RRB S.S.E. 2015	02.09.2015 Shift-I	1×63
73.	RRB S.S.E. 2015	02.09.2015 Shift-II	1×58
74.	RRB S.S.E. 2015	02.09.2015 Shift-III	1×73
75.	RRB S.S.E. 2015	03.09.2015 Shift-I	1×63
76.	RRB S.S.E. 2015	03.09.2015 Shift-II	1×68
77.	RRB S.S.E. 2015	03.09.2015 Shift-III	1×65
78.	RRB S.S.E. (Bilaspur/Secunderabad) 2014	21.12.2014	1×59
79.	RRB S.S.E. (Bilaspur/Secunderabad) 2014	21.12.2014	1×57
80.	RRB S.S.E. (Bilaspur/Secunderabad) 2014	21.12.2014	1×60
81.	RRB S.S.E. (Bhopal) 2014	21.12.2014	1×44
82.	RRB S.S.E. (Secunderabad) 2014	01.09.2015	1×61
		thers	
83.	IREL Diploma Trainee	11.09.2022	1×100
84.	APPSC AE Pre.	15.05.2022	1×150
85.	UP Jal Nigam JE (E&M)	16.12.2016	1×60
		Total	5604

Trend Analysis of Previous Year Papers

Through Pie Chart and Bar Graph

DART-A BASIC CIVIL

ENGINEERING

	Building Material	9-38
	Concrete Technology	
	Reinforced Cement Concrete	49-60
	Strength of Materials	
	Steel Structures	122-133
	Surveying	
	Public Health Engineering	172-219
	Fluid Mechanics	220-269
	Soil Mechanics and Foundation Engineering	
	Irrigation & Hydrology Engineering	
	Mechanics	
	Estimate, Costing & Valuation	
	Construction Management, Accounts and Entrepreneurship Development	
	Building Construction & Maintenance Engineering	
	Transportation Engineering	
	Engineering Drawing	
~		

Building Material

 The maximum working temperature of Nickel chromium is about: (a) 1150°C (b) 1500°C (c) 1000°C (d) 1400°C NHPC JE (ME) 06.04.2022 (Shift-II) Ans. (a) : The maximum working temperature of Nickel chromium is about 1150°C, melting point 1400°C, specific gravity 8.4 gm/cm³ and high resistance 	Ans.	(c) 130 t/m ² (d) JSSC JE (GEN.	without g foundat 430 t/m 230 t/m ENGG.)	laminations tion? 2 0 04.11.2022
to oxidation.	SI.	Type of rock or soil		bearing
2. Which of the following is NOT a grade of	No			Dacity
cement as per IS classification ?		Deala	kN/m ²	kg/cm ²
(a) Ordinary Portland cement (OPC) 23	1.	Rocks (hard) without	3300	33
(b) Ordinary Portland cement (OPC) 53	1.	lamination and defects,	3300	33
(c) Ordinary Portland cement (OPC) 33		for example granite trap		
(d) Ordinary Portland cement (OPC) 43		and diorite		
	2.	Laminated rocks, for	1650	16.5
NHPC JE (Civil) 04.04.2022 (Shift-II)		example sand stone and		
Ans. (a) : Classification of cement–		lime stone in sound		
1. 33 grade OPC; IS-269 of 1989		condition		
2. 43 grade OPC; IS-8112 of 1989	3.	Residual deposits of	900	9
3. 53 grade OPC; IS-12269 of 1987		shattered and broken bed		
3. According to IS 2222 (1991): 'Specification for		rock and hard shale,		
burnt clay perforated building bricks', the area		cement material	450	1.5
of each perforated in the perforated bricks	4.	Soft rock	450	4.5
shall not exceed cm ² .	5.	Non-cohesive so Gravel, sand and gravel	450	4.5
(a) 50.00 (b) 0.50	5.	mixture compact and	430	4.5
(c) 500.00 (d) 5.00		offering high resistance to		
JSSC JE (GEN. ENGG.) 04.11.2022		penetration when		
Ans. (d) : Specification for perforated burnt clay		excavated by tools		
building bricks (IS 2222-1991)	6.	Coarse sand compact and	450	4.5
• Bricks shall be free from cracks and flows and nodules		dry (with ground water		
of free lime.		level at a depth greater		
• Bricks shall be of uniform in colour and texture.		than width of foundation		
• The area of perforation shall be in between 30% to		below the base of footing)		
45% of the total area of the corresponding face of the	7.	Medium sand, compact	250	2.5
bricks.		and dry		
• The shorter side of the perforation shall be less than 20	8.	Fine sand, silt (dry lumps	150	1.5
mm in case of rectangular perforation and less than 25		easily pulverised by		
mm diameter in case of circular perforations.		bingers)	100	1.0
• Area of each perforation shall not exceed 500 mm ² or 5 sm^2	9.	Fine sand, loose and dry	100	1.0
5 cm ²	5.	Which of the following is		0
• Thickness of any shell shall not be less than 15 mm		solvent preservative in	the J	process of
and that of any web not less than 10 mm		preservation of timber?		
• Average compressive strength shall not be less than 7 N/mm ² on net area		(a) Creosote (b) Connor nonhthenete		
• Water absorption shall not be more than 20% by		(b) Copper naphthenate		
water absorption shall not be more than 20% by weight		(c) Solignum		
• Average warpage shall not exceed 3%.		(d) Carbolinium	ENCO	0444 0000
		JSSC JE (GEN.	ENGG.)) 04.11.2022
Civil Engineering	0			VCT

(~)·			urpose of using vehicle
the timber from attacks of insects, chemical preservative			nt manufacturing?
are used to increase the life of the wood.	. ,	-	nkage and cracking
Types of preservatives-		To bring down	-
Tar oils-It is used to rough types of work. Creasote is		To spread the pa	
most commonly used and various creasotes are cool tar,	(d)	To modify the w	veight of paint
wood tar and water gas etc.		JSSC JI	E (GEN. ENGG.)- 31.10.2022
Water soluble preservatives (chemical salts)- These	Ans. (c) :		
are odourless organic or inorganic salts and are adopted			Vehicle is an oil to which the
for inside location only this type of preservative are zinc			the constituents of paint in
chloride, boric acid, sodium fluoride etc.			ead it over the surface to be
Organic solvent preservatives- There are costlier than	-	1 1	lity, toughness and water
other preservatives. The common used organic solvent			and resistance to weathering
preservatives are nepthal and phenol (DDT) etc.			urface and forms the body of
	paint.	to the pullice s	arrace and forms the body of
6. What should be the penetrating power of a	1	ose of using ve	hicle is components in paint
good timber preservative?		uring to spread th	
(a) 2 mm to 6 mm	L	•	1 1
(b) 6 mm to 25 mm	9. The		ggregate surface texture
(c) 25 mm to 35 mm			ried by Pumice and trass is :
(d) 35 mm to 40 mm	. ,	glassy	(b) crystalline
JSSC JE (GEN. ENGG.)- 31.10.2022		honeycombed a	nd porous
Ans.(b) : Properties of good preservative for timber–	(d)	granular	
• It should be effortlessly and cheaply available.		JSSC J	E (GEN. ENGG.)-23.10.2022
5 1 5	Ans. (c	: Surface tex	ture characteristics of the
• It should not contain any harmful substances, gases	aggregat	e as classified	in IS: 383-2016 is shown
etc.	below		
• It should be economical.	Group	Surface	Examples
• Decorative treatment should be allowed on timber	-	texture	-
after the application of preservative.	1.	Glassy	Black flint
• It should not contain any unpleasant smell.	2.	Smooth	Chert, slate, marble, some
• It should not generate flame when contacts with fire.			rhyolite
• The depth of penetration of preservative in wood	3.	Granular	Sandstone, oolites
fibers should be minimum 6 mm to 25 mm.	4.	Crystalline	Fine : Basalt, trachyte,
7. How many days does it take for Rapid		5	Medium: Dolerite
Hardening Cement to develop the same			granophyres, granulites,
strength as that is expected of Ordinary			micro-granite, some
Portland Cement at 7 days?			limestones, many
(a) 4 (b) 1			dolomites.
(c) 3 (d) 2			Coarse : gabbro; gneiss,
JSSC JE (GEN. ENGG.)- 31.10.2022			granite, granodiorite,
			syenite
Ans. (c) : Rapid Hardening Cement (IS 8041-1990)	5.	Honey	Scoria, pumice, trass
This cement is similar to ordinary portland cement. It develops strength rapidly and as such it may be more		combed and	
		porous	
appropriate to call it as high early strength cement.	10. Wh	ite cement m	anufacturing needs higher
Rapid hardening cement develops at the age of 3 days		ng temperature	
the same strength so that is expected of OPC at 7 days.	(a)	1650°C	(b) 1850°C
The rapid rate of development of strength is attributed		1950 ⁰ C	(d) 1750° C
to the higher fineness of grinding and higher C_3S and			E (GEN. ENGG.)-23.10.2022
lower C_2S content.	Ang (a)		(IS 8042) – It is manufactured
The use of rapid hardening cement is recommended in			
the following situations-			d clay free from iron oxide,
In pre-fabricated concrete construction			s due to iron oxide.
Road repair works		ignition of white	
• In cold weather concrete where the rapid rate of			transverse strength of this
development of strength reduces the vulnerability of		90% of that of	f 33 grade ordinary Portland
concrete to the frost damage.	cement.		
	0		VCT

11. Which of the following paints are essential			Preservation o		
dispersion of rubber like resin polystyrene					lely variable property. If
polyvinyl acetate in water and are prepared					y place if immersed in
grinding suitable pigments (titanium oxide					f timber is not support to
an emulsion of water and film forming dr			l properties.	ies lik	te mechanical, electrical
e.g. Co and Mn?				oftin	niber in the increasing
(a) Cellulose paint			of their effectiv		mber m the mereasing
(b) Cement based paint			olication (Surfa		plication)
(c) Rubber based paint			Soaking treatm		, incution)
(d) Plastic emulsion paint	• (Open tan)	
JSSC JE (GEN. ENGG.)-23.10.2			application		
Ans. (d) : Plastic emulsion paint (IS : 5411 Parts	I 14	4 Mol	's scale is use	d to n	neasure which property
and II)			stone?	u to 11	icasure which property
• In the former case of emulsifying agents are sodiu				JE (M	IE) 06.04.2022 (Shift-II)
or ammonium soaps whereas in the later case metal	ic			OR OR	(Shint II)
soaps of magnesium or zinc are used.		For	stones. Moh's		is used to determine
• Stabilizers such as proteins (dextrin, starch, casei			toughness		(b) hardness
are added to impart chemical resistance to t	ne		flakiness index		(d) durability
emulsion.		(0)			AE (GEN. ENGG)-2013
• These paints should become surface dry within		ng (h) .			bably the most important
minutes and hard dry within 4 hours and are alka					tion of minerals. It is
resistant.	m				ineral with a series of
• Plastic emulsion points are useful in porous and w					on in hardness. It is
surface.	de		by Moh's scale		in maraness. it is
Rubber based paints-Rubber treated with chlori	ie 15		2		ts of bricks) with List-
gas is dissolved in solvent and desired pigment	15				uence) and select the
added. These paints are resistant to acid, alkali and					e code given below the
dampness. Rubber based paints are used ov	er	List		8	8
concrete and cement plastered surfaces.			List-I		List-II
12. What should be the percentage of Alumin	a in	Co	onstituents of	Cor	rresponding influence
Cood Brielz Forth?					1 8
Good Brick Earth?			bricks		
(a) 45% - 50% (b) 40% - 45%		a.	bricks Alumina	1.	Colour brick
(a) 45% - 50% (b) 40% - 45% (c) 20% - 30% (d) 25% - 35%		a.	Alumina	1.	
(a) 45% - 50% (b) 40% - 45% (c) 20% - 30% (d) 25% - 35% JSSC JE (GEN. ENGG.)-23.10.2	022				Plasticity recovery
(a) 45% - 50% (b) 40% - 45% (c) 20% - 30% (d) 25% - 35% JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth	022	a. b.	Alumina Silica	1. 2.	Plasticity recovery for moulding
(a) 45% - 50% (b) 40% - 45% (c) 20% - 30% (d) 25% - 35% JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below-	022	a.	Alumina	1.	Plasticity recovery for moulding Reacts with silica
(a) 45% - 50% (b) 40% - 45% (c) 20% - 30% (d) 25% - 35% JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60%	022	a. b.	Alumina Silica	1. 2.	Plasticity recovery for moulding Reacts with silica during burning and
(a) 45% - 50% (b) 40% - 45% (c) 20% - 30% (d) 25% - 35% JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60% Alumina - 20-30%	022	a. b.	Alumina Silica	1. 2.	Plasticity recovery for moulding Reacts with silica during burning and
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60% Alumina - 20-30% Lime - $\Rightarrow 10\%$	022	a. b.	Alumina Silica	1. 2.	Plasticity recovery for moulding Reacts with silica during burning and causes particles to unite together and development of
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60% Alumina - 20-30% Lime - $\Rightarrow 10\%$ Ferric oxide - 5-6%	022	a. b.	Alumina Silica	1. 2.	Plasticity recovery for moulding Reacts with silica during burning and causes particles to unite together and
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60% Alumina - 20-30% Lime - $\Rightarrow 10\%$ Ferric oxide - 5-6% Magnesia - < 1%	022	a. b.	Alumina Silica	1. 2.	Plasticity recovery for moulding Reacts with silica during burning and causes particles to unite together and development of
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60% Alumina - 20-30% Lime - $\ge 10\%$ Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10%	022	a. b. c.	Alumina Silica Magnesia	1. 2. 3.	Plasticityrecoveryfor mouldingReactswith silicaduringburningandcausesparticlestounitetogetheranddevelopmentofstrength
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60% Alumina - 20-30% Lime - $\geq 10\%$ Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage	022	a. b. c.	Alumina Silica Magnesia	1. 2. 3.	Plasticityrecoveryfor mouldingReactswith silicaduringburningandcausesparticlestounitetogetheranddevelopmentofstrengthPreservesPreservesbrickathightemperatureand
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60% Alumina - 20-30% Lime - $\Rightarrow 10\%$ Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage Sulphur trioxide - very small percentage	022	a. b. c.	Alumina Silica Magnesia	1. 2. 3.	Plasticityrecoveryfor mouldingReactswith silicaduringburningandcausesparticlestounitetogetheranddevelopmentofstrengthPreservesPreservesbrickathigh
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60% Alumina - 20-30% Lime - $\geq 10\%$ Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage	022	a. b. c.	Alumina Silica Magnesia Limestone	1. 2. 3.	Plasticityrecoveryfor mouldingReactswith silicaduringburningandcausesparticlestounitetogetheranddevelopmentofstrengthPreservesPreservesbrickathightemperatureand
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60% Alumina - 20-30% Lime - $\Rightarrow 10\%$ Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage Sulphur trioxide - very small percentage		a. b. c. d.	Alumina Silica Magnesia Limestone	1. 2. 3. 4.	Plasticityrecoveryfor mouldingReactswith silicaduringburningandcausesparticlestounitetogetheranddevelopmentofstrengthPreservesPreservesbrickathightemperatureand
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60% Alumina - 20-30% Lime - $\Rightarrow 10\%$ Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage Sulphur trioxide - very small percentage Water - very small percentage		a. b. c. d. Cod (a)	Alumina Silica Magnesia Limestone	1. 2. 3. 4.	Plasticityrecoveryfor mouldingReactswith silicaduringburningandcausesparticlestounitetogetheranddevelopmentofstrengthPreservesPreservesbrickathightemperatureandpreventshrinkage
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - $50-60\%$ Alumina - $20-30\%$ Lime - $\geq 10\%$ Ferric oxide - $5-6\%$ Magnesia - $< 1\%$ Alkalies - $< 10\%$ Carbon dioxide - very small percentage Sulphur trioxide - very small percentage Water - very small percentage 13. Consider the following methods of preserva		a. b. c. d. Cod (a)	Alumina Silica Magnesia Limestone e: a-2, b-1, c-4, d- a-2, b-4, c-1, d-	1. 2. 3. 4. -3 -3	Plasticityrecoveryfor mouldingReactswith silicaduringburningandcausesparticlestounitetogetheranddevelopmentofstrengthPreservesPreservesthe form ofbrickathightemperatureandpreventshrinkage
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below- Silica - 50-60% Alumina - 20-30% Lime - $\Rightarrow 10\%$ Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage Sulphur trioxide - very small percentage Sulphur trioxide - very small percentage Water - very small percentage 13. Consider the following methods of preserva of timber.	tion	a. b. c. d. d. Cod (a) (c)	Alumina Silica Magnesia Limestone e: a-2, b-1, c-4, d- a-2, b-4, c-1, d-	1. 2. 3. 4. -3 -3	Plasticityrecovery for mouldingReactswith silica during burning and causes particles to unite together and development of strengthPreserves the form of brickat high temperature and prevent shrinkage(b)a-3, b-4, c-1, d-2 (d)(c)a-3, b-1, c-4, d-2
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below– Silica - 50-60% Alumina - 20-30% Lime - $\Rightarrow 10\%$ Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage Sulphur trioxide - very small percentage Sulphur trioxide - very small percentage Water - very small percentage 13. Consider the following methods of preserva of timber. 1. Pressure Application 2. Brush Application	tion	a. b. c. d. d. (c) Ans. (c) :	Alumina Silica Magnesia Limestone e: a-2, b-1, c-4, d- a-2, b-4, c-1, d- J	1. 2. 3. 4. -3 PSC 4	Plasticity recovery for moulding Reacts with silica during burning and causes particles to unite together and development of strength Preserves the form of brick at high temperature and prevent shrinkage (b) a-3, b-4, c-1, d-2 (d) a-3, b-1, c-4, d-2 AE (GEN. ENGG)-2013
 (a) 45% - 50% (b) 40% - 45% (c) 20% - 30% (d) 25% - 35% JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth Properties of various ingredients is as below-Silica - 50-60% Alumina - 20-30% Lime - ≯ 10% Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage Sulphur trioxide - very small percentage Water - very small percentage 13. Consider the following methods of preserva of timber. 1. Pressure Application 2. Brush Application 3. Dipping 	tion	a. b. c. d. d. (c) Cod (a) (c) Ans. (c) :	Alumina Silica Magnesia Limestone e: a-2, b-1, c-4, d- a-2, b-4, c-1, d- J Plasticity r	1. 2. 3. 4. 4 .	Plasticity recovery for moulding Reacts with silica during burning and causes particles to unite together and development of strength Preserves the form of brick at high temperature and prevent shrinkage (b) a-3, b-4, c-1, d-2 (d) a-3, b-1, c-4, d-2 AE (GEN. ENGG)-2013 ry for moulding
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below- Silica - 50-60% Alumina - 20-30% Lime - \Rightarrow 10% Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage Sulphur trioxide - very small percentage Sulphur trioxide - very small percentage Water - very small percentage 13. Consider the following methods of preserva of timber. 1. Pressure Application 2. Brush Application 3. Dipping 4. Open Tank	tion A	a. b. c. d. d. (c) Ans. (c) :	Alumina Silica Magnesia Limestone e: a-2, b-1, c-4, d- a-2, b-4, c-1, d- J Plasticity r Preserves	1. 2. 3. 4. 4. PSC 4	Plasticity recovery for moulding Reacts with silica during burning and causes particles to unite together and development of strength Preserves the form of brick at high temperature and prevent shrinkage (b) a-3, b-4, c-1, d-2 (d) a-3, b-1, c-4, d-2 AE (GEN. ENGG)-2013 ry for moulding
 (a) 45% - 50% (b) 40% - 45% (c) 20% - 30% (d) 25% - 35% JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth Properties of various ingredients is as below-Silica - 50-60% Alumina - 20-30% Lime - ≯ 10% Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide very small percentage Sulphur trioxide very small percentage Water very small percentage 13. Consider the following methods of preserva of timber. 1. Pressure Application 3. Dipping 4. Open Tank Then correct sequence of these methods in 	tion A S the	a. b. c. d. d. d. (c) Cod (a) (c) Cod (a) (c) Cod (a) (c)	Alumina Silica Magnesia Limestone e: a-2, b-1, c-4, d- a-2, b-4, c-1, d- J Plasticity r Preserves temperatur	1. 2. 3. 4. -3 -3 PSC 4 recove the free and	Plasticity recovery for moulding Reacts with silica during burning and causes particles to unite together and development of strength Preserves the form of brick at high temperature and prevent shrinkage (b) a-3, b-4, c-1, d-2 (d) a-3, b-1, c-4, d-2 AE (GEN. ENGG)-2013 ry for moulding
 (a) 45% - 50% (b) 40% - 45% (c) 20% - 30% (d) 25% - 35% JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth Properties of various ingredients is as below-Silica 50-60% Alumina 20-30% Lime > 50-60% Magnesia < 10% Ferric oxide < 5-6% Magnesia < 10% Carbon dioxide very small percentage Sulphur trioxide very small percentage Vater very small percentage 13. Consider the following methods of preserva of timber. 1. Pressure Application 2. Brush Application 3. Dipping 4. Open Tank Then correct sequence of these methods in increasing order of their effectiveness is :	tion A the	a. b. c. d. d. Cod (a) (c) xns. (c) : Alumina Silica Magnesia	Alumina Silica Magnesia Limestone e: a-2, b-1, c-4, d- a-2, b-4, c-1, d- J Plasticity r Preserves temperatur Colour brid	1. 2. 3. 4. -3 -3 PSC 4 recove the free and ck	Plasticity recovery for moulding Reacts with silica during burning and causes particles to unite together and development of strength Preserves the form of brick at high temperature and prevent shrinkage (b) a-3, b-4, c-1, d-2 (d) a-3, b-4, c-1, d-2 (d) a-3, b-1, c-4, d-2 AE (GEN. ENGG)-2013 ry for moulding form of brick at high prevent shrinkage
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below- Silica - 50-60% Alumina - 20-30% Lime - $\Rightarrow 10\%$ Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage Sulphur trioxide - very small percentage Sulphur trioxide - very small percentage Water - very small percentage 13. Consider the following methods of preserva of timber. 1. Pressure Application 2. Brush Application 3. Dipping 4. Open Tank Then correct sequence of these methods in increasing order of their effectiveness is : (a) 4, 2, 1, 3 (b) 3, 4, 2, 1	tion A the	a. b. c. d. d. d. (c) Cod (a) (c) Cod (a) (c) Cod (a) (c)	Alumina Silica Magnesia Limestone e: a-2, b-1, c-4, d- a-2, b-4, c-1, d- J Plasticity r Preserves temperatur Colour bri e Reacts wit	1. 2. 3. 4. -3 PSC 4 recove the free and ck th silic	Plasticity recovery for moulding Reacts with silica during burning and causes particles to unite together and development of strength Preserves the form of brick at high temperature and prevent shrinkage (b) a-3, b-4, c-1, d-2 (d) a-3, b-1, c-4, d-2 AE (GEN. ENGG)-2013 ry for moulding orm of brick at high prevent shrinkage
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below- Silica - 50-60% Alumina - 20-30% Lime - $\Rightarrow 10\%$ Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage Sulphur trioxide - very small percentage Water - very small percentage Water - very small percentage 13. Consider the following methods of preserva of timber. 1. Pressure Application 2. Brush Application 3. Dipping 4. Open Tank Then correct sequence of these methods in increasing order of their effectiveness is : (a) 4, 2, 1, 3 (b) 3, 4, 2, 1 (c) 2, 3, 4, 1 (d) 1, 3, 4, 2	tion A S the N I	a. b. c. d. d. Cod (a) (c) xns. (c) : Alumina Silica Magnesia	Alumina Silica Magnesia Limestone e: a-2, b-1, c-4, d- a-2, b-4, c-1, d- J Plasticity r Preserves temperatur Colour bri- e Reacts wir causes par	1. 2. 3. 4. -3 -3 PSC 4 recover the free and ck th silier th silier	Plasticity recovery for moulding Reacts with silica during burning and causes particles to unite together and development of strength Preserves the form of brick at high temperature and prevent shrinkage (b) a-3, b-4, c-1, d-2 (d) a-3, b-1, c-4, d-2 AE (GEN. ENGG)-2013 ry for moulding form of brick at high prevent shrinkage
(a) $45\% - 50\%$ (b) $40\% - 45\%$ (c) $20\% - 30\%$ (d) $25\% - 35\%$ JSSC JE (GEN. ENGG.)-23.10.2 Ans. (c) : Composition of Good Brick Earth • Properties of various ingredients is as below- Silica - 50-60% Alumina - 20-30% Lime - $\Rightarrow 10\%$ Ferric oxide - 5-6% Magnesia - < 1% Alkalies - < 10% Carbon dioxide - very small percentage Sulphur trioxide - very small percentage Sulphur trioxide - very small percentage Water - very small percentage 13. Consider the following methods of preserva of timber. 1. Pressure Application 2. Brush Application 3. Dipping 4. Open Tank Then correct sequence of these methods in increasing order of their effectiveness is : (a) 4, 2, 1, 3 (b) 3, 4, 2, 1	tion A S the N I	a. b. c. d. d. Cod (a) (c) xns. (c) : Alumina Silica Magnesia	Alumina Silica Magnesia Limestone e: a-2, b-1, c-4, d- a-2, b-4, c-1, d- J Plasticity r Preserves temperatur Colour bri e Reacts wit	1. 2. 3. 4. -3 -3 PSC 4 recover the free and ck th silier th silier	Plasticity recovery for moulding Reacts with silica during burning and causes particles to unite together and development of strength Preserves the form of brick at high temperature and prevent shrinkage (b) a-3, b-4, c-1, d-2 (d) a-3, b-1, c-4, d-2 AE (GEN. ENGG)-2013 ry for moulding form of brick at high prevent shrinkage

16. Which of the following IS code that gives the	Ans. (b): Dressing of stone-Dressing of stone is
ceramic tile classification and characteristics?	performed to achieve following objectives-
(a) IS 12269 : 1984 (b) IS 13712 : 1993	1. To obtained desired appearance
(c) IS 2386 : Part-I (d) IS 10262 : 2009	2. To increase the properties of stone such as durability and strength.
JSSC JE (GEN. ENGG.)- 03.07.2022	3. To suit the requirement of stone masonry
Ans. (b) : IS 13712 : 1993 gives the ceramic tile	4. To reduce the transportation and handling cost of
classification and characteristics.	stone.
Ceramic tiles- Thin slabs made from clays silica	5. Crow chisel for cutting of stone.
fluxes, colouring and other minerals raw materials,	20. Which among the following is an incorrect option?
generally used as coverings for floors walls or facades.	(a) Pith is the inner most part of tree consists of
• They are prepared by grinding, sieving, mixing,	cellular tissue which is used for nourishment
moistering etc, and are shaped by pressing extruding	of tree in young age.
casting or other processes, usually at room temperature.	(b) Sapwood is outer annual rings between
17. What is the range of Iron oxide present in	heartwood and cambium layers. It is the
ordinary Portland cement?	living, outermost portion of a woody stem or
(a) $0.5 - 6\%$ (b) $8 - 15\%$	branch.
(c) $17 - 25\%$ (d) $0.5 - 1.3\%$	(c) Cambium, in plants, layer of actively dividing
JSSC JE (GEN. ENGG.)- 03.07.2022	cells between xylem (wood) and phloem
Ans. (a) : Ingredients present in ordinary Portland	(bast) tissues that is responsible for the secondary growth of stems and roots.
cement-	(d) Annular/Annual ring test/examine is used to
1. Calcium Oxide $\rightarrow 60 - 65\%$	determine the timber defects.
2. Silica $\rightarrow 17 - 25\%$	JSSC JE (GEN. ENGG.)- 03.07.2022
3. Aluminium Oxide $\rightarrow 3 - 8\%$	Ans. (d) : Pith–Pith is the innermost part of tree consist
4. Calcium Sulphate $\rightarrow 3 - 5\%$	of cellular tissue which is used for nourishment of tree
5. Iron Oxide $\rightarrow 0.5 - 6\%$	in young age.
6. Magnesium Oxide $\rightarrow 0.1-4\%$	Sap wood–It consist both living and dead cells.
7. Sulphur trioxide $\rightarrow 1 - 3\%$	• Sap wood is outer annual rings between heart wood
8. Alkalies $\rightarrow 0.5 - 1\%$	and cambium layers, it is the living, outermost portion
-	of a woody stem.
18. According to Moh's scale of hardness, the	Cambium layer –Cambium layer is very thin layer of
mineral with least hardness is :	tissue between sapwood and inner bank.Cambium in plants, layer of actively dividing all
(a) Gypsum or apatite	between xylem (wood) and phloem (bast) that is
(b) Sand stone or Diamond	responsible for the secondary growth of stems and
(c) Calcite(d) Talc	roots.
	Outer Bark
JSSC JE (GEN. ENGG.)- 03.07.2022	Sap Wood
Ans. (d) : Moh's scale of hardness–	Heart Wood
(a) Talc – 1 (b) Gypsum – 2	Cambium layer
(c) Calcite -3	Pith
(d) Fluorite – 4	Medullary Rays
(e) Apatite -5	Annual Rings
(f) Felspar – 6	
(g) Silica – 7	21. What is the approx thickness of two and half
(h) Topaz – 8	brick wall made up of standard modular
(i) Corundum – 9	brick?
(j) Diamond – 10	(a) 20 cm (b) 19.685 inch
19. Which of the following is not a tool used for	(c) 30 cm (d) 23.622 inch
dressing stones?	JSSC JE (GEN. ENGG.)- 03.07.2022
(a) Face hammer	Ans. (b) : Standard size of brick = $19 \text{ cm} \times 19 \text{ cm} \times 9$
(b) Mallet	cm.
(c) Crow chisel	Nominal size of brick with mortar = $20 \text{ cm} \times 10 \text{ cm} \times 10$
(d) Point chisel	10 cm
JSSC JE (GEN. ENGG.)- 03.07.2022	Non-modular brick
Civil Engineering 1	2 VCT

Conventional size of brick = $22.4 \text{ cm} \times 11.4 \text{ cm} \times 7.6$		e Bureau of Indian Standards, burnt
	v	cks are classified based on their 1 average compressive strength as:
Wall thickness = Thickness of modular brick + Mortar thickness	(a) 11 cl	
= 2.5[19 cm + 1 cm] = 50 cm	(c) 12 cl	
-	(0) 0-	JSSC JE (GEN. ENGG.)- 03.11.2022
$=\frac{50}{2.54}=19.685$ inch	Ans. (a) : As p	er IS 1077 : 1992
22. The argillaceous rock has their principal constituents as	Class Designation	Average Compressive strength Not less than (N/mm ²)
(a) Lime or Dolomite (b) Clay or Alumina	35	35.0
(c) Sand (SiO_2) or Dolomite	30	30.0
(d) Dolomite	25	25.0
JSSC JE (GEN. ENGG.)- 03.07.2022	20	20.0
Ans. (b) : The argillaceous rock has their principal	17.5	17.5
constituents as clay or alumina.	15	15.0
Example-Granite, Gneiss, Trap, Basalt, Sand stem.	12.5	12.5
23. Which of the following will you recommend for	10	10.0
painting internal wall?	7.5	7.5
(a) Lead oxide (b) Enamel	5	5.0
(c) Emulsion (d) Iron oxide	3.5	3.5
JSSC JE (GEN. ENGG.)- 03.07.2022		
Ans. (c) : Emulsion paints- Two types of emulsion		s formed due to alteration of original under heat and excessive pressure are
paints are available, one is ordinary emulsion and the other is plastic emulsion.	called-	under near and excessive pressure are
• The emulsion paint is easy to apply and dries quickly	(a) Igneo	ous rocks
1	(b) Sedir	nentary rocks
within $1\frac{1}{2}$ to 2 hours.		morphic rocks
• The colour is retained for a longer period.	(d) Argil	laceous rocks
• The emulsion paints surface can be washed by water		JSSC JE (GEN. ENGG)-2017
so this paint not use for external wall.		morphic rocks–These rocks are formed
24. What is the function of a vehicle in an oil borne		sedimentary rocks as a result of action
paint?	pressure etc.	ovements, temperature changes, liquid
(a) It holds the ingredients of the paint in liquid	Example-	
suspension	Original rock	Metamorphic rocks
(b) If forms the bulk of the paint	Granite	Gneiss
(c) It accelerates the process of drying	Sandstone	Quartzite
(d) It gives colour to the paint	Limestone Shale	Marble Slate
JSSC JE (GEN. ENGG.)- 03.11.2022	Mudstone	Slate
Ans. (a) : Vehicle or carrier– This is a liquid	28. Eminent	y hydraulic lime has
substance which holds the ingredients of the paint in suspension, the most common material is linseed oil.		ay content
25. The function of adding gypsum in the		5% clay content
manufacture of ordinary Portland cement is:	(c) abou	t 25% clay content
(a) to produce binding action for cement	(d) abou	t 60% clay content
(b) to produce quick setting of cement		BPSC AE (GEN. ENGG.)-2001
(c) to prevent flash setting of cement		nently hydraulic lime – In eminently
(d) to get a quick reaction when water is added to		e has clayey impurities 20-30% and ficulty. Its initial setting lime is 2 hours
the cement		ing time is 48 hours. It is used in damp
JSSC JE (GEN. ENGG.)- 03.11.2022		all structural purposes.
Ans. (c) : The purpose of adding gypsum is to coat the		in Portland cement is-
cement particles by interfering with the process of	(a) 5% to	
hydration of the cement particles. This retards the	(c) 27 to	
setting of cement.		JSSC JE (GEN. ENGG)-2017
		· · · ·

Ans. (b) : Diff	erent constitu	ent of OPC	• Wood obtained from these tree have limited		
Ingredients	Quantity	Work	engineering application.		
Lime (CaO)	62-67%	Imparts strength and	Example–Bamboo, cane, palm, coconut etc.		
~ /		soundness of the	32. Alumina in brick earth gives the brick's		
		cement	(a) strength		
Silica (SiO ₂)	17.25%	It also impart strength	(b) colour		
		to the cement			
Alumina	3-8%	Impart quick setting to	(c) plasticity		
(Al_2O_3)		cement	(d) resistance to shrinkage		
Calcium	3-4%	It helps in increasing	BPSC AE (GEN. ENGG.) 15.09.2018		
sulphate		the initial setting time	Ans. (c) : Ingredients of good brick earth-		
(CaSO ₄)		of cement	Ingredients Quantity		
Iron Oxide	3-4%	It imparts strength,	Silica 50-60%		
(Fe_2O_3)		hardness and colour to	Alumina 20-30%		
		cement	Lime 2 to 5%		
Magnesia	1-3%	strength, hardness and	Iron oxides $5 \text{ to } 6\% \neq 7\%$		
(MgO)		colour to cement	Magnesia < 1%		
30. The cem	ent, widely us	ed in retaining wall is	Alumina–		
(a) rapid	hardening cer	nent	• It absorbs water and imparts plasticity to the bricks		
(b) low l	neat cement		earth, have helps in its moulding.		
	ate resisting c	ement	• If it is in excess it produces cracks on drying.		
· / -	ary Portland c		• Clays have excess of alumina are likely to be very		
(u) orun	5	GEN. ENGG.)-13.03.2022	refractory.		
Ans. (b) : Low		,	33. Pallet board is used		
		nich involves low heat of	(a) to make frog in the brick		
hydration than (fich involves low heat of	(a) to make nog in the block (b) to mount the mould		
		nent at the age of 7 days is			
		at the age of 28 days is not	(c) for table moulding of brick		
more than 75 ca		at the age of 28 days is not	(d) None of the above		
		reducing the proportion of	BPSC AE (GEN. ENGG.) 15.09.2018		
		roportion of C_2S .	Ans. (c) : Table moulding– The bricks are moulded		
		esistance attack of sulphur	on stock boards nailed on the moulding table. Stock		
and lower rate of			boards have the projection for forming the frog. The		
		cation in mass concreting	process of filling clay in the mould is the same as		
		es, foundation, retaining	explained above. After this a thin board called pallet is		
wall etc.	dune structury	cs, ioundation, iouning	placed over the mould. The mould containing the brick		
	strength of this	cement at the age of:	is then smartly lifted off the stock board and inverted		
$3 \text{ days} \neq 10 \text{ N/r}$		comont at the age of.	so that the moulded clay along with the mould rests on		
7 days ≮ 16 N/i			the pallet.		
28 days ≮ 35 N			34. When fat lime is slaked, its volume		
Minimum init		≤ 60 minutes	(a) decreases to 50%		
• Final setting ti	-		(b) remains same		
		owing does not belong to	(c) increases by 2 to 2.5 times		
	ous trees?	Jwing does not belong to	(d) increases by 4 times		
(a) Teak		(b) Coconut	· · ·		
			BPSC AE (GEN. ENGG.) 15.09.2018		
(c) Bam		(d) Cane	Ans. (c) : Fat lime or pure limes–		
		GEN. ENGG.) 15.09.2018	• Fat lime is pure lime that is made by burning a pure		
		ed on growth–	limestone rock like chalk, shell or coral.		
(i) Exogeneous			• It contains approximate 90% to 95% of calcium		
-	-	spruce, babul, mahagony,	oxides.		
teak, sal, oak et			• Fat lime absorbs carbon dioxide when it is exposed in		
(ii) Endogenou			air and gets transferred into calcium carbonate.		
		s which grows in bulk in	• Fat lime has the following properties-		
inword directic	on and fibrous	mass can be seen across	(i) Fat lime hardens very slowly.		
their longitudir			(ii) Fat lime has very high degree of plasticity.		

	Fat lime slakes vigorously		38. By calcining and smelting iron ores, a crude
~ /	Colour of fat lime is pure v		and impure form of iron obtained is known as
	Fat lime sets very slowly if		(a) cast iron (b) wrought iron
	t lime slakes rapidly when		(c) steel (d) pig iron
	considerable heat and make e and increase 2 to 3 times		BPSC AE (GEN. ENGG.) 15.09.2018
	ed in white washing and pl		Ans. (d) : Pig iron-
		-	• The iron ore in dressed by crushing it to about 50
35.	The process of adding		mm cubes. The impurities are knocked off and the ore
	order to convert it into as	nyurateu nine is known	is then calcined to drive off moisture. The calcined are
	(a) quenching	(b) hydration	is smelted in blast furnace.
	(c) calcination	(d) slaking	• Pig iron contains 3-4% carbon, 0.5-3.5% silicon, 0.5-
		EN. ENGG.) 15.09.2018	2% manganese.
A ma		,	39. The compressive strength of high duty bricks
	. (d) : The process of addin r to convert it into hydr		should be more than
slak	•	ated fille is known as	(a) 40 N/mm^2 (b) 20 N/mm^2
Slak	$CaO + H_2O \longrightarrow Ca$	(OH) Heat	(c) 5 N/mm^2 (d) 3.5 N/mm^2
		· · · 2	BPSC AE (GEN. ENGG.) 15.09.2018
36.	·	manufacturing cement	Ans. (a) : Heavy duty bricks (IS:2180)–
	rotates at a speed of		• The burnt clay bricks having a compressive strength
	(a) $1 \text{ r.p.m.} - 3 \text{ r.p.m.}$		of more than 40 N/mm ² are known as heavy duty
	(b) 10 r.p.m. – 12 r.p.m.		bricks.
	(c) $18 \text{ r.p.m.} - 22 \text{ r.p.m.}$		• It is used in masonary in heavy engineering works
	(d) more than 25 r.p.m.		such as bridges, industrial foundations and multi-
	BPSC AE (G	EN. ENGG.) 15.09.2018	storeyed building.
	. (a) : • A rotary kiln is a		• The water absorption of these bricks is limited to 5%.
	to raised materials to	• •	40. According to I.S. specifications, the
(cal	cinations) in a continuous p	TOCASS	a monoccine strongth of andinamy Doutland
			compressive strength of ordinary Portland
• Th	e rotary kiln rotates at the		cement (33 grade) after three days should not
• The the r	e rotary kiln rotates at the equirement of the process.	speed of 1-5 rpm as per	cement (33 grade) after three days should not be les than :
• Th	e rotary kiln rotates at the equirement of the process. Match List-I with List-	speed of 1-5 rpm as per II and select the correct	cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List- answer using the codes	speed of 1-5 rpm as per II and select the correct given below the Lists :	cement (33 grade) after three days should notbe les than :(a) 7 MPa(b) 11.5 MPa(c) 16 MPa(d) 21 MPa
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II	cement (33 grade) after three days should not be les than :(a) 7 MPa(b) 11.5 MPa(c) 16 MPa(d) 21 MPaMPSC AE PRE -27.03.2021
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of	speed of 1-5 rpm as per II and select the correct given below the Lists :	cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015–
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of exogenous tree)	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character)	cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– • The compressive strength of ordinary portland cement
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of exogenous tree)	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II	cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– • The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm ²
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of exogenous tree)	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character)	cement (33 grade) after three days should not be les than :(a) 7 MPa(b) 11.5 MPa(c) 16 MPa(d) 21 MPaMPSC AE PRE -27.03.2021Ans. (c) : As per I.S. 269 : 2015–• The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of exogenous tree) a. Cambium layer	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest	cement (33 grade) after three days should not be les than :(a) 7 MPa(b) 11.5 MPa(c) 16 MPa(d) 21 MPaMPSC AE PRE -27.03.2021Ans. (c) : As per I.S. 269 : 2015–• The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa.
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of exogenous tree) a. Cambium layer b. Pith	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap	cement (33 grade) after three days should not be les than :(a) 7 MPa(b) 11.5 MPa(c) 16 MPa(d) 21 MPaMPSC AE PRE -27.03.2021Ans. (c) : As per I.S. 269 : 2015–• The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of exogenous tree) a. Cambium layer b. Pith	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm².
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². 41. The minimum compressive strength for rapid
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². 41. The minimum compressive strength for rapid hardening Portland cement after 72 hours should be
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List- answer using the codes a List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood d. Sap wood	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². The minimum compressive strength for rapid hardening Portland cement after 72 hours should be (a) 18 N/mm² (b) 28 N/mm²
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood d. Sap wood Codes:	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion surrounding pith	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². 41. The minimum compressive strength for rapid hardening Portland cement after 72 hours should be
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood d. Sap wood Codes: a b c	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion surrounding pith d	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². The minimum compressive strength for rapid hardening Portland cement after 72 hours should be (a) 18 N/mm² (b) 28 N/mm²
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List-I answer using the codes List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood d. Sap wood Codes: a b c (a) 1 2 3	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion surrounding pith d 4	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². 41. The minimum compressive strength for rapid hardening Portland cement after 72 hours should be (a) 18 N/mm² (b) 28 N/mm² (c) 24 N/mm² (d) None of these
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List- answer using the codes a List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood d. Sap wood Codes: a b c (a) 1 2 3 (b) 3 2 4	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion surrounding pith d 4 1	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². 41. The minimum compressive strength for rapid hardening Portland cement after 72 hours should be (a) 18 N/mm² (b) 28 N/mm² (c) 24 N/mm² (d) None of these MPSC AE PRE08.07.2018
• The the r	e rotary kiln rotates at the equirement of the process. Match List-I with List- answer using the codes List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood d. Sap wood Codes: a b c (a) 1 2 3 (b) 3 2 4 (c) 4 1 3 (d) 1 3 2	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion surrounding pith d 4 1 2	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². The minimum compressive strength for rapid hardening Portland cement after 72 hours should be (a) 18 N/mm² (b) 28 N/mm² (c) 24 N/mm² (d) None of these MPSC AE PRE08.07.2018
• The the r 37 .	e rotary kiln rotates at the equirement of the process. Match List-I with List- answer using the codes a List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood d. Sap wood Codes: a b c (a) 1 2 3 (b) 3 2 4 (c) 4 1 3 (d) 1 3 2 BPSC AE (G	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion surrounding pith d 4 1 2 4	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². 41. The minimum compressive strength for rapid hardening Portland cement after 72 hours should be (a) 18 N/mm² (b) 28 N/mm² (c) 24 N/mm² (d) None of these MPSC AE PRE08.07.2018 Ans. (b) : The minimum compressive strength for rapid hardening Portland cement after 1 day and 3
• The the radius of the radius	e rotary kiln rotates at the equirement of the process. Match List-I with List- answer using the codes a List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood d. Sap wood Codes: a b c (a) 1 2 3 (b) 3 2 4 (c) 4 1 3 (d) 1 3 2 BPSC AE (G . (b) :	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion surrounding pith d 4 1 2 4	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². 41. The minimum compressive strength for rapid hardening Portland cement after 72 hours should be (a) 18 N/mm² (b) 28 N/mm² (c) 24 N/mm² (d) None of these MPSC AE PRE08.07.2018 Ans. (b) : The minimum compressive strength for rapid hardening Portland cement after 1 day and 3 days should be 16 MPa and 28 MPa respectively
• The the r 37.	e rotary kiln rotates at the equirement of the process. Match List-I with List- answer using the codes a List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood d. Sap wood Codes: a b c (a) 1 2 3 (b) 3 2 4 (c) 4 1 3 (d) 1 3 2 BPSC AE (G . (b) :	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion surrounding pith d 4 1 2 4 EN. ENGG.) 15.09.2018 r of fresh sap	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². 41. The minimum compressive strength for rapid hardening Portland cement after 72 hours should be (a) 18 N/mm² (b) 28 N/mm² (c) 24 N/mm² (d) None of these MPSC AE PRE08.07.2018 Ans. (b) : The minimum compressive strength for rapid hardening Portland cement after 1 day and 3 days should be 16 MPa and 28 MPa respectively after casting.
• The the result of the result	e rotary kiln rotates at the equirement of the process. Match List-I with List- answer using the codes a List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood d. Sap wood Codes: a b c (a) 1 2 3 (b) 3 2 4 (c) 4 1 3 (d) 1 3 2 BPSC AE (G .(b) : bium layer - Thin layer - Innermost rtwood - Portion su	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion surrounding pith d 4 1 2 4 EN. ENGG.) 15.09.2018 r of fresh sap t part urrounding pith	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². 41. The minimum compressive strength for rapid hardening Portland cement after 72 hours should be (a) 18 N/mm² (b) 28 N/mm² (c) 24 N/mm² (d) None of these MPSC AE PRE08.07.2018 Ans. (b) : The minimum compressive strength for rapid hardening Portland cement after 1 day and 3 days should be 16 MPa and 28 MPa respectively after casting. 42. The average life of Class I timber is
• The the result of the result	e rotary kiln rotates at the equirement of the process. Match List-I with List- answer using the codes a List-I (Parts of exogenous tree) a. Cambium layer b. Pith c. Heart wood d. Sap wood Codes: a b c (a) 1 2 3 (b) 3 2 4 (c) 4 1 3 (d) 1 3 2 BPSC AE (G .(b) : bium layer - Thin layer - Innermost rtwood - Portion su	speed of 1-5 rpm as per II and select the correct given below the Lists : List-II (Character) 1. Youngest 2. Innermost part 3. Thin layer of fresh sap 4. Portion surrounding pith d 4 1 2 4 EN. ENGG.) 15.09.2018 r of fresh sap t part	 cement (33 grade) after three days should not be les than : (a) 7 MPa (b) 11.5 MPa (c) 16 MPa (d) 21 MPa MPSC AE PRE -27.03.2021 Ans. (c) : As per I.S. 269 : 2015– The compressive strength of ordinary portland cement grade-33 after 3 days should not be less than 16 N/mm² and 7 days compressive strength of OPC grade-33 should not be less than 22 MPa. The compressive strength of OPC grade 33 after 28 days should not be less than 33 N/mm². 41. The minimum compressive strength for rapid hardening Portland cement after 72 hours should be (a) 18 N/mm² (b) 28 N/mm² (c) 24 N/mm² (d) None of these MPSC AE PRE08.07.2018 Ans. (b) : The minimum compressive strength for rapid hardening Portland cement after 1 day and 3 days should be 16 MPa and 28 MPa respectively after casting. 42. The average life of Class I timber is (a) 60 months (b) 90 months

Civil Engineering

Ans. (c) Classification of timber on the basis of	45. The ingredient which imparts hardness and
average life.	colour to cement is
1. Class $I \rightarrow > 120$ months	(a) alkali (b) alumina
2. Class II \rightarrow > (60-120) months	(c) magnesia (d) sulphur
3. Class III \rightarrow > < 60 months	BPSC AE (GEN. ENGG.) 16.09.2018
43. A good stone should have water absorption less	Ans. (c) Magnesia–It imports hardness and colour to
than (1) 0 (cement. Alkali–Impurities imparts efflorescence if present in
(a) 0.4 (b) 0.6	excess.
(c) 0.8 (d) 0.9 BPSC AE (GEN. ENGG.) 16.09.2018	Alumina–Responsible for setting of cement.
``````````````````````````````````````	Sulphur-Makes cement unsound and soundness due
<b>Ans. (b)</b> A good stone should have water absorption less than $0.6\%$ for road construction and $5\%$ for	to excess of sulphur cannot be determined.
building construction.	46. Which one of the following is responsible for
• If water absorption is more than 10% then stone is	red colour of brick?
not used for construction work in buildings.	(a) Iron oxide (b) Magnesia
44. The minimum crushing strength of brick	(c) Silica (d) Alumina
should be	BPSC AE (GEN. ENGG.) 16.09.2018
(a) $35 \text{ kg/cm}^2$ (b) $50 \text{ kg/cm}^2$	Ans. (a) : Iron oxide $\rightarrow$ Responsible for red colour
(c) $15 \text{ kg/cm}^2$ (d) $20 \text{ kg/cm}^2$	Magnesia $\rightarrow$ Excess of magnesia imparts yellowish
BPSC AE (GEN. ENGG.) 16.09.2018	tint
OR	Silica $\rightarrow$ Imparts strength and hardness
The compressive strength of the brick should	Alumina $\rightarrow$ Imparts plasticity
not be less than	47. Enamel paint is prepared by adding
(a) 3.5 MPa (b) 5 MPa	<ul><li>(a) white lead or zinc</li><li>(b) alumina and zinc</li></ul>
(c) $15 \text{ MPa}$ (d) $20 \text{ MPa}$	(c) magnesia and alumina
BPSC AE (GEN. ENGG.) 16.09.2018 OR	(d) white lead and alumina
The minimum crushing strength required for a	BPSC AE (GEN. ENGG.) 16.09.2018
brick as per BIS:1077-1957 is	Ans. (a) : Enamel paints-These paints are obtained
(a) $3.5 \text{ N/mm}^2$ (b) $5 \text{ N/mm}^2$	by adding white lead or zinc white as a base material
(c) $2.5 \text{ N/mm}^2$ (d) $6 \text{ N/mm}^2$	to a vehicle. These paints have better chemical
JSSC JE (GEN. ENGG)-2017	resistance, water proofing and great appearance.
OR	48. Pigments are added to
The required minimum compressive strength	(a) give colour to paint
of building bricks as recommended by IS 1077-	(b) reduce the cost of the paint
1957 and 1970 is	(c) hold the ingredients of the paint
(a) $35 \text{ kg/cm}^2$ (b) $105 \text{ kg/cm}^2$	(d) make the paint thinner
(c) $70 \text{ kg/cm}^2$ (d) $140 \text{ kg/cm}^2$	BPSC AE (GEN. ENGG.) 16.09.2018
MPSC AE PRE08.07.2018	Ans. (a) : Pigments are used to provide colour to the
Ans. (a) : The required minimum compressive strength	points for better appearance. Ex.– 1. Iron oxides
of building bricks as recommended by IS 1077-1957	2. Chromium dioxide
and 1970 is-	3. Ultramarines
Class Average compressive strength	4. Manganese violet
not less than – (N/mm ² )	5. Iron blue
35 35.0	6. Titanium dioxide
30 30.0	49. The base material of distemper is
25 25.0	(a) iron oxide (b) lithopone
20 20.0	(c) chalk (d) lime
17.5 17.5	BPSC AE (GEN. ENGG.) 16.09.2018
15 15.0	Ans. (c) : Distemper–It is made with base as white
12.5 12.5	chalk and thinner as water. They are available in
10 10.0 7.5 7.5	powder and paste forms and are substantially cheaper
7.5     7.5       5     5.0	than paints. They are most suitable for plastered surface as well as white washed surface of interior
3.5 3.5	walls.
5.0 5.0	wuito.

50. Plywood is identified by	Ans. (c): Wood work should be painted to prevent
(a) thickness (b) volume	against weathering effect, impart better appearance
(c) area (d) weight	more durable and prevent fungus attack.
BPSC AE (GEN. ENGG.) 16.09.2018	54. What type of glass should generally be used in
Ans. (a) : Plywood–A wood panel glued under	bathrooms?
pressure from an odd number (usually 3 to 13) of	(a) ground glass (b) wired glass
layers/piles of veneers is known as plywood. The outer	(c) foam glass (d) all of them
most veneers sheet in a plywood panel are called faces.	BPSC AE (GEN. ENGG.)-1995
Plywood may be classified upon direction of grains in	Ans. (a): Ground glass– In this type of glass one face
the plies and on the type of adhesive used.	of plate or sheet glass is made rough by grinding.
Normally, the alternate plies are oriented at 30° or 60° in star plywood. The faces are arranged with the grain	• It is used for maintaining privacy by obstructing
at 45° to that of the centers in diagonal plywood. It is	vision and at the same time allowing light.
identified by its thickness.	• The ground glass is used for bedrooms, toilets and for making black boards.
51. The standard size of an ordinary brick is	55. Which of the following statements is NOT
(a) $22.5 \text{ cm} \times 19.0 \text{ cm} \times 0.0 \text{ cm}$	correct with respect to properties of building
(b) $20 \text{ cm} \times 19.0 \text{ cm} \times 9 \text{ cm}$	stones?
(c) $19 \text{ cm} \times 9 \text{ cm} \times 9 \text{ cm}$	(a) Fine grained stones with homogeneous
(d) none of the above	distribution look attractive, and hence they
BPSC AE (GEN. ENGG.)-1995	are used for carving.
Ans. (c) :	(b) Indian standard code recommends a minimum
Standard size of bricks = $(19 \times 9 \times 9)$ cm	crushing strength of 1.5 N/mm ² for all building stones.
Nominal size of brick = $(20 \times 10 \times 10)$ cm	(c) Generally denser stones are stronger in
Traditional brick size = $(23 \times 11 \times 7.3)$ cm or	nature.
	(d) Marble and granite give good appearance
$9'' \times 4 \frac{3''}{8} \times 2 \frac{3''}{4}$	when polished
Traditional nominal size of brick	NHPC JE (EE) 05.04.2022 (Shift-II)
$= (23 \times 11.4 \times 7.6) \text{ cm}$	Ans. (a) : The properties of building stones–
or $9'' \times 4\frac{1''}{2} \times 3''$	1. Strength, the strength of the stone must be able to
2	<ul><li>resist the applying load or overcoming load.</li><li>2. Durability, stone must stay in all climatic conditions</li></ul>
Size of frog = $10 \text{cm} \times 4 \text{cm} \times 1 \text{cm}$ or $2 \text{cm}$	and resist all the natural destructive effects it fasts for a
Unit weight of brick = $1800 \text{ kg/m}^3$	long time.
Average weight of brick = 3 kg to 3.5 kg Number of bricks in $1 \text{ m}^3 = 500 \text{ Nos.}$	3. Hardness and toughness, it should be enough strong
	and hard to withstand all the stresses applied due to
52. The initial setting time of quick-setting cement is	seismic forces, wind loads and a load of the super
(a) 30 seconds	4. Property of absorption and porosity, stones should
(b) 5 minutes	not be porous and not allow rain water or any type of
(c) 30 minutes	acidic water to pass through it.
(d) greater than 30 minutes	It is impermeable to any type of liquid also, the stone
BPSC AE (GEN. ENGG.)-1995	must not show any absorption characteristics for liquid.
Ans. (b) Quick setting cement–The setting action	56. Which of the following types of rocks exhibits
starts within 5 minutes and final setting is over in 30	greatest crushing strength when compared to
minutes.	the other mentioned type of rocks ?
Low heat portland cement– The initial setting time	(a) Sandstone (b) Laterite
for this cement is about one hour and the final setting	(c) Shale (d) Trap
time is about 10 hours. 53. Wood work should be painted to	NHPC JE (Civil) 04.04.2022 (Shift-II) Ans. (d) :
<ul><li>53. Wood work should be painted to</li><li>(a) prevent against weathering effect</li></ul>	Ans. (u):       Types of stone     Crushing strength (kg/cm ² )
(b) impart better appearance	Sand stone 650
(c) both the above	Laterite 18 - 32
(d) none of the above	Lime stone 550
BPSC AE (GEN. ENGG.)-1995	Basalt and trap 1530 - 1890
, , , , , , , , , , , , , , , , , , ,	

57. Which of the fo	llowing types of rock exhibits	62.	Diamond	hardness ni	umber is
less crushing strength when compared to other		•_•	(a) 10		(b) 9
mentioned type of rocks ?			(c) 7		(d) 8
(a) Laterite	(b) Trap			IREL D	iploma Trainee-11.09.2022
(c) Granite	(d) Gneiss	Ans.	(a) : Mo		is used to represent the
	C JE (Civil) 04.04.2022 (Shift-I)		ness of min		
	rock exhibits less crushing	(i)	Talc - 1		
strength 18-32 kg/cm ² .	TOEK EXHIBITS IESS ETUSINING	(ii)	Gypsum -		
Types of stone	Crushing strength (kg/cm ² )	(iii)	Calcite - 3		
Sand stone	650	(iv)	Fluorite -		
Laterite	18 - 32	(v) (vi)	Apatite - : Felspar - 6		
Lime stone	550	(vi) (vii)	Quartz - 7		
Basalt and trap	1530 - 1890		Topaz - 8		
	owing is NOT a durability test	(ix)	Corundun		
conducted on bui		(x)	Diamond	- 10	
(a) Moh's scale to	-	63.	Process o	f reducing a	a solid body, such as rock
(c) Smith test	(d) Brard's test		0	• •	g an explosive is known as
			(a) Blast		(b) Drilling
	PC JE (EE) 05.04.2022 (Shift-I)		(c) Borin	0	(d) Striping
•	est conducted on building stones				iploma Trainee-11.09.2022
are followings-	D				s of reducing a solid body,
	<b>Purpose</b> For presence of soluble matter				by using an explosive is
	For frost resistance	-	n as blastir	-	
	To check whether resistance	64.		ral deposit i	in solid rock is called
	etermined by Moh's scale test.		(a) Ore	1	(b) Magma
			(c) Nebu		(d) Shale
59. Galvanized iron			<u> </u>		iploma Trainee-11.09.2022
(a) Tin	(b) Zinc				id, crystalline structure that and cannot be broken down
(c) Lead	(d) Copper		different su		and cannot be broken down
	L Diploma Trainee-11.09.2022	Rock		Minerals	
	ron is coated with zinc in order		eous rock		lspar, olivine, etc.
to protect the iron from rusting. The process of applying layer of zinc to iron is called as galvanization.			imentary		alcite, mica etc.
	<b>.</b>	• Me	tamorphic	Quartzite, c	corundum, garnet etc.
60. Which one of the resistant?	e following metals is corrosion-	65.		e of the foll	owing is not a sedimentary
(a) Aluminium	(b) Tin		rock?		
(c) Copper	(d) Mild steel			stone	
() 11	L Diploma Trainee-11.09.2022		(c) Gyps		(d) Marble
	sion resistant metal among the			IREL D	iploma Trainee-11.09.2022
	iridium, stainless steel etc. are	Ans.		_	
non-corrosive metals an			mentary ro	ock	Metamorphic rock
			stone		Quartzite Marble
	drying timber or removing	Gyps			Slate
_	present in a freshly felled tree	~ 1	stone		Gneiss
is known as (a) Seasoning	(b) Drying	66.		hoon oon	ventionally classified into
(c) Preserving		00.	how man		ventionally classified into
C) U	•		(a) 4	y types:	(b) 2
	L Diploma Trainee-11.09.2022		(a) $+$ (c) 5		(d) $\frac{1}{2}$
	The process of drying timber or			BPSC AF	(GEN ENGG.)-25.03.2022
-	p present in a freshly felled tree	Ans	(d) • 1;		conventionally classified
is known as seasoning o	evaporable substance by air or		(u) : Lin 3 types–	ie nas Deell	conventionally classified
heat.	vaporable substance by all of			e - Class A	
	by chemical or physical means.		or lime - C		
Hardening– Improving			te lime - C		
improving	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				

Hydraulic lime-This lime is		70. The common household glass is
lime as it sets under water. It contains clay and some		(a) soda-lime glass (b) borosilicate glass
amount of ferrous oxide. The hydraulic lime can set		(c) high silica glass (d) lead glass
under water and in thick wa	lls where there is no free	BPSC AE (GEN. ENGG.) 14.10.2022
circulation of air.		Ans. (a) : Soda lime– It is the most common household
Poor lime-		glass (90% of glass is made) and least expensive.
• It is also called as impure or	lean lime.	• It is constituents are fusion of silica, lime soda and
• It is less than 70% pure.		alumina. It is commonly used for window and door. It is
• It is normally used in brick v	work around foundation.	also known as window glass.
• It slakes very slowly.		<b>Borosilicate glass</b> – It is main constituents are lime and
<b>Fat lime</b> –This lime is also k	nown as the high calcium	feldspar and fusion of silica. It is mainly used for
lime. Pure lime, rich lime or v		medical and engineering field.
• It slakes vigorously and it		
about 2-2.5 times the volume		<b>Lead glass</b> – It is also called lead-oxide glass or lead
• It is used in white wash and		crystal is at least 20% least oxide. It has also been called
	g is the lightest among the	flint glass. It is softer glass making it easier to cut into
following?		designs that show off its high refractive index.
(a) Magnesium	(b) Aluminium	71. Three main chemical constituents of wood are
(c) Titanium	(d) Copper	(a) cellulose 15% - 35%, hemicellulose 40% -
	GEN ENGG.)-25.03.2022	50%, lignin (phenyl group) 20% - 35%
Ans. (a) : Magnesium is lig		(b) cellulose 20% - 35%, hemicellulose 40% -
titanium, copper and magnesi		50%, lignin (phenyl group) 10% - 15%
• Density of magnesium = $174$	$40 \text{ Kg/m}^3$	(c) cellulose 40% - 50%, hemicellulose 20% -
Magnesium is extremely lip		35%, lignin (phenyl group) 15% - 35%
aluminium.	8	(d) cellulose 15% - 35%, hemicellulose 50% -
Sr. No. Metal	Molecular weight	60%, lignin (phenyl group) 10% - 18%
1. Magnesium	24.305 amu	BPSC AE (GEN. ENGG.) 11.11.2022
2. Aluminium	26.981 amu	
3. Iron	55.845 amu	Ans. (c) : Wood–Wood is a natural resource and one of
4. Copper	63.546 amu	the most attractive materials because of its multi-
Note–The commission has ad		dimensional assembly and its extensive exhibition on
	ig metals is highly prone	Global.
to corrosion?	ig metals is inginy prone	• Wood is made up of cellulose, hemicellulose and
	(h) Compar	lignin to make their multifaceted structure which is
(a) Aluminium	(b) Copper	biologically originated.
(c) Iron	(d) Zinc	• The chemically modified or monomer incorporation of
	GEN ENGG.)- 5.03.2022	I three call mol
		three cell wall.
	prone to corrosion among	• The main objective of chemical modification or
aluminium, copper, iron an	nd zinc. Hence, used as	• The main objective of chemical modification or monomer impregnation of wood to revolute its
aluminium, copper, iron an sacrificial anode or in galvani	nd zinc. Hence, used as zation.	• The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.
aluminium, copper, iron an sacrificial anode or in galvani • It is oxidation induced deter	nd zinc. Hence, used as zation.	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi</li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani • It is oxidation induced deter- non-metals.	nd zinc. Hence, used as zation. ioration of both metals and	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15</li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani • It is oxidation induced deter- non-metals. • Corrosion reduces the durab	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance.	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi</li> </ul>
<ul> <li>aluminium, copper, iron ar sacrificial anode or in galvani.</li> <li>It is oxidation induced deternon-metals.</li> <li>Corrosion reduces the durab</li> <li>Corrosion is the gradual deternon and the gradual deternon.</li> </ul>	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani • It is oxidation induced deter- non-metals. • Corrosion reduces the durab	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland</li> </ul>
<ul> <li>aluminium, copper, iron ar sacrificial anode or in galvani.</li> <li>It is oxidation induced deternon-metals.</li> <li>Corrosion reduces the durab</li> <li>Corrosion is the gradual deternon and the gradual deternon.</li> </ul>	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is</li> </ul>
<ul> <li>aluminium, copper, iron an sacrificial anode or in galvani.</li> <li>It is oxidation induced deternon-metals.</li> <li>Corrosion reduces the durab</li> <li>Corrosion is the gradual dechemical or electrochemic environment.</li> </ul>	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%,</li> </ul> </li> </ul>
<ul> <li>aluminium, copper, iron an sacrificial anode or in galvani.</li> <li>It is oxidation induced deternon-metals.</li> <li>Corrosion reduces the durab</li> <li>Corrosion is the gradual dechemical or electrochemic environment.</li> <li>69. Steel withca</li> </ul>	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium</li> </ul> </li> </ul>
<ul> <li>aluminium, copper, iron an sacrificial anode or in galvani.</li> <li>It is oxidation induced determon-metals.</li> <li>Corrosion reduces the durab</li> <li>Corrosion is the gradual dechemical or electrochemice environment.</li> <li>69. Steel with ca eutectoid steel.</li> </ul>	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their <b>rbon is known as hypo-</b>	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> </ul> </li> </ul>
<ul> <li>aluminium, copper, iron ar sacrificial anode or in galvani.</li> <li>It is oxidation induced determon-metals.</li> <li>Corrosion reduces the durab</li> <li>Corrosion is the gradual dechemical or electrochemice environment.</li> <li>69. Steel with ca eutectoid steel. <ul> <li>(a) 0.8%</li> </ul> </li> </ul>	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their <b>rbon is known as hypo-</b> (b) below 0.8%	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 45%, dicalcium silicate 30%,</li> </ul> </li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani. • It is oxidation induced deter- non-metals. • Corrosion reduces the durab • Corrosion is the gradual de chemical or electrochemic environment. 69. Steel withca eutectoid steel. (a) 0.8% (c) above 0.8%	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by eal reaction with their <b>rbon is known as hypo-</b> (b) below 0.8% (d) None of the above	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 45%, dicalcium silicate 30%, tricalcium aluminate 10%, tetracalcium</li> </ul> </li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani. • It is oxidation induced deter- non-metals. • Corrosion reduces the durab • Corrosion is the gradual de chemical or electrochemic environment. 69. Steel withca eutectoid steel. (a) 0.8% (c) above 0.8% BPSC AE (	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their <b>rbon is known as hypo-</b> (b) below 0.8% (d) None of the above <b>GEN ENGG.)-25.03.2022</b>	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 45%, dicalcium silicate 30%, tricalcium aluminate 10%, tetracalcium aluminoferrite 8% and other bonding agents 7%</li> </ul> </li> </ul>
<ul> <li>aluminium, copper, iron an sacrificial anode or in galvani.</li> <li>It is oxidation induced determinon-metals.</li> <li>Corrosion reduces the durabe</li> <li>Corrosion is the gradual dechemical or electrochemice environment.</li> <li>69. Steel with ca eutectoid steel. <ul> <li>(a) 0.8%</li> <li>(c) above 0.8%</li> </ul> </li> <li>BPSC AE (Content of the state of t</li></ul>	<ul> <li>ad zinc. Hence, used as zation.</li> <li>ioration of both metals and ility of these substance.</li> <li>eterioration of material by cal reaction with their</li> <li>rbon is known as hypo-</li> <li>(b) below 0.8%</li> <li>(d) None of the above</li> <li>GEN ENGG.)-25.03.2022</li> <li>on steel containing 0.8%</li> </ul>	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 45%, dicalcium silicate 30%, tricalcium aluminoferrite 8% and other bonding agents 7%</li> <li>(c) tricalcium silicate 30%, dicalcium silicate 45%,</li> </ul> </li> </ul>
<ul> <li>aluminium, copper, iron an sacrificial anode or in galvani.</li> <li>It is oxidation induced determon-metals.</li> <li>Corrosion reduces the durab</li> <li>Corrosion is the gradual dechemical or electrochemic environment.</li> <li>69. Steel with ca eutectoid steel. <ul> <li>(a) 0.8%</li> <li>(c) above 0.8%</li> </ul> </li> <li>BPSC AE (Content of the structure of</li></ul>	d zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their <b>rbon is known as hypo-</b> (b) below 0.8% (d) None of the above <b>GEN ENGG.)-25.03.2022</b> on steel containing 0.8% steel. If the carbon content	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 45%, dicalcium silicate 30%, tricalcium aluminoferrite 8% and other bonding agents 7%</li> <li>(c) tricalcium silicate 30%, dicalcium silicate 45%, tricalcium aluminate 8%, tetracalcium aluminoferrite 8% and other bonding agents 7%</li> </ul> </li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani. • It is oxidation induced deter- non-metals. • Corrosion reduces the durab • Corrosion is the gradual de chemical or electrochemic environment. <b>69.</b> Steel withCa eutectoid steel. (a) 0.8% (c) above 0.8% BPSC AE (c) Ans. (b) : • A plain carbo carbon is known as eutectoid of the steel is less than 0.8%	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their <b>rbon is known as hypo-</b> (b) below 0.8% (d) None of the above <b>GEN ENGG.)-25.03.2022</b> on steel containing 0.8% steel. If the carbon content it is called hypo-eutectoid	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 45%, dicalcium silicate 30%, tricalcium aluminate 10%, tetracalcium aluminoferrite 8% and other bonding agents 7%</li> <li>(c) tricalcium silicate 30%, dicalcium silicate 45%, tricalcium aluminate 8%, tetracalcium aluminoferrite 8% and other bonding agents 7%</li> </ul> </li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani. • It is oxidation induced deter- non-metals. • Corrosion reduces the durab • Corrosion is the gradual de- chemical or electrochemic environment. <b>69.</b> Steel withca eutectoid steel. (a) 0.8% (c) above 0.8% BPSC AE (c) Ans. (b) : • A plain carbo carbon is known as eutectoid of the steel is less than 0.8% steel. Most of the steels pr	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their <b>rbon is known as hypo-</b> (b) below 0.8% (d) None of the above <b>GEN ENGG.)-25.03.2022</b> on steel containing 0.8% steel. If the carbon content it is called hypo-eutectoid	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 45%, dicalcium silicate 30%, tricalcium aluminate 10%, tetracalcium aluminoferrite 8% and other bonding agents 7%</li> <li>(c) tricalcium silicate 30%, dicalcium silicate 45%, tricalcium aluminoferrite 8% and other bonding agents 7%</li> </ul> </li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani. • It is oxidation induced deter- non-metals. • Corrosion reduces the durab • Corrosion is the gradual de- chemical or electrochemic environment. <b>69.</b> Steel withCa eutectoid steel. (a) 0.8% (c) above 0.8% BPSC AE (c) Ans. (b) : • A plain carbo carbon is known as eutectoid of the steel is less than 0.8% steel. Most of the steels pr hypo-eutectoid steels.	d zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their <b>rbon is known as hypo-</b> (b) below 0.8% (d) None of the above <b>GEN ENGG.)-25.03.2022</b> on steel containing 0.8% steel. If the carbon content it is called hypo-eutectoid oduced commercially are	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 30%, dicalcium silicate 30%, tricalcium aluminate 10%, tetracalcium aluminoferrite 8% and other bonding agents 7%</li> <li>(c) tricalcium silicate 30%, dicalcium silicate 45%, tricalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(d) tricalcium silicate 10%, dicalcium silicate 40%,</li> </ul> </li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani. • It is oxidation induced deter- non-metals. • Corrosion reduces the durab • Corrosion is the gradual de chemical or electrochemic environment. <b>69.</b> Steel with ca eutectoid steel. (a) 0.8% (c) above 0.8% BPSC AE (C Ans. (b) : • A plain carbo carbon is known as eutectoid of the steel is less than 0.8% steel. Most of the steels pr hypo-eutectoid steels. • The steels which contain m	d zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their <b>rbon is known as hypo-</b> (b) below 0.8% (d) None of the above <b>GEN ENGG.)-25.03.2022</b> on steel containing 0.8% steel. If the carbon content it is called hypo-eutectoid oduced commercially are nore than 0.8% of carbon	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 30%, dicalcium silicate 30%, tricalcium aluminate 10%, tetracalcium aluminoferrite 8% and other bonding agents 7%</li> <li>(c) tricalcium silicate 30%, dicalcium silicate 45%, tricalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(d) tricalcium silicate 10%, dicalcium silicate 40%, tricalcium aluminate 35%, tetracalcium</li> </ul> </li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani. • It is oxidation induced deter- non-metals. • Corrosion reduces the durab • Corrosion is the gradual de chemical or electrochemic environment. <b>69.</b> Steel withca eutectoid steel. (a) 0.8% (c) above 0.8% BPSC AE (C Ans. (b) : • A plain carbo carbon is known as eutectoid of the steel is less than 0.8% steel. Most of the steels pr hypo-eutectoid steels. • The steels which contain m are called hypereutectoid steel	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their <b>rbon is known as hypo-</b> (b) below 0.8% (d) None of the above <b>GEN ENGG.)-25.03.2022</b> on steel containing 0.8% steel. If the carbon content it is called hypo-eutectoid oduced commercially are nore than 0.8% of carbon ls.	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 30%, dicalcium silicate 30%, tricalcium aluminate 10%, tetracalcium aluminoferrite 8% and other bonding agents 7%</li> <li>(c) tricalcium silicate 30%, dicalcium silicate 45%, tricalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(d) tricalcium silicate 10%, dicalcium silicate 40%,</li> </ul> </li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani. • It is oxidation induced deter- non-metals. • Corrosion reduces the durab • Corrosion is the gradual de chemical or electrochemic environment. <b>69.</b> Steel with ca eutectoid steel. (a) 0.8% (c) above 0.8% BPSC AE (C Ans. (b) : • A plain carbo carbon is known as eutectoid of the steel is less than 0.8% steel. Most of the steels pr hypo-eutectoid steels. • The steels which contain m are called hypereutectoid steel • Hypereutectoid steels with	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their <b>rbon is known as hypo-</b> (b) below 0.8% (d) None of the above <b>GEN ENGG.)-25.03.2022</b> on steel containing 0.8% steel. If the carbon content it is called hypo-eutectoid oduced commercially are nore than 0.8% of carbon ls.	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 30%, dicalcium silicate 30%, tricalcium aluminate 10%, tetracalcium aluminoferrite 8% and other bonding agents 7%</li> <li>(c) tricalcium silicate 30%, dicalcium silicate 45%, tricalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(d) tricalcium silicate 10%, dicalcium silicate 40%, tricalcium aluminate 35%, tetracalcium</li> </ul> </li> </ul>
aluminium, copper, iron an sacrificial anode or in galvani. • It is oxidation induced deter- non-metals. • Corrosion reduces the durab • Corrosion is the gradual de chemical or electrochemic environment. <b>69.</b> Steel withca eutectoid steel. (a) 0.8% (c) above 0.8% BPSC AE (C Ans. (b) : • A plain carbo carbon is known as eutectoid of the steel is less than 0.8% steel. Most of the steels pr hypo-eutectoid steels. • The steels which contain m are called hypereutectoid steel	nd zinc. Hence, used as zation. ioration of both metals and ility of these substance. eterioration of material by cal reaction with their <b>rbon is known as hypo-</b> (b) below 0.8% (d) None of the above <b>GEN ENGG.)-25.03.2022</b> on steel containing 0.8% steel. If the carbon content it is called hypo-eutectoid oduced commercially are nore than 0.8% of carbon ls.	<ul> <li>The main objective of chemical modification or monomer impregnation of wood to revolute its properties and to increase its performance.</li> <li>Cellulose content ranges from (40 to 50%) and hemi celluloses range from (25 to 35%) lignin range from (15 to 35)%.</li> <li>72. The approximate composition of Portland cement is <ul> <li>(a) tricalcium silicate 58%, dicalcium silicate 17%, tricalcium aluminate 8%, tetracalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(b) tricalcium silicate 30%, dicalcium silicate 30%, tricalcium aluminate 10%, tetracalcium aluminoferrite 8% and other bonding agents 7%</li> <li>(c) tricalcium silicate 30%, dicalcium silicate 45%, tricalcium aluminoferrite 10% and other bonding agents 7%</li> <li>(d) tricalcium silicate 10%, dicalcium silicate 40%, tricalcium aluminoferrite 5% and other bonding agents</li> </ul> </li> </ul>

Ans. (b): The approximate composition of Portland Then it fuses and following four major compounds are formed— mineral linear and interal mineral calcium silicateEnamel paints- fit contain vehicle (binding material) is water bactadp rains of the control paints of the control paints and silicate is containts—The coment paint is water bactadp rain is water paterial reader provent fungal and algal growth on intre-rained reader fungal and algal growth on intre-rained reader fungal and algan of the constructed on fungal and algan of the provent fungal and algan of (c) Si fur etay - The main component of refratory fur elay is hydrated aluminium. Silcates with trip and unit is water backets and with a standard standare standard standard standard standard stan					
Then it fuses and following four major compounds are formed-infectional forme		The approximate co	mpositi	on of Portland	
formed- mineralCompoundAvg functionTrincipal calcium siticateCompoundAvg functionTri- calcium siticateCompoundAvg functionArea siticateCompoundAvg functionDicalciu (Alite)3CaO.SiO ₂ (C,S)40%7 days strength and bardnessDicalciu (belite)2CaO.SiO ₂ (C ₂ S)32%Ultimate strength (1 year strength (1 year strength)Dicalciu (C ₂ CA)32%Ultimate strength (1 year strength)76. Bullet proof glass is made of thick glass sheet sandwiched by a layer of high strength plastic. BUE torof glass is constructed using layer of plate glass and vinity resin plastic. The thickness of outer layer is small as compared to inner layer.Tricelai (C ₂ A)CaO.Al ₂ O ₃ Fe ₂ O8%Poorest cementing valueTetra (C ₂ AF)4CaO.Al ₂ O ₃ Fe ₂ O8%Poorest cementing value(C(C ₄ AF)value(a) UP (b) word is fram an component of refactors (c) hydrated aluminium. Silicate (d) magnesiam70. The fire clays chydrade duminium. Silicate with trig musuus of other mineral. The geological formation of fire clays is hydrated duminium. Silicate73. The fire clays-the main component of refactors (c) hydrated aluminium. Silicate74. Plywood is smade from : (c) tak wood only (d) absetso sheets BPSC AE (GEN. ENGG.)-2006Ans. (c) : The wood fire clays depended to nock from teak wood only (d) absetso sheets BPSC AE (GEN. ENGG.)-2006Ans. (c) : Absetso paints - Asbestos was refer tesi stant paints are (a) consisting of absets				like a styrene, polyvinyl lactate, alkyl resin etc.	
Principal mineralCompound Mark SymbolAvg SymbolSymbol metricitondrift collection prevent fungal and algal growth on algal strength and hardness best cementing materialTri- calcium silicate (Delite)3CaO SiO_2 (C,S)40%7 days strength and hardness best cementing materialDicalciu m silicate (Delite)2CaO SiO_ (C_S)32%10%Flash set, initial setting time (C_A)Dicalciu m aluminate aluminatia3CaO Al ₂ O_ (C_A)10%Flash set, initial setting time (C_A)10%Flash set, initial setting time (C_A)Tetra (a) time (b) oxide of iron (b) oxide of ofron (c) hydrated aluminum. Silicate (d) magnesium10%Flash set, initial setting time (c) hydrated aluminum. Silicate (d) magnesium(a) UP (b) Punjab (C_AF)(b) Corest cementing value74. Plywood is obtained from : (c) tak wood only Plywood is station from : (c) ack wood only(b) barboo fiber (c) dash sand standard motar after 3 days of curing should not be less than (a) common timber (b) achies of wood venier glued together. This is consisting of sheets of wood glued together. This sheets of wood venier glued together. This sheets of wood venier glued together. This (c) absetos paints-Asbestos was (c) constang of sheets of wood glued together. This sheets of wood venier glued together. This sheets of wood venier glued together. This sheets of wood venier glued together. This (c) asbestos paints-Asbestos was (d) cement paints arised out on standard cubes made of a good "Portland Cement" and standard specifications, the average compressive strength				compounds are	
mineralnofunctionTri- calcium silteate3CaO.SiO2 (C,S)40%7 daysTri- calcium silteate3CaO.SiO2 (C,S)40%7 daysDicaclou (Altre)2CaO.SiO2 (C-S)32%Ultimate strength (1 yearDicaclou (C-S)2CaO.SiO2 (C-S)32%Ultimate strength (1 yearTricalcia aluminate3CaO.Al ₂ O3 (C-S)10%Flash set, initial strength (1 yearTricalcia um (C-Gite)3CaO.Al ₂ O3 (C-S)10%Flash set, initial strength (1 yearTricalcia um (C-Gite)3CaO.Al ₂ O3 (C-S)10%Flash set, initial strength (1 yearTricalcia (C-Alie)3CaO.Al ₂ O3 (C-S)10%Flash set, initial strength (1 yearTricalcia (C-Alie)3CaO.Al ₂ O3 (C-S)10%Flash set, initial strength (1 yearTricalcia (C-Alie)3CaO.Al ₂ O3 (C-S)10%Flash set, initial strength (1 yearTricalcia (C-Alie)3CaO.Al ₂ O3-Fe ₂ O (C-Alie)8%Poorest, cementing valueTait (C-Hite)CAACAACoATote mode the mineral The geological formation of fire clay is hydrated aluminium silicate (d) magnesium6%Abs. (c) : Fire clay-The mina component of refractory fire clay is hydrated aluminium silicate (d) magnesium78.Tote mode the mineral. The geological formation of fire clay is hydrated aluminium silicate (c) tak wood only (d) absetos sheets berge C-Care ECOEN. ENCG.)-2006 <td< td=""><td></td><td>Commonsed</td><td><b>A</b> - 1 - 2</td><td>Gh al</td><td></td></td<>		Commonsed	<b>A</b> - 1 - 2	Gh al	
Tricula calcium salcao SiO2 (C3S)40% 40%7 days strength and strength and material76.Bullet proof glass is made of thick glass sheet sandwiched by a layer of (a) stel (b) this strength plastic (d) chronium plate BPSC AE (GEN_ENGG_)-2006Dicalciu m silicate (C5S)232%Ultimate strength) (C5S)Triculcia aluminate (C4nic)2CaO Al_O3 (C5,A)10% (b) limate strength) (C4nic)10% (c) is and solution of trial cial strength) (C4AF)Tetra (C4AF)4CaO Al_O3-GP (C4AF)10% (c) is and solution value10% (c) is and solution strength) (c) b) Punjab (c) West Bengal (d) Bihar (e) boxide of iron (b) oxide of iron (c) hydrated aluminium. Silicate (d) magnesium10% (c) is the case of strength case. with high found in Karnataka, Kerala, Tamil Nadu and hilly areas of Odish and Assam.74.Plywood is botained from : (a) common timber (b) sonds of sobtained from : (c) a kwood only Plywood is made from (a) common timber (b) admoo fiber (c) tak wood only Plywood is a construction material made from this sterts of wood venier glued together. This is consisting of abets of wood glued together with the grains of adjacent layer aranged at right angle.75. The most fire resistant plaints. (c) absetos plaints. (c) absetos plaints. (d) accent plaints. (d) accent plaints. (d) accent plaints. (d) accent plaints. (d) accent plaints. (d) common timerial made from time (d) accent plaints. (d) common time and targed together. (d) common time and add tore of a good Portland common tarial made from time solution. (d) common time and add common time and add common time and add comm		Compound	Avg		
calcium silicate (Alite)strength and hardness best cementing materialstrength and hardness best cementing materialstandwiched by a layer of (b) stainless steel (c) high strength plastic (d) chromium plate BPSC AE (GEN. ENGG.)-2006 (G.S)Dicalciu (belite)2CaO.SiO2 (C.S)32%Ultimate strength year strength initial setting time of (C.G.S)32%Ultimate strength initial setting time of valueAns. (e): Bullet proof glass is constructed using layer of plate glass is construction in area with high fround in Karnataka, Kerala trans iNadu and hilly areas of Odisha and Assam.73. The fire clay- The main component of refractory fire clays depended on rock from the earth's crust being weathered by wind, rain cheat, coid and advanison78. Stones used for the construction of retaining walls must be heavy. Retaining wall is used to create a transition from on level of ground to another. Heavy stone = Retaining wall tars of olisha and orsaam.74. Plywood is made from (a) enamed plute glue together. This is toonsisting of sheets of wood glued together. This is construction faterial the most the mistance from this scon		$3C_{2}O_{2}SiO_{2}(C_{2}S)$	40%		
silicate (Alite)       hardness best cementing material         Dicalciu m silicate (belite)       2CaO.SiO2 (C ₅ S)       32%       Ulimate strength) (1 year strength) (2C ₅ S)       32%       Ulimate strength) (2C ₅ S)         Tricalcia aluminate (C ₅ A)       3CaO.Al ₂ O ₃ 10%       Flash set, initial setting time (C ₆ A)       10%       Flash set, initial setting time (C ₆ A)       10%       Flash set, initial setting time (C ₆ AF)       Na. (c) : Bullet proof glass is constructed using layer of plate glass and vinyl resin plastic. The thickness of outer layer is small as compared to inner layer.         7.       The fire clay contains pure (a) lime (b) oxide of iron (c) hydrated aluminium silicate (d) magnesium       8%       Poorest value       PSC AE (GEN. ENGG.)-2006         Ans. (c) : Fire clay-The main component of refractory fire clays depended on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion.       Nas. (d) Stones used for the construction of retaining walls must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone - Retaining wall ad stone = Retaining wall ad stone = Masonary structure Fire expose = Compressive strength of a good Portland cement and standard sand mortar after 3 days of curing should not be less than (a) cament plants (b) aluminium plants (c) tak wood only (d) asbestos sheets (e) asbestos paints. (b) aluminium plants (c) tak wood only (d) asbestos sheets (c) tak wood only (d) asbestos sheets (c) tak wood only (d) asbestos sheets (c) asbestos paints Absents or wood glued together. This is consting of sheets of wood glued together. This is constiffer or sistant plaints are (a) canent paints		5CaO.5IO ₂ (C ₃ S)	4070		
(Alite)       best cementing material         Dicalciu       2CaO.SiO ₂ 32%         Dicalciu       (CaS)       strength         m stitcate       (CaS)       strength         (belite)       3CaO.Al_O ₃ 10%         Tricalcia       3CaO.Al_O ₃ 10%         Tricalcia       3CaO.Al_O ₃ 10%         Tricalcia       3CaO.Al_O ₃ 10%         Tricalcia       3CaO.Al_O ₃ 10%         Tetra       4CaO.Al_O ₃ Fe ₂ O       8%         (CaHie)       value       (a) UP       (b) Punjab         (C.AF)       value       (c) Latrite is found in area with high remperature and heavy rainfall. These soils are mainly found in Karrataka, Kerala, Tamil Nadu and hilly areas of Odisha and Assant.         (b) oxide of iron       (c) startataka, Kerala, Tamil Nadu and hilly areas of Odisha and Assant.         (c) The fore clay - The main component of refractory fire clays depended on rock from the earth's cruss being weathered by wind, rain cheat, cold and darbarsion.         74. Plywood is made from tai.       BPSC AE (GEN. ENGG2006 Ass. (c) : Plywood is made from tai.         (a) common timber       (b) abmboo fiber (c) tak wood only       (d) asbetos shetis arraid out on standard stand mortar after 3 days of caring should not be less than (a) rommon timber is bib and commater mersistant paints are (a) enamel paints       (b) abu					
Comming material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material material ma					
Imaterial DicalciuImaterial (C3A)Imaterial (C5S)Imaterial (C5S)Dicalciu(C3A)(C3A)Ultimate strength)Ans. (c) : Bullet proof glass is made of thick glass Bullet proof glass is constructed using layer of plate glass is made of thick glass Bullet proof glass is constructed using layer of plate (C3A)Tricalcia3CaO.Al ₂ O ₃ 10%Flash set, initial setting time (C4B)Ans. (c) : Bullet proof glass is constructed using layer of plate glass is constructed using layer of plate (C3A)Terra (C2B)4CaO.Al ₂ O ₃ Fe ₂ O8%Poorest cementing value(a) UP(b) Punjab(C4AF)value(c) KeralaBPSC AE (GEN. ENGG.)-2006Ans. (c) : Fire clay-The main component of refractory fire clay is hydrated aluminum. Silicates with ting agnesium(c) light (d) heavy(d) magnesiumBPSC AE (GEN. ENGG.)-2006Ans. (c) : Fire clay-The main component of refractory fire clay is hydrated aluminum. Silicates with ting atarsaion.74. Plywood is obtained from : (a) common timber (b) bamboo fiber (c) teak wood only Plywood is made from teak wood only. Plywood is made from (a) common timber (b) bamboo fiber (c) teak wood only (d) asbetos sheets BPSC AE (GEN. ENGG.)-2006Ans. (c) : Plywood is made from (c) absetos of wood y curier glued together. This grains of adjacent layer arranged at right angle.75. The most fire resistant paints w (c) asbetos paints (d) cament paints (c) asbetos paints (d) cament pai	()				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
In stitule (belite)(C_2)Stieflight (1) year strength)Tricalcia aluminate (C_3A)10%Flash set, initial setting time (C_2He)Bullet proof glass is constructed using layer of plate layer is small as compared to inner layer.Tetra aluminate (Celite)4CaO.Al_O.3Fe.O8%Poorest cementing value(C)West Bengal(d) Bihar (e) West Bengal(d) Biar (e) West Bengal(d) Biar (e) West Benga	Dicalciu	2CaO.SiO ₂	32%	Ultimate	
(define)yearTricalcia aluminate $3CaO,Al_2O_3$ $10\%$ Flash set, initial setting time (Calte) $C_aAP_3$ Tetra aluminate $4CaO,Al_2O_3Fe_2O$ $8\%$ Poorest cementing value $(a)$ UP $(b)$ Punjab (c) West Bengal $(d)$ Bihar73. The fire clay contains pure (a) lime (b) oxide of iron (c) hydrated aluminium silicate (d) magnesium $(b)$ code of iron (c) hydrated aluminium. Silicates with tiny fire clay is hydrated aluminium. Silicates with tiny mounts of other mineral. The geological formation of fire clay sequenced on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion. $BPSC AE$ (GEN. ENGG.)-2006 <b>Ans.</b> (c) : Fire clay-The main component of refractory fire clay is hydrated aluminium. Silicates with tiny abrasion. $BPSC AE$ (GEN. ENGG.)-2006 <b>Ans.</b> (c) : Fire clay-Common timer fire clay sequenced on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion. $Ans.$ (d) Stones used for the construction of retaining walls must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall Hard stone = Masonary structure Fire expose = Compressive strength of a good Portland Cement" and standard stand mortar after 3 days of curing should not be less than (a) 7 MN/m2 (d) 21 MN/m2 <b>7.</b> The most fire resistant paints are (a) acamel paints (c) asbestos paints (d) cement paints (e) asbestos paints (d) by aluminium paints (c) asbestos paints (d) cement paints (e) assetso paints (d) by aluminium paints (c) asbestos and stald crist and trans different (d) assetos sheets <b>7.</b> The most fire resistant paints are<	m silicate	$(C_2S)$		strength (1	
Tricalcia um aluminate3CaO,Al_2O_3 (C_3A)10% (Pash set, initial setting time (Celite)Iayer is small as compared to inner layer.Tricalciam (Celite)4CaO,Al_2O_3Fe_2O (C_4AF)8% cementing value101010Tetra (Celite)4CaO,Al_2O_3Fe_2O (C_4AF)8% cementing value10101073. The fire clay contains pure (a) lime (b) oxide of iron (c) hydrated aluminum silicate (d) magnesium (e) hydrated aluminum. Silicates with tiny amounts of other mineral. The geological formation of fire clays depended on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion.78. Stones used for the construction of retaining walls must be (a) soft (b) hard (c) light (d) heavy74. Plywood is nobtained from : (c) teak wood only (d) asbestos sheets DPSC AE (GEN. ENGG.)-200679. The compressive strength of a good Portland cement and standard sand mortar after 3 days of curing should not be less than (a) common timber (b) bambo fiber (c) teak wood only (d) asbestos sheets DPSC AE (GEN. ENGG.)-2006Ans. (c) : Plywood is a construction material made from thin sheets of wood yenier glued together. This is consisting of sheets of wood gue together with the grains of adjacent layer arranged at right angle.75. The most fire resistant paints (c) asbestos paints (c) asbestos paints(b) aluminium paints (c) cement paints (b) aluminium paints (c) asbestos paints (c) asbestos paints and (d) cement paints (c) asbestos paints80. Eminently hydraulic lime is one in which the percentage of silica, alumina ad iron oxide is (a) $3\% - 0\%$ (b) $10\% - 25\%$ 74. Plywood is a construction ma	(belite)				
Intended um aluminate (C ₃ A)IO* initial setting time initial setting time (C ₄ AF)IO* initial setting time to WaleInitial initial setting time (C ₄ AF)7.Terra calcium 3 (C ₄ AF)4CaO.Al ₂ O ₃ Fe ₂ O8% Poorest cementing value77.Laterite is found in (a) UP (c) West Bengal (d) Bihar (c) West Bengal (d) Bihar (d) Magnesium73.The fire clay contains pure (a) lime (b) oxide of iron (c) hydrated aluminium. Silicates with thig being weathered by wind, rain cheat, cold and abrasion.BPSC AE (GEN. ENGG.)-2006 (Ans. (c) : Fire clay- The main component of refractory fire clays is bydrated aluminium. Silicates with thig being weathered by wind, rain cheat, cold and abrasion.78.Stones used for the construction of retaining walls must be (a) soft (b) hard (c) light (d) heavy BPSC AE (GEN. ENGG.)-2006Ans. (c) : Plywood is made from (a) common timber (b) bamboo fiber (c) tak wood only (d) asbestos sheets BPSC AE (GEN. ENGG.)-200679. The compressive strength of a good Portland Cement and standard sand mortar after 3 days of curing should not be less than (a) 7 MN/m² (d) 21 MN/m² (d) 2					
aluminate (Celite)       (C_3(A))       initial setting time         Tetra calcium aluminate (C_4(AF))       Poorest cementing value       (a) UP       (b) Punjab         73. The fire clay contains pure (a) lime       (c) AF)       (c) West Bengal       (d) Bihar         73. The fire clay contains pure (b) oxide of iron (c) hydrated aluminium silicate (d) magnesium       (e) Kerala       BPSC AE (GEN. ENGG.)-2006         Ans. (c): Fire clay-The main component of refractory fire clays is hydrated aluminium. Silicates with tiny amounts of other mineral. The geological formation of fire clays depended on rock from the earth's cold and abrasion.       (b) hard       (c) light       (d) heavy         74. Plywood is notained from : (c) teak wood only       (d) absetso sheets BPSC AE (GEN. ENGG.)-2006       Ans. (c) : Plywood is made from (a) common timber       (b) bamboo fiber (c) teak wood only       (d) absetso sheets BPSC AE (GEN. ENGG.)-2006         Ans. (c) : Plywood is made from (a) common timber       (b) bamboo fiber (c) teak wood only       (d) absetso sheets BPSC AE (GEN. ENGG.)-2006         Ans. (c) : Plywood is made from (a) common timber       (b) abuminium paints (c) absetso paints (d) ccment paints         75. The most fire resistant paints (c) asbestos paints       (b) atmation or standard cubes made of a good "Portland Cement" and standard stand motor (m) 1.3 ratio) to determine the compressive strength for three cubes should not be less than 11.5 N/mm ² atl 7.5 N/mm ² afl 7.5         76. The most fire resistant paints (c) asbestos paints (d) cement pa	Tricalcia		10%		
(Celite)       1       Construction         (Celite)       4CaO.Al ₂ O ₃ Fe ₂ O       8%       Poorest         (alumina (Celite)       (CaO.Al ₂ O ₃ Fe ₂ O       8%       Poorest         (Calcium)       (CaO.Al ₂ O ₃ Fe ₂ O       8%       Poorest         (Calcium)       (CaO.Al ₂ O ₃ Fe ₂ O       8%       Poorest         (Calcium)       (CaO.Al ₂ O ₃ Fe ₂ O       8%       Poorest         (Calcium)       (CaO.Al ₂ O ₃ Fe ₂ O       8%       Poorest         (Calcium)       (CaO.Al ₂ O ₃ Fe ₂ O       8%       Poorest         (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)         (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)         (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)       (Calcium)<		$(C_3A)$			
Tetra calcium alumina (C4AF)8% Poorest cementing valuePoorest cementing value73. The fire clay contains pure (a) lime (b) oxide of iron (c) hydrated aluminium silicate (d) magnesium(e) KeralaBPSC AE (GEN. ENGG.)-2006Ans. (c) : Fire clay-The main component of refractory fire clay is hydrated aluminium. Silicates with tiny amounts of other mineral. The geological formation of fire clays depended on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion.Stones used for the construction of retaining walls must be (a) soft (b) hard (c) light (d) heavy BPSC AE (GEN. ENGG.)-2006Ans. (c) : Plywood is obtained from : RRB JE 27.08.2015 (Shift-II) ORAns. (c) : Plywood is made from (a) common timber (b) bamboo fiber (c) teak wood only (d) asbestos sheets BPSC AE (GEN. ENGG.)-2006Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from this sheets of wood yueir glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.Ans. (*) Compressive strength of a good "Portland Cement" and standard motor (in 1:3 ratio) to determine the compressive strength of a good "Portland C				setting time	
calcium alumina (C4AF)cementing valueBPSC AE (GEN. ENGG.)-200673. The fire clay contains pure (a) lime (b) oxide of iron (c) hydrated aluminium silicate (d) magnesium (e) hydrated aluminium. Silicates with tiny amounts of other mineral. The geological formation of fire clays hydrated aluminium. Silicates with tiny amounts of other mineral. The geological formation of fire clays depended on rock from the earth's crust abrason.RBSC AE (GEN. ENGG.)-2006Ans. (c) : Fire clay-The main component of refractory fire clays hydrated aluminium. Silicates with tiny amounts of other mineral. The geological formation of fire clays beyended on rock from the earth's crust abrason.BPSC AE (GEN. ENGG.)-2006Ans. (c) : Fire clay-The main component of refractory fire clays depended on rock from the earth's crust abrason.BPSC AE (GEN. ENGG.)-200674. Plywood is made from (a) common timber (b) bamboo fiber (c) teak wood only (d) absetos sheets BPSC AE (GEN. ENGG.)-200670. The compressive strength of a good Portland cement and standard stand motor (in 1:3 ratio) to determine the compressive strength of a good "Portland Cement" and standard cubes made of a good "Portland Cement" and standard specifications, the average compressive strength of three cubes should not be less than 11.5 N/m² after 3 and 7 days of curing respectively.75. The most fire resistant paints are (a) enamel paints (b) aluminium paints (c) asbestos paints -Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant or base as des file in many different products in different industries. The most fire resistant products in different industries. The most fire resistant (c) 25% - 10% (b) 10% - 25%<	· · /			-	e ()
alumina (Felite)       (C4AF)       value         Ans. (c) C4AF)       value         73. The fire clay contains pure (a) lime (b) oxide of iron (c) hydrated aluminium silicate (d) magnesium       Ans. (e) : Laterite is found in area with high temperature and heavy rainfall. These soils are mainly found in Karnataka, Kerala, Tamil Nadu and hilly areas of Odisha and Assam.         78. Stones used for the construction of retaining walls must be (a) soft (b) hard (c) light (d) heavy         78. Stones used for the construction of retaining walls must be (a) soft (b) hard (c) light (d) heavy         74. Plywood is made from (a) common timber (b) bamboo fiber (c) teak wood only (d) absetos sheets BPSC AE (GEN. ENGG.)-2006         Ans. (c) Plywood is made from (a) common timber (b) bamboo fiber (c) teak wood only (d) absetos sheets BPSC AE (GEN. ENGG.)-2006         Ans. (c) Plywood is made from (a) consisting of sheets of wood glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.         75. The most fire resistant paints (c) asbestos paints (d) enamel paints (d) enamel paints (d) enamel paints (d) aestos spaints (d) cement paints (d) enamel paints (d) aestos paints -Asbestos was very products in different industries. The most fire resistant paints. Stones used of silica, alumina and iron oxide is (a) 5% - 10% (b) 10% - 25% (c) 25% - 30% (d) 30% - 40%		$4CaO.Al_2O_3Fe_2O$	8%		
(Felite)       Image of the clay contains pure         (a) lime       (b) oxide of iron         (b) oxide of iron       (c) hydrated aluminium silicate         (d) magnesium       (d) magnesium         BPSC AE (GEN. ENGG.)-2006       Ans. (c) : Fire clay-The main component of refractory fire clay is hydrated aluminium. Silicates with tiny amounts of other mineral. The geological formation of fire clays depended on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion.       74. Plywood is obtained from :         74. Plywood is made from       (a) common timber       (b) bamboo fiber         (c) teak wood only       (d) asbestos sheets       BPSC AE (GEN. ENGG.)-2006         Ans. (c) : Plywood is made from teak wood only.       Plywood is made from tarain made from this scoresting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glue together. This is consistent thart mean there toremoresive strength tor the construction of reta					
<ul> <li>73. The fire clay contains pure <ul> <li>(a) lime</li> <li>(b) oxide of iron</li> <li>(c) hydrated aluminium silicate</li> <li>(d) magnesium</li> </ul> </li> <li>78. Stones used for the construction of retaining walls must be <ul> <li>(a) soft</li> <li>(b) hard</li> <li>(c) light</li> <li>(c) light</li> <li>(d) heavy</li> </ul> </li> <li>78. Stones used for the construction of retaining walls must be <ul> <li>(a) soft</li> <li>(b) hard</li> <li>(c) light</li> <li>(c) light</li> <li>(d) heavy</li> </ul> </li> <li>78. Stones used for the construction of retaining wall smust be <ul> <li>(a) soft</li> <li>(b) hard</li> <li>(c) light</li> <li>(c) light</li> <li>(d) heavy</li> </ul> </li> <li>78. Stones used for the construction of retaining wall sus use to create a transition from one level of ground to another. Heavy stone = Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall sus to heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall sus to heavy. Retaining wall sus to heavy. Retaining wall sus to heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall sus to heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall sus to heavy. Retaining wall sus to heavy. Retaining wall is used to create a transition form one level of ground to another. Heavy stone = Retaining wall sus to heavy. Retaining wall sus of to constructive and transition form one level of ground to another. Heavy stone = Retaining wall sus to heavy. Retaining wall sus of to constructive and transition form one level of ground to another. Heavy stone = Retaining wall sus of to construction atternsition form transits is a construction matering made from thin sheets of wood venier glued together. This is</li></ul>		$(C_4AF)$		value	
<ul> <li>(a) lime</li> <li>(b) oxide of iron</li> <li>(c) hydrated aluminium silicate</li> <li>(d) magnesium</li> <li>BPSC AE (GEN. ENGG.)-2006</li> <li>Ans. (c) : Fire clay-The main component of refractory fire clay is hydrated aluminium. Silicates with tiny amounts of other mineral. The geological formation of fire clays depended on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion.</li> <li>74. Plywood is obtained from :</li> <li>RRB JE 27.08.2015 (Shift-II) OR</li> <li>Plywood is made from :</li> <li>(a) common timber (b) bamboo fiber</li> <li>(c) teak wood only (d) asbestos sheets</li> <li>BPSC AE (GEN. ENGG.)-2006</li> <li>Ans. (c) : Plywood is made from tak wood only. Plywood is a construction material made from the grains of adjacent layer arranged at right angle.</li> <li>75. The most fire resistant paints are <ul> <li>(a) enamel paints (b) aluminium paints</li> <li>(c) asbestos paints (d) cement paints</li> <li>(d) enamel paints (b) aluminium paints</li> <li>(c) asbestos paints (d) cement paints</li> <li>(d) cement paints</li> <li>(e) asbestos paints-Asbestos was very providers in different industries. The most fire resistant</li> </ul> </li> <li>80. Eminently hydraulic lime is one in which the precentage of silica, alumina and iron oxide is (a) 5% - 10% (b) 10% - 25% (c) 25% - 30% (d) 30% - 40%</li> </ul>	<i>(</i>	 			
<ul> <li>(b) oxide of iron <ul> <li>(c) hydrated aluminium silicate</li> <li>(d) magnesium</li> </ul> </li> <li>BPSC AE (GEN. ENGG.)-2006</li> <li>Ans. (c) : Fire clay-The main component of refractory fire clays is hydrated aluminium. Silicates with tiny amounts of other mineral. The geological formation of fire clays depended on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion.</li> <li>74. Plywood is made from : <ul> <li>RB JE 27.08.2015 (Shift-II) OR</li> <li>Plywood is made from <ul> <li>(a) common timber</li> <li>(b) bamboo fiber</li> <li>(c) teak wood only</li> <li>(d) asbestos sheets</li> <li>Plywood is made from tims sheets of wood venier glued together with the grains of adjacent layer arranged at right angle.</li> </ul> </li> <li>75. The most fire resistant paints are <ul> <li>(a) enamel paints</li> <li>(b) aluminium paints</li> <li>(c) asbestos paints - Asbestos was veryt inexpensive and was used as filler in many different products in different industries. The most fire resistant paints. The most fire resistant paints are (a) enamel paints</li> <li>(b) audininum paints</li> <li>(c) asbestos paints - Asbestos was veryt products in different industries. The most fire resistant paints are products in different industries. The most fire resistant paints are providents in different industries. The most fire resistant paints are providents in different industries. The most fire resistant paints are providents in different industries. The most fire resistant paints are providents in different industries. The most fire resistant paints are provident and providen</li></ul></li></ul></li></ul>		• •	re		
<ul> <li>(c) hydrated aluminium silicate         <ul> <li>(d) magnesium</li> <li>(e) hydrated aluminium silicate</li> <li>(f) magnesium</li> </ul> </li> <li>(f) magnesium</li> <li>(g) magnesium</li> <li>(h) hard</li> <li>(g) hydrated aluminium. Silicates with tiny amounts of other mineral. The geological formation of free clays depended on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion.</li> <li>74. Plywood is obtained from :         <ul> <li>(a) common timber</li> <li>(b) bamboo fiber</li> <li>(c) teak wood only</li> <li>(d) asbestos sheets BPSC AE (GEN. ENGG.)-2006</li> </ul> </li> <li>Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.</li> <li>75. The most fire resistant paints are</li></ul>					
<ul> <li>(d) magnesium</li> <li>(d) magnesium</li> <li>(e) magnesium</li> <li>(f) magnesium</li> <li>(g) magnesium</li> <li>(h) magnesium</li></ul>					
BPSC AE (GEN. ENGG.)-2006Ans. (c) : Fire clay-The main component of refractory fire clay is hydrated aluminium. Silicates with tiny amounts of other mineral. The geological formation of fire clays depended on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion.BPSC AE (GEN. ENGG.)-200674. Plywood is obtained from : RRB JE 27.08.2015 (Shift-II) ORThe compressive strength of a good Portland cement and standard sand mortar after 3 days of curing should not be less than (a) common timber (b) bamboo fiber (c) teak wood only (d) asbestos sheets BPSC AE (GEN. ENGG.)-200679. The compressive strength of a good Portland cement and standard sand mortar after 3 days of curing should not be less than (a) 7 MN/m2 (b) 11.5 MN/m2 (c) 17.5 MN/m2 (d) 21 MN/m2 (c) 17.5 MN/m2 (d) 21 MN/m275. The most fire resistant paints (a) enamel paints (b) aluminium paints (c) asbestos paints (d) cement paints (c) asbestos paints (d) cement paints (d) cement pa			ilicate		
Ans. (c) : Fire clay-The main component of refractory fire clay is hydrated aluminium. Silicates with tiny amounts of other mineral. The geological formation of fire clays depended on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion.BPSC AE (GEN. ENGG.)-200674. Plywood is obtained from : RRB JE 27.08.2015 (Shift-II OR (a) common timber (b) bamboo fiber (c) teak wood only (d) asbestos sheets BPSC AE (GEN. ENGG.)-2006Ans. (d) Stones used for the construction of retaining walls must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall Hard stone = Masonary structure Fire expose = Compressive strength of a good Portland cement and standard sand mortar after 3 days of curing should not be less than (a) common timber (b) bamboo fiber (c) teak wood only (d) asbestos sheets BPSC AE (GEN. ENGG.)-200679. The compressive strength of a good Portland cement and standard sand mortar after 3 days of curing should not be less than (a) 7 MN/m2 (d) 21 MN/m2 (c) 17.5 MN/m2 (d) 21 MN/m2 BPSC AE (GEN. ENGG.)-2006Ans. (c) : Plywood is made from time grains of adjacent layer arranged at right angle. 75. The most fire resistant paints (c) asbestos paints (b) aluminium paints (c) asbestos paints (b) aluminium paints (c) asbestos paints (d) cement paints (d) cement paints (d) cement paints (d) cement paints (d) cement paints (d) cement paints (e) asbestos paints-Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant80. Emimently hydraulic lime is one in which the percentage of silica, alumina and iron oxide is (a) 5% - 10% (d) 30% - 40%					
<ul> <li>Ans. (d) Stones used for the construction of retaining walls must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall must be heavy. Retaining wall is used to create a transition from one level of ground to another. Heavy stone = Retaining wall must be heavy structure Fire expose = Compressive strength of a good Portland cement and standard sand mortar after 3 days of curing should not be less than         <ul> <li>(a) common timber (b) bamboo fiber</li> <li>(b) aluminium paints</li> <li>(c) asbestos paints -Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant</li> </ul> </li> <li>Ans. (c) Asbestos paints-Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant</li> </ul>			. ENGG.)-2006		
amounts of other mineral. The geological formation of fire clays depended on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion. 74. Plywood is obtained from : RRB JE 27.08.2015 (Shiff-II) OR Plywood is made from (a) common timber (b) bamboo fiber (c) teak wood only (d) asbestos sheets BPSC AE (GEN. ENGG.)-2006 Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This (a) enamel paints (b) aluminium paints (c) asbestos paints (d) cement paints (c) asbestos paints -Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant products in different industries. The most fire resistant Plane and products in different industries. The most fire resistant products in different industries. The mo					
fire clays depended on rock from the earth's crust being weathered by wind, rain cheat, cold and abrasion.transition from one level of ground to another. Heavy stone = Retaining wall Hard stone = Masonary structure Fire expose = Compressed sand stone74. Plywood is obtained from : RRB JE 27.08.2015 (Shift-II) OR Plywood is made from (a) common timber (b) bamboo fiber (c) teak wood only (d) asbestos sheets BPSC AE (GEN. ENGG.)-2006The compressive strength of a good Portland cement and standard sand mortar after 3 days of curing should not be less than (a) 7 MN/m² (d) 21 MN/m² (c) 17.5 MN/m² (d) 21 MN/m² (c) asbestos five or glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is (c) asbestos paints (b) aluminium paints (c) asbestos paints (b) aluminium paints (c) asbestos paints (d) cement paints (d) cement paints (d) asbestos paints-Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistantEminently hydraulic lime is one in which the percentage of silica, alumina and iron oxide is (a) 5% - 10% (b) 10% - 25% (c) 25% - 30% (d) 30% - 40%					
<ul> <li>being weathered by wind, rain cheat, cold and abrasion.</li> <li>74. Plywood is obtained from : <ul> <li>RRB JE 27.08.2015 (Shift-II) OR</li> <li>Plywood is made from</li> <li>(a) common timber (b) bamboo fiber</li> <li>(c) teak wood only (d) asbestos sheets</li> <li>BPSC AE (GEN. ENGG.)-2006</li> </ul> </li> <li>Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from thin sheets of wood yenier glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of adjacent layer arranged at right angle.</li> <li>75. The most fire resistant paints are <ul> <li>(a) an amel paints</li> <li>(b) aluminium paints</li> <li>(c) asbestos paints (d) cement paints</li> <li>BPSC AE (GEN. ENGG.)-2006</li> </ul> </li> <li>80. Eminently hydraulic lime is one in which the percentage of silica, alumina and iron oxide is (a) 5% – 10% (b) 10% – 25% (c) 25% – 30% (d) 30% – 40%</li> </ul>					
abrasion.74. Plywood is obtained from : RRB JE 27.08.2015 (Shift-II) OR74. Plywood is obtained from : RRB JE 27.08.2015 (Shift-II) OR74. Plywood is obtained from : RRB JE 27.08.2015 (Shift-II) OR74. Plywood is made from (a) common timber (b) bamboo fiber (c) teak wood only (d) asbestos sheets BPSC AE (GEN. ENGG.)-2006Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.75. The most fire resistant paints (c) asbestos paints (b) aluminium paints (c) asbestos paints (d) cement paints (c) asbestos paints (d) cement paints8PSC AE (GEN. ENGG.)-2006Ans. (c) Asbestos paints (d) cement paints (c) asbestos paints (d) cement paints8DSC AE (GEN. ENGG.)-2006Ans. (c) Asbestos paints Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant80. Eminently hydraulic lime is one in which the percentage of silica, alumina and iron oxide is (a) 5% - 10% (b) 10% - 25% (c) 25% - 30% (d) 30% - 40%		1			
<ul> <li>74. Plywood is obtained from : RRB JE 27.08.2015 (Shift-II) OR</li> <li>Plywood is made from <ul> <li>(a) common timber</li> <li>(b) bamboo fiber</li> <li>(c) teak wood only</li> <li>(d) asbestos sheets</li> </ul> </li> <li>8PSC AE (GEN. ENGG.)-2006</li> <li>Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.</li> <li>75. The most fire resistant paints are (a) enamel paints (b) aluminium paints (c) asbestos paints (d) cement paints</li> <li>BPSC AE (GEN. ENGG.)-2006</li> <li>Ans. (c) Asbestos paints (d) cement paints</li> <li>BPSC AE (GEN. ENGG.)-2006</li> <li>Ans. (c) Asbestos paints Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant</li> </ul>	U	athered by wind, i	rain ch	eat, cold and	
<ul> <li>RRB JE 27.08.2015 (Shift-II) OR</li> <li>Plywood is made from <ul> <li>(a) common timber</li> <li>(b) bamboo fiber</li> <li>(c) teak wood only</li> <li>(d) asbestos sheets</li> </ul> </li> <li>BPSC AE (GEN. ENGG.)-2006</li> <li>Ans. (c) : Plywood is made from teak wood only.</li> <li>Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.</li> <li>75. The most fire resistant paints are <ul> <li>(a) enamel paints</li> <li>(b) aluminium paints</li> <li>(c) asbestos paints (d) cement paints</li> <li>BPSC AE (GEN. ENGG.)-2006</li> </ul> </li> <li>Ans. (c) Asbestos paints-Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant</li> </ul>	abrasion.				
ORPlywood is made from(a) common timber(b) bamboo fiber(c) teak wood only(d) asbestos sheetsBPSC AE (GEN. ENGG.)-2006Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.75. The most fire resistant paints are (a) enamel paints (c) asbestos paints(b) aluminium paints (d) cement paints75. The most fire resistant paints are (a) enamel paints (c) asbestos paints(b) aluminium paints (d) cement paints8DSC AE (GEN. ENGG.)-200680. Eminently hydraulic lime is one in which the percentage of silica, alumina and iron oxide is (a) 5% - 10%(b) 10% - 25% (c) 25% - 30%(d) 30% - 40%	74. Plyw				
ORPlywood is made from(a) common timber(b) bamboo fiber(c) teak wood only(d) asbestos sheetsBPSC AE (GEN. ENGG.)-2006Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.75. The most fire resistant paints are (a) enamel paints (c) asbestos paints(b) aluminium paints (d) cement paints75. The most fire resistant paints are (a) enamel paints (c) asbestos paints(b) aluminium paints (d) cement paints8DSC AE (GEN. ENGG.)-200680. Eminently hydraulic lime is one in which the percentage of silica, alumina and iron oxide is (a) 5% - 10%(b) 10% - 25% (c) 25% - 30%(d) 30% - 40%		RRB J	TE 27.08	3.2015 (Shift-II)	79. The compressive strength of a good Portland
Plywood is made from(a) common timber(b) bamboo fiber(c) teak wood only(d) asbestos sheetsBPSC AE (GEN. ENGG.)-2006Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.75. The most fire resistant paints (a) enamel paints (c) asbestos paints(b) aluminium paints (c) asbestos paints(c) Asbestos paints(b) aluminium paints (c) asbestos paints(a) enamel paints (c) asbestos paints(b) aluminium paints (c) asbestos paints(b) aluminium paints (c) asbestos paints(c) cement paints(c) Asbestos paints-Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant		OK	2		cement and standard sand mortar after 3 days
<ul> <li>(a) common timber</li> <li>(b) bamboo fiber</li> <li>(c) teak wood only</li> <li>(d) asbestos sheets</li> <li>BPSC AE (GEN. ENGG.)-2006</li> <li>Ans. (c) : Plywood is made from teak wood only.</li> <li>Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.</li> <li>75. The most fire resistant paints are         <ul> <li>(a) enamel paints</li> <li>(b) aluminium paints</li> <li>(c) asbestos paints</li> <li>(d) cement paints</li> <li>(d) cement paints</li> <li>(d) cement paints</li> <li>(d) cement paints</li> <li>(e) asbestos paints</li> <li>(f) aluminium paints</li> <li>(g) asbestos paints</li> <li>(h) aluminium paints</li></ul></li></ul>	Plyw	ood is made from			
<ul> <li>(c) teak wood only (d) asbestos sheets BPSC AE (GEN. ENGG.)-2006</li> <li>Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.</li> <li>75. The most fire resistant paints are (a) enamel paints (b) aluminium paints (c) asbestos paints – Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant</li> </ul>			(b) bam	boo fiber	
BPSC AE (GEN. ENGG.)-2006Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.Ans. (*)Compressive strength test-This test is carried out on standard cubes made of a good "Portland Cement" and standard motor (in 1:3 ratio) to determine the compressive strength of cement. According to Indian standard specifications, the average compressive strength for three cubes should not be less than 11.5 N/mm² and 17.5 N/mm² after 3 and 7 days of curing respectively.Ans. (c) Asbestos paints-Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistantBest carried out on standard specifications, the average compressive strength for three cubes should not be less than 11.5 N/mm² and 17.5 N/mm² after 3 and 7 days of curing respectively.80.Eminently hydraulic lime is one in which the percentage of silica, alumina and iron oxide is (a) 5% -10% (b) 10% - 25% (c) 25% - 30% (d) 30% - 40%	(c) t	eak wood only	(d) asbe	stos sheets	
Ans. (c) : Plywood is made from teak wood only. Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.Ans. (*)Compressive strength test-This test is carried out on standard cubes made of a good "Portland Cement" and standard motor (in 1:3 ratio) to determine the compressive strength of cement. According to Indian standard specifications, the average compressive strength for three cubes should not be less than 11.5 N/mm² and 17.5 N/mm² after 3 and 7 days of curing respectively.75. The most fire resistant paints are (a) enamel paints (b) aluminium paints (c) asbestos paints (d) cement paints80. Eminently hydraulic lime is one in which the percentage of silica, alumina and iron oxide is (a) 5% - 10% (b) 10% - 25% (c) 25% - 30% (d) 30% - 40%	. /	5	E (GEN	. ENGG.)-2006	
<ul> <li>Plywood is a construction material made from thin sheets of wood venier glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.</li> <li>75. The most fire resistant paints are <ul> <li>(a) enamel paints</li> <li>(b) aluminium paints</li> <li>(c) asbestos paints</li> <li>(d) cement paints</li> </ul> </li> <li>76. Asbestos paints (b) aluminium paints</li> <li>(e) asbestos paints</li> <li>(f) autominium paints</li> <li>(g) asbestos paints. Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant</li> </ul>	Ans. (c) :		-		· · · · · · · · · · · · · · · · · · ·
<ul> <li>sheets of wood venier glued together. This is consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.</li> <li>75. The most fire resistant paints are <ul> <li>(a) enamel paints</li> <li>(b) aluminium paints</li> <li>(c) asbestos paints (d) cement paints</li> </ul> </li> <li>BPSC AE (GEN. ENGG.)-2006 Ans. (c) Asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant Beref (GEN. Engeg.)-2006 (a) 5% – 10% <ul> <li>(b) 10% – 25%</li> <li>(c) 25% – 30%</li> <li>(d) 30% – 40%</li> </ul></li></ul>	· · ·	2		5	
<ul> <li>consisting of sheets of wood glued together with the grains of adjacent layer arranged at right angle.</li> <li>75. The most fire resistant paints are         <ul> <li>(a) enamel paints</li> <li>(b) aluminium paints</li> <li>(c) asbestos paints</li> <li>(d) cement paints</li> </ul> </li> <li>BPSC AE (GEN. ENGG.)-2006         <ul> <li>Ans. (c) Asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant</li> </ul> </li> <li>Build Content of the compressive strength of cement. According to Indian standard specifications, the average compressive strength for three cubes should not be less than 11.5 N/mm² and 17.5 N/mm² after 3 and 7 days of curing respectively.</li> <li>Build Content of the compressive strength for three cubes should not be less than 11.5 N/mm² and 17.5 N/mm² after 3 and 7 days of curing respectively.</li> <li>Build Content of the compressive strength for three cubes should not be less than 11.5 N/mm² and 17.5 N/mm² after 3 and 7 days of curing respectively.</li> <li>Build Content of the compressive strength for three cubes should not be less than 11.5 N/mm² and 17.5 N/mm² after 3 and 7 days of curing respectively.</li> <li>Build Content of the compressive strength for three cubes should not be less than 11.5 N/mm² and 17.5 N/mm² after 3 and 7 days of curing respectively.</li> <li>Build Content of the compressive strength for three cubes should not be less than 11.5 N/mm² and 17.5 N/mm² after 3 and 7 days of curing respectively.</li> <li>Build Content of the compressive strength for three cubes should not be less than 11.5 N/mm² and 17.5 N/mm² after 3 and 7 days of curing respectively.</li> <li>Build Content of the compressive strength for three cubes should not be less than 11.5 N/mm² and 17.5 N/mm² after 3 and 7 days of curing respectively.</li> &lt;</ul>				-	
grains of adjacent layer arranged at right angle.75. The most fire resistant paints are (a) enamel paints (c) asbestos paints(b) aluminium paints (d) cement paintsBPSC AE (GEN. ENGG.)-2006Ans. (c) Asbestos paints-Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistantAns. (c) Asbestos paints-Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant					
<ul> <li>75. The most fire resistant paints are <ul> <li>(a) enamel paints</li> <li>(b) aluminium paints</li> <li>(c) asbestos paints</li> <li>(d) cement paints</li> </ul> </li> <li>80. Eminently hydraulic lime is one in which the percentage of silica, alumina and iron oxide is (a) 5% - 10% (b) 10% - 25% (c) 25% - 30% (d) 30% - 40%</li> </ul>					
<ul> <li>(a) enamel paints</li> <li>(b) aluminium paints</li> <li>(c) asbestos paints</li> <li>(d) cement paints</li> <li>BPSC AE (GEN. ENGG.)-2006</li> <li>Ans. (c) Asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant</li> <li>(c) asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant</li> <li>(c) asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant</li> </ul>	-		-	-	
<ul> <li>(c) asbestos paints (d) cement paints BPSC AE (GEN. ENGG.)-2006         Ans. (c) Asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant         Ans. (c) Asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant         Ans. (c) Asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant         Ans. (c) Asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant         Ans. (c) Asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant         Ans. (c) Asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant         Ans. (c) Asbestos paints—Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant         Ans. (c) Asbestos paints—Asbestos was very (c) 25% – 30%         (d) 30% – 40%         Ans.         Ans. (c) Asbestos paints—Asbestos was very (c) 25% – 30%         (d) 30% – 40%         Ans.         (d) Asbestos paints         Asbestos paints         Asbestos paints         (d) Asbestos paints         (d) Asbestos paints         (d) Asbestos          (d) Asbesto</li></ul>	-				
BPSC AE (GEN. ENGG.)-2006Ans. (c) Asbestos paints-Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistant80. Eminently hydraulic lime is one in which the percentage of silica, alumina and iron oxide is $(a) 5\% - 10\%$ $(b) 10\% - 25\%$ $(c) 25\% - 30\%$ $(d) 30\% - 40\%$		-		-	
Ans. (c) Asbestos paints-Asbestos was very inexpensive and was used as filler in many different products in different industries. The most fire resistantpercentage of silica, alumina and iron oxide is (a) $5\% - 10\%$ (b) $10\% - 25\%$ (c) $25\% - 30\%$ (d) $30\% - 40\%$	(0) 8	-		-	
inexpensive and was used as filler in many different products in different industries. The most fire resistant(a) $5\% - 10\%$ (b) $10\% - 25\%$ (c) $25\% - 30\%$ (b) $10\% - 25\%$ (d) $30\% - 40\%$				<i>,</i>	
products in different industries. The most fire resistant (c) $25\% - 30\%$ (d) $30\% - 40\%$					
paint are aspestos paints. BPSC AE (GEN. ENGG.)-29.03.2019	-		The mo	st fire resistant	
	paint are as	soestos paints.			BPSC AE (GEN. ENGG.)-29.03.2019

Civil Engineering	21 YCT
	MPSC AE PRE. 23.06.2019
containing is called a stretcher course.	(c) 74 to 78 (d) 51 to 56
to the face or front or direction of a wall. The course	(a) $60 \text{ to } 67$ (b) $50 \text{ to } 57$ (c) $74 \text{ to } 78$ (d) $51 \text{ to } 56$
<b>Stretcher</b> –This is a brick laid with its length parallel	lime constitutes : (a) $60 \text{ to } 67$ (b) $50 \text{ to } 57$
Header bond	85. In Ordinary Portland cement the percentage of
	Barrier properties against water and carbon dioxide.
│	• Excellent adhesion to a wide variety of substrates.
	<ul><li>Forms tough, durable films.</li></ul>
	• Soluble in low odour solvents.
	(VOC) content which is harmful. Advantages–
│	• It aims at reducing the volatile organic compound
	alkyd stain blocking primers.
	• It eliminates the odour that is normally present in the
wall. The course containing headers is called course.	to make points odourless to some extent.
or width parallel to the face or front or direction of	Ans. (d) : Plioway resins- This is the substance used
Ans. (a) : Header–This is a brick laid with its breadth	BPSC AE (GEN. ENGG.)-29.03.2019
BPSC AE (GEN. ENGG.)-29.03.2019	
H DBSC AF (CEN ENCC) 20.02 2010	(c) Acrylic compound
(c) 2 (d) $\frac{1}{4}$	(b) Celluloid sheets
_	(a) Flat latex (b) Callulaid abaata
(a) $\frac{1}{2}$ (b) 1	extent?
-	84. What is used to make paints odourless to some
header course, where x is equal to	of distempti.
course is x times the number of joints in the	I distember. Hence we can take 0.0 mile of water for the
82. The number of vertical joints in a stretcher	distemper. Hence we can take 0.6 litre of water for 1kg
• Linseed oil is the most widely used as vehicle.	• Normally, 500 to 700 ml water is required for 1kg of
• If forms the body of the paint	surfaces.
spread over surface.	<ul> <li>Distemper are washed away when used in exposed</li> </ul>
-	• This is used as interior paint for homes.
<b>Vehicle/Binder</b> –Holds the constituent of paint and	• It is used on plastered surface not exposed to weather.
Pigments used are aluminium bronze or copper bronze.	clean water and ordinary size.
vehicle used in bronze paint is "nitrocellulose lacquer".	mixing a dry pigment (chalk powder or whiting) with
either for internal or external metal structure. General	Ans. (c) : Distempers-The distemper is made by
paints that are widely used on radiators. It can be used	BPSC AE (GEN. ENGG.)-29.03.2019
Ans. (d) : Bronze points–Bronze points are reflective	
BPSC AE (GEN. ENGG.)-29.03.2019	
(d) nitrocellulose lacquer	(a) 0.2 liter (b) 0.4 liter
(c) water	distemper is
(b) naphtha	83. The amount of water used for 1 kg of
(a) linseed oil	course.
81. The vehicle used in bronze paints is usually	"half that of vertical joints" in the header bond in a
(c) Eminently hydraulic lime - 25 to 30%	$\therefore$ The number of vertical joints in the stretcher bond is
(b) Moderately hydraulic lime - 10 to 25%	$\therefore$ <u>Length of a header</u> $\approx 2$
(a) Feebly hydraulic lime - 5 to 10%	$\therefore \qquad \frac{\text{Length of a stretcher}}{1} \approx 2$
groups-	Stretcher bond
iron oxide, are classified into the following three	
clayey impurities in the form of silica, alumina and	││
The hydraulic lime, depending upon the percentage of	
dioxide and can set under water.	
and become hard even in the absence of carbon	
in chemical combination with calcium oxide. It can set	
quantities of silica, alumina and iron oxide, which are	
Ans. (c) Hydraulic lime–It is the lime which has small	

	ical composition of portland		Deodar-It is in great demand	
Oxides	Function	Compo	because of its durability not rest	
		sition	close grain.	
0.0		(%)	88. Which of the following t	rees yields hard wood?
CaO (Linna)	Controls strength and	60-65	0	(b) Chir
(Lime)	soundness its deficiency reduces strength and			(d) Pine
	setting time			JE 26.08.2015 (Shift-I
SiO ₂	Give strength, excise of it	17-25	Ans : (c) Hard wood : It is dark	
(silica)	causes slow setting	17 20		
Al ₂ O ₃	Responsible for quick	3-8	• It's growth are slower and heav	•
(Alumina)	setting, if in excess, it		• It's annual rings are indistinc	t and strength is strong
	lowers the strength		along and across the grains.	
Fe ₂ O ₃	Gives colour and	5-4	• Examples are – Teak, Sa	l, shishum and other
(Iron-	hardness, if in excess, it		deciduous trees.	
Oxides)	causes crack in mortar		89. Initial setting time is ma	ximum for-
	and concrete and unsound-wise		(a) Portland-Pozzolana c	ement
CaSO ₄	Retarder	2-5	(b) Portland-Slag cement	
$SO_3$ (Sulphur	Soundness	1-3%	(c) Low heat portland-po	zzolana cement
Trioxide)	Soundiness	1 370	(d) High strength portlan	
/	g of timber is required to-	<u> </u>		JE 26.08.2015 (Shift-II
(a) Softe	en the timber		Ans : (c)	
	en the timber ghten the timber		Type of cement	Initial setting time
(d) Rem	ove sap from the timber		OPC	30 min.
RRB JE 26.08.2015 (Shift-III)		Portland pozzolana cement	30 min.	
<b>RRB</b> S.S.E (Bilaspur/Secunderabad) 21.12.2014 <b>Ans : (d) Seasoning of timber:-</b> The newly cutted		Portland slag cement	30 min.	
trees have water in large quantity in sap and minimum in this inner part of wood.		Low heat cement	60 min.	
<ul> <li>We remove sap of the wood, then do seasoning for</li> </ul>		Rapid hardening cement	30 min.	
drying the wood and making for structural use		90. The main ingredients of	portland cement are-	
• By drying the timber we make its strength high more		8	(b) Lime and alumina	
elastic and du				(d) Lime and iron
	ned timber has 15% moisture	e content in		JE 26.08.2015 (Shift-II
it.				· · · · ·
(I) Natural se			Ans: (a) Ingredient of cement– Lime $(C_2O)$ 62.67%	
(II) Artificial			Lime (CaO) 62-67%	
	f the following timbers is s	suitable for	Silica (SiO ₂ ) $17-25\%$	
0	ports goods?		Alumina (Al ₂ O ₃ ) 3-8%	
(a) Mulb		ny	Calcium sulphate3-4%	
(c) Sal	(d) Deodar		Iron Oxide 0.5-6%	
	RRB JE 26.08.2015	· /	Magnesia 0.5–4	//0
	BPSC AE (GEN. ENGG.)		Sulphur 1–3%	
Ans. (a) : Mulberry is a strong tough and elastic wood,		Alkalies 0.2–1%		
it takes up a clean finish. It can be well seasoned. It is		91. Plaster of Paris is obtain	ed by calcining :	
turned and curved easily. Mulberry is typically used for		(a) Gypsum	(b) Bauxite	
	baskets and sports good like hockey, tennis, rackets and		(c) Lime stone	(d) Kankar
-			RRB	JE 27.08.2015 (Shift-II
cricket bats etc.	hogeny wood her a barnet	Mahogany-Mahogany wood has a beautiful reddish		
cricket bats etc. Mahogany–Ma			Ans · (a) • Plaster of Daria	is prepared by beating
cricket bats etc. <b>Mahogany</b> –Ma color and straig	ht grains. It is used for furni		Ans : (a) • Plaster of Paris	
cricket bats etc. <b>Mahogany</b> –Ma color and straig and make a mus	ht grains. It is used for furni ical instruments.	ture, chests	calcium sulphate dihydrate, or g	ypsum to 120-180°C.
cricket bats etc. Mahogany–Ma color and straig and make a mus Sal–It is less ex	ht grains. It is used for furni	ture, chests th the teak.	<ul><li>calcium sulphate dihydrate, or g</li><li>The plaster gets its name bec</li></ul>	ypsum to 120-180°C. ause, it main ingredient
cricket bats etc. <b>Mahogany</b> –Ma color and straig and make a mus <b>Sal</b> –It is less ex The fruits of th	ht grains. It is used for furni ical instruments. spensive when compared wit	ture, chests th the teak.	calcium sulphate dihydrate, or g	ypsum to 120-180°C. ause, it main ingredient Paris.

<ul> <li>93. Which is the purest form of iron? <ul> <li>(a) Cast iron</li> <li>(b) Wrought iron</li> <li>(c) Mild steel</li> <li>(d) High Carbon Steel</li> </ul> </li> <li>Ans : (b) Purest form of iron is wrought iron. <ul> <li>Carbon content in various iron material</li> <li>(a) Ans : (b) Purest form of iron is wrought iron.</li> <li>Carbon content in various iron material</li> <li>(c) Ans : (c) Purest form of iron is wrought iron.</li> <li>Carbon content in various iron material</li> <li>(c) Ans : (c) A Carbon content</li> <li>(c) Ans : (c) Purest form of iron 2-4.5%</li> <li>(c) Ans : (c) Purest form of iron is wrought iron.</li> <li>Cast iron 2-4.5%</li> <li>(c) Ans : (c) Purest form of iron is wrough iron.</li> <li>(c) Low heat cement (increase)</li> <li>(c) Ans : (c) Purest form of iron is wrought iron.</li> <li>(c) Inclined at 45% to grain</li> <li>(d) Inclined at 60% to grain</li> <li>(e) Inclined at 60% to grain</li> <li>(f) Perpendicular to grain</li> <li>(g) Parallel to grain</li> <li>(h) Perpendicular to grain</li> <li>(g) Inclined at 60% to grain</li> <li>(h) Perpendicular to grain</li> <li>(c) Inclined at 60% to grain</li> <li>(d) Inclined at 60% to grain</li> <li>(e) Inclined at 60% to grain</li> <li>(f) Perpendicular to grain</li> <li>(g) Ensile strength of the timber section is found to be axinum parallel to the grains (weak in joint making not using the tension member acts).</li> <li>95. Addition of pozzolana to ordinary portlant cement increase-</li> <li>(a) Bleeding</li> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> <li>RRB JE 28.08.2015 (Shift-II)</li> </ul> </li> <li>Ans : (b) Addition of pozzolana to ordinary portlant centari increase-</li> <li>(a) Else dong</li> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> <li>(e) Permeability</li> <li>(f) Bleeding</li> <li>(f) Shrinkage</li> <li>(g) Permeability</li> <li>(h) Addition of pozzolana to ordinary portlant centari increase in shrinkage, sulphate resistane and tecrase in os</li></ul>	does not contain free. (a) Free Lime (c) Iron oxide	(b) Silica (d) Alumina <b>RB JE 27.08.2015 (Shift-I)</b> xcess, it makes the cement and finally disintegrate. th, hardness and colour to ck setting property to the	<ul> <li>96. A tight knot free from decay, which is solid across its face, and at least as hard as the surrounding wood. <ul> <li>(a) Punk knot</li> <li>(b) Pith knot</li> <li>(c) Loose knot</li> <li>(d) Sound knot</li> </ul> </li> <li>RRB S.S.E. (Secunderabad) 02.09.2015 (Shift-I)</li> <li>Ans : (d) Sound knot- A sound knot that is solid across its face, as hard as the surrounding wood, and shows no indication of decay.</li> <li>97. Which of the following cement has maximum percentage of C₃S : <ul> <li>(a) Ordinary Portland cement</li> </ul> </li> </ul>
<ul> <li>(a) Cast iron</li> <li>(b) Wrought iron</li> <li>(c) Mild steel</li> <li>(d) High Carbon Steel</li> <li>RRB JE 27.08.2015 (Shift-II)</li> <li>Ans: (b) Purest form of iron is wrought iron.</li> <li>Carbon content in various iron material</li> <li>Cast iron</li> <li>24.5%</li> <li>High carbon steel</li> <li>0.7-1.5%</li> <li>Midi steel</li> <li>up to 0.25%</li> <li>Medium carbon steel</li> <li>0.25-0.7%</li> <li>Very low carbon steel</li> <li>0.1%</li> <li>Medium carbon steel</li> <li>0.25-0.7%</li> <li>Very low carbon steel</li> <li>0.1%</li> <li>Mas: (a) - Compression strength of the timber section is found to grain (d) Inclined at 60° t</li></ul>			
<ul> <li>(c) Mild steel</li> <li>(d) High Carbon Steel</li> <li>RRB JE 27.08.2015 (Shift-II)</li> <li>Ans: (d) • Rapid hardening cement is produced by Inely grinding the cement clinkers such that SSA </li> <li>(d) • Rapid hardening cement is produced by Inely grinding the cement clinkers such that SSA </li> <li>(d) • Rapid hardening cement is produced by Inely grinding the cement clinkers such that SSA </li> <li>(e) • Carbon content</li> <li>Carbon content in various iron material</li> <li>Material</li> <li>Carbon content</li> <li>Carbon content</li> <li>Carbon steel</li> <li>0.7-1.5%</li> <li>Mild steel</li> <li>up to 0.25%</li> <li>Medium carbon steel</li> <li>0.25-0.7%</li> <li>Very low carbon steel</li> <li>0.10 be assis of durability: test, Forest Research is toug to grain</li> <li>(a) Parallel to grain</li> <li>(b) Perpendicular to grain</li> <li>(c) Inclined at 45° to grain</li> <li>(d) Inclined at 5° to grain</li> <li>(e) Inclined at 45° to grain</li> <li>(f) Inclined at 45° to grain</li> <li>(g) Inclined at 45° to grain</li> <li>(h) Barding action of water is due to-</li> <li>(a) Parallel to grain s(along the longitudinal direction)</li> <li>Tensile strength of the timber section is found to be parains (along the longitudinal direction)</li> <li>Tensile strength of the timber section is found to be grains (along the longitudinal direction)</li> <li>Tensile strength of the timber section is found to be grains (along the longitudinal direction)</li> <li>Tensile strength of the timber section is found to be grains (along the lod a times grater than its compressive strength parallel to</li></ul>	-		
<ul> <li>(d) High Carbon Steel RRB JE 27.08.2015 (Shift-I) Ans : (b) Purest form of iron is wrought iron. Carbon content in various iron material Material Carbon content Carbon content in various iron material Carbon content in various iron material Carbon content in various iron material Carbon steel 0.7-1.5% Mild steel up to 0.25% Medium carbon steel 0.7-1.5% Medium carbon steel 0.25-0.7% Very low carbon steel &lt; 0.1% Wrought iron Does not exceed 0.15% 94. The strength of timber is maximum when load applied is- (a) Parallel to grain (b) Perpendicular to grain (c) Inclined at 45⁶ to grain (d) Inclined at 60⁶ to grain (e) Inclined at 45⁶ to grain (f) Inclined at 45⁶ to grain (f) Inclined at 45⁶ to grain (g) Inclined at 45⁶ to grain (h) Perpendicular to grain (c) Inclined at 45⁶ to grain (c) Inclined at 45⁶ to grain (d) Inclined at 60⁶ to grain (e) The setting and hardening of cement after addition of water is due to- (a) The presence of gypsum (b) Binding action of water (c) I Hydration of some of the constituent comportation fulter making not using the tension (e) Permeability (f) Permeability (f) Binding action of water (g) Permeability (h) Shrinkage (c) Permeability (d) Heat of hydration (f) Shrinkage (c) Permeability (d) Heat of hydration (f) Permeability (f) Shrinkage (c) Permeability (f) Mattion of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in shrinkage, sulphate resistance and decrease in shrinkage, sulphate resistance and decrease in shrinkage, sulphate resistance and costo</li></ul>			
RRB JE 27.08.2015 (Shift-I)Ans : (b) Purest form of iron is wrought iron. Carbon content in various iron materialfinely grinding the cement clinkers such that SSA 3250 cm ² /kg and by increasing the proportion of C ₃ S (s 56%)MaterialCarbon contentCast iron2-4.5%High carbon steel0.7-1.5%Mild steelup to 0.25%Medium carbon steel0.25-0.7%Very low carbon steel< 0.1%			
Ans : (b) Purest form of iron is wrought iron. Carbon content in various iron material3250 cm²/kg and by increasing the proportion of C ₃ S (* 56%)MaterialCarbon contentCast iron2-4.5%High carbon steel0.7-1.5%Midi steelup to 0.25%Medium carbon steel0.25-0.7%Very low carbon steel< 0.1%			
Solution of the timber sectionSolution of section of steelCarbon contentCarbon contentCast iron2-4.5%High carbon steel0.7-1.5%Mild steelup to 0.25%Medium carbon steel0.25-0.7%Very low carbon steel<0.1%Wrought ironDoes not exceed 0.15%94. The strength of timber is maximum when load applied is- (a) Parallel to grain (b) Perpendicular to grain (c) Inclined at 66% to grain is found to be maximum parallel to the grains (along the longitudinal direction)Solution of steelAns : (a) - Compression strength of the timber section is found to be maximum parallel to the grains (along the longitudinal direction)The setting and hardening of cement after addition of water95. Addition of pozzolana to ordinary portland cement increase- (a) Bleeding (b) Shrinkage (c) Permeability (d) Heat of hydrationSolution of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in osof of coment, bleeding, permeability and cement increase in osof of pozzolana to ordinary portland cement increase in osof cement, bleeding, permeability and cement increase in osof of coment, bleeding, permeability (d) Heat of hydrationShrinkage (c) Permeability (d) Heat of hydrationAns : (b) Addition of pozzolana to ordinary portland cement increase in osof of cement, bleeding, permeability and cement increase in osof of cement, bleeding, permeability and cement increase in osof of pozzolana to ordinary portland cement increase in osof of cement, bleeding, permeability and cement increase in osof of cement, bleeding, permeability and <td></td> <td></td> <td></td>			
Carbon contentMaterialCarbon contentCast iron2-4.5%High carbon steel0.7-1.5%Mild steelup to 0.25%Medium carbon steel0.25-0.7%Very low carbon steel< 0.1%		-	
MaterialCarbon contentCast iron2-4.5%High carbon steel0.7-1.5%Mild steelup to 0.25%Mild steelup to 0.25%Medium carbon steel0.25-0.7%Very low carbon steel< 0.1%			
High carbon steel0.7-1.5%Mild steelup to 0.25%Medium carbon steel0.25-0.7%Very low carbon steel<0.1%	Material	Carbon content	
Image of the sector of the sector of the sector of the sector is found to be maximum parallel to the grains (weak in joint making not using the tension of the grains (weak in joint making not using the tension sector is found to be grains (weak in joint making not using the tension sector is found to be grains (weak in joint making not using the tension sector is found to be grains (weak in joint making not using the tension sector is found to be grains (weak in joint making not using the tension sector is found to be grains (weak in joint making not using the tension sector is found to the grains (weak in joint making not using the tension sector is found to foremeth increase— <ul> <li>(a) Bleeding</li> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> </ul> <ul> <li>RRB JE 28.08.2015 (Shift-I)</li> <li>Ans : (b) Addition of pozzolana to ordinary portland cement increase—                 <ul> <li>(a) Bleeding</li> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> </ul></li> <li>RRB JE 28.08.2015 (Shift-I)</li> <li>Ans : (b) Addition of pozzolana to ordinary portland decrease in osot of cement, bleeding, permeability and contributes more to the early strength.</li></ul>	Cast iron	2-4.5%	
Mild steelup to 0.25%Medium carbon steel0.25-0.7%Very low carbon steel< 0.1%	High carbon steel	0.7-1.5%	
RRB JE 29.08.2015 (Shift-III)Very low carbon steel< 0.1%	Mild steel	up to 0.25%	0
Very low carbon steel< 0.1%Wrought ironDoes not exceed 0.15%94. The strength of timber is maximum when load applied is- (a) Parallel to grain (b) Perpendicular to grain (c) Inclined at 45° to grain (d) Inclined at 45° to grain (d) Inclined at 60° to grain (d) Inclined at 60° to grain (d) Inclined at 60° to grain (e) New Strength of the timber section is found to be maximum parallel to the grains (along the longitudinal direction)Ans: (a) • Compression strength of the timber section is found to be maximum parallel to the grains (along the longitudinal direction)99. The setting and hardening of cement after addition of water is due to- (a) The presence of gypsum (b) Binding action of water95. Addition of pozzolana to ordinary portland cement increase- (a) Bleeding (b) Shrinkage (c) Permeability (d) Heat of hydration (d) Heat of hydration (RRB JE 28.08.2015 (Shift-I)Ans: (c) • The setting and hardening of cement after addition of water95. Addition of pozzolana to ordinary portland cement increase- (a) Bleeding (b) Shrinkage (c) Permeability (d) Heat of hydration (d) Heat of hydration (e) Permeability ad (d) Heat of hydration (e) Addition of pozzolana to ordinary portland deremet increase in shrinkage, sulphate resistance	Medium carbon steel	0.25-0.7%	
Wrought ironDoes not exceed 0.15%94. The strength of timber is maximum when load applied is- (a) Parallel to grain (b) Perpendicular to grain (c) Inclined at 45° to grain (d) Inclined at 45° to grain (d) Inclined at 60° to grainas-High durability-Average life is more than 10 years Moderate durability-Average life is more than 10 years Moderate durability-Average life less than 5 years.90. The setting and hardening of cement after addition of water is due to- (a) The presence of gypsum (b) Binding action of waterAns : (a) • Compression strength of the timber section is found to be maximum parallel to the grains (along the longitudinal direction)• Tensile strength of the timber section is found to be 2 to 4 times greater than its compressive strength parallel to the grains (weak in joint making not using the tension member acts).95. Addition of pozzolana to ordinary portland cement increase- (a) Bleeding (b) Shrinkage (c) Permeability (d) Heat of hydration RRB JE 28.08.2015 (Shift-I)Ans : (b) Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and ement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and ement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and ement increase in cost of cement, bleeding, permeability and ement	Very low carbon steel	< 0.1%	
<ul> <li>94. The strength of timber is maximum when load applied is— <ul> <li>(a) Parallel to grain</li> <li>(b) Perpendicular to grain</li> <li>(c) Inclined at 45° to grain</li> <li>(d) Inclined at 60° to grain</li> <li>(d) Inclined at 60° to grain</li> <li>(e) Inclined at 60° to grain</li> <li>(f) Inclined at 60° to grain</li> <li>(g) Inclined at 60° to grain</li> <li>(h) Perpendicular to grain</li> <li>(g) Inclined at 60° to grain</li> <li>(h) Perpendicular to grain</li> <li>(g) Inclined at 60° to grain</li> <li>(h) Inclined at 60° to grain</li> <li>(g) Inclined at 60° to grain</li> <li>(h) Inclined at 60° to grain</li> <li>(g) Inclined at 60° to grain</li> <li>(h) Inclined at 60° to grain</li> <li>(g) Inclined at 60° to grain</li> <li>(h) Strinkage</li> <li>(h) Shrinkage</li> <li>(h) Shrinkage</li> <li>(h) Shrinkage</li> <li>(h) Shrinkage</li> <li>(h) Addition of pozzolana to ordinary portland cement increase-</li> <li>(h) Shrinkage</li> <li>(h) Shrinkage</li> <li>(h) Shrinkage</li> <li>(h) Shrinkage</li> <li>(h) Shrinkage</li> <li>(h) Addition of pozzolana to ordinary portland dererase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> </ul> </li> <li>Ans : (b) Addition of pozzolana to ordinary portland decrease in cost of cement, bleeding, permeability and</li> <li>(h) Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> </ul>		Does not exceed 0.15%	
<ul> <li>(c) Inclined at 45° to grain         <ul> <li>(d) Inclined at 60° to grain                  <b>RRB JE 28.08.2015 (Shift-I)</b></li> </ul> </li> <li>Ans: (a) • Compression strength of the timber section is found to be maximum parallel to the grains (along the longitudinal direction)         <ul> <li>• Tensile strength of the timber section is found to be maximum parallel to the grains (along the longitudinal direction)             <ul> <li>• Tensile strength of the timber section is found to be 2 to 4 times greater than its compressive strength parallel to the grains (weak in joint making not using the tension member acts).</li> </ul> </li> <li>95. Addition of pozzolana to ordinary portland cement increase</li></ul></li></ul>	94. The strength of timber is maximum when load applied is- (a) Parallel to grain		<b>High durability</b> –Average life is more than 10 years <b>Moderate durability</b> –Average life between 5 to 10 years
<ul> <li>(a) The presence of gypsum</li> <li>(b) Binding action of water</li> <li>(c) Hydration of some of the constituent compounds of cement increase-</li> <li>(a) Bleeding</li> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> <li>Ans : (b) Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> <li>(a) The presence of gypsum</li> <li>(b) Binding action of water</li> <li>(c) Hydration of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> </ul>			
<ul> <li>Ans : (a) • Compression strength of the timber section is found to be maximum parallel to the grains (along the longitudinal direction)</li> <li>• Tensile strength of the timber section is found to be 2 to 4 times greater than its compressive strength parallel to the grains (weak in joint making not using the tension member acts).</li> <li>95. Addition of pozzolana to ordinary portland cement increase-         <ul> <li>(a) Bleeding</li> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> </ul> </li> <li>Ans : (b) Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> </ul>			
RRB JE 29.08.2015 (Shift-II)         RRB JE 29.08.2015 (Shift-II)         to 4 times greater than its compressive strength parallel to the grains (weak in joint making not using the tension member acts).         95. Addition of pozzolana to ordinary portland cement increase- <ul> <li>(a) Bleeding</li> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> </ul> Ans : (b) Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and         Tricalcium silicate (C ₂ S)-         • This is also called as belite.         • This is also called as belite.           • This is also called as belite.           • This is also called as belite.           • This is also called as belite.           • This is also called as belite.	Ans : (a) • Compression strength of the timber section is found to be maximum parallel to the grains (along the longitudinal direction)		<ul> <li>(b) Binding action of water</li> <li>(c) Hydration of some of the constituent compounds of cement</li> <li>(d) Evaporation of water</li> </ul>
<ul> <li>member acts).</li> <li>95. Addition of pozzolana to ordinary portland cement increase-         <ul> <li>(a) Bleeding</li> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> </ul> </li> <li>RRB JE 28.08.2015 (Shift-I)</li> <li>Ans : (b) Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> </ul>	to 4 times greater than its co	mpressive strength parallel	
<ul> <li>95. Addition of pozzolana to ordinary portland cement increase— <ul> <li>(a) Bleeding</li> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> </ul> </li> <li>Ans : (b) Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> <li>Ans : (b) Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> </ul>		aking not using the tension	
<ul> <li>cement increase–         <ul> <li>(a) Bleeding</li> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> </ul> </li> <li><b>RRB JE 28.08.2015 (Shift-I)</b> <ul> <li><b>Ans : (b)</b> Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> </ul> </li> <li><b>Silicate</b>, dicalcium silicate, tricalcium aluminate and tetra calcium aluminoferrite.         <ul> <li><b>Tricalcium silicate (C₃S)–</b></li> <li><b>This is also called alite</b>.</li> <li><b>Tricalcium silicate hydrates quickly and contributes more to the early strength</b>.         </li> </ul> </li> </ul>			
<ul> <li>(a) Bleeding</li> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> <li><b>RRB JE 28.08.2015 (Shift-I)</b></li> <li><b>Ans : (b)</b> Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> </ul>	-	na to orunnary portianu	
<ul> <li>(b) Shrinkage</li> <li>(c) Permeability</li> <li>(d) Heat of hydration</li> <li><b>RRB JE 28.08.2015 (Shift-I)</b></li> <li><b>Ans : (b)</b> Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> <li><b>Tricalcium silicate (C₃S)</b>-         <ul> <li>This is also called alite.</li> <li>Tricalcium silicate (C₃S)-</li> <li>This is also called alite.</li> <li>Tricalcium silicate (C₂S)-</li> </ul> </li> </ul>			
<ul> <li>(c) Permeability         <ul> <li>(d) Heat of hydration             RRB JE 28.08.2015 (Shift-I)             Ans : (b) Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and             • This is also called alite.             • This is also called alite.             • This is also called alite.         </li> </ul> </li> </ul>	· · ·		Tricalcium silicate (C ₃ S)–
<ul> <li>(d) Heat of hydration         RRB JE 28.08.2015 (Shift-I)         Ans : (b) Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and         • This is also called as belite.         • The contribution of dicalcium silicate takes place after     </li> </ul>	· · ·		• This is also called alite.
RRB JE 28.08.2015 (Shift-I)more to the early strength.Ans : (b) Addition of pozzolana to ordinary portland cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability andmore to the early strength.Dicalcium silicate (C2S)-• This is also called as belite.• The contribution of dicalcium silicate takes place after	· · · · ·		
<ul> <li>Ans : (b) Addition of pozzolala to ordinary portaind cement increase in shrinkage, sulphate resistance and decrease in cost of cement, bleeding, permeability and</li> <li>This is also called as belite.</li> <li>The contribution of dicalcium silicate takes place after</li> </ul>	R	RB JE 28.08.2015 (Shift-I)	
decrease in cost of cement, bleeding, permeability and • The contribution of dicalcium silicate takes place after			
	heat of hydration.	bleeding, permeability and	7 days and may continue for up to 1 year.

Tricalcium aluminate (C ₃ A)–	(c) Annealing results in the formation of
• This is also called celite	transparent glass
• It is the quickest one to react when the water is added	(d) Glass is good thermal conductor
to the cement.	RRB JE (Ranchi) 04.01.2015
• It is responsible for flash setting.	Ans: (d) Glass-
Tetra Calcium Alumino Ferrite (C ₄ AF)–	• Glass is an inorganic solid material that is usually
• This is called as felite	transparent or translucent as well as hard, brittle and
• Tetra calcium alumino-ferrite is comparatively	impervious to the natural elements.
inactive.	• Cooling molten glass increases the viscosity of glass.
100. A condition of timber during seasoning in	• Rapid cooling results in the formation of fragile glass.
which the different layers of wood are under	• Annealing results in the formation of transparent
stress by being under compression across the	glass.
grain (usually due to rapid surface drying in	• Glass is a good thermal insulator.
the kiln).	104. Bitumen paints offer
(a) Case hardening (b) Air seasoning	(a) pleasing surface (b) hard surface
(c) Air drying (d) Strain softening	(c) smooth surface (d) protective surface
RRB S.S.E. 03.09.2015 (Shift-I)	<b>RRB JE (Ranchi) 04.01.2015</b>
Ans : (a) Case hardening : It is due to the unequal	Ans: (d) Bitumen paints-
drying of the exterior surface under compression and	• This type of paint is manufactured by dissolving
the interior surfaces under tension due to rapid drying.	asphalt or vegetable bitumen in oil or petroleum.
• This happens at heavily loaded bottom stacks kept for	• It is black in colour.
seasoning.	<ul> <li>It is black in colour.</li> <li>It used over iron works under water</li> </ul>
101. A layer of wood formed during one year's	
growth in a timber is called as	105. The binding material most commonly used in
(a) Bark (b) All-heart	<b>cemented carbide tool, is</b> (a) cobalt (b) lead
(c) Batch (d) Annual ring RRB S.S.E. 03.09.2015 (Shift-III)	
Ans : (d) Annual rings :	<b>RRB JE (Ranchi) 04.01.2015</b>
• These are concentric layers of wood known as growth rings or annual rings.	Ans: (a) Cobalt–
<ul><li>During growth season, the wood added during the</li></ul>	• Cobalt is the binding material in cemented carbide.
early part is different from the wood added during the	• Cemented carbide is also called cermets, its
late part.	constituent tungsten, titanium, tantalum.
• The early wood is softer, coarser and more porous	• Cemented carbide manufactured by powder
than the late wood.	metallurgy.
• Growth rings are apparent because of this difference	• Its temperature from 900°C to 1000°C and cutting
between the early wood and the late wood.	speed 150-200 m/min.
102. Normally, when ordinary Portland cement	• These tool materials much harder are chemically more
hydrates :	stable, have better hot hardness, high stiffness, and
(a) Heat is absorbed (b) Heat evolves	lower friction and operate at higher cutting speeds than HSS.
(c) Heat neither evolves nor is absorbed	
(d) Cement paste cools down below atmospheric	106. While machiningmaterials, continuous
temperature	chips are formed.
RRB S.S.E. (Secunderabad) 01.09.2015 (Shift-I)	<ul><li>(a) heat-treated</li><li>(b) ductile</li><li>(c) brittle</li><li>(d) all of these</li></ul>
Ans. (b) When ordinary Portland cement hydrates it	
emitted heat because Hydration of OPC is exothermic	<b>RRB JE (Ranchi) 04.01.2015</b>
reaction.	Ans : (b) Continuous chips– Formed during machining
Exothermic reaction are reaction or process that releases	of ductile materials at high speed.
energy usually in the form of heat or light.	Favorable conditions for this type of chip to be formed are
103. Which of the following statements is false	formed are-
regarding glass?	• Ductile material
(a) Cooling molten glass increases the viscosity	• High cutting speed
of glass	• Large cutting angle
(b) Rapid cooling results in the formation of	• Low depth of cut
fragile glass	• Proper use of coolant and lubricant
	۱۰ <u>۰۰۰</u>

### 107. Which of the following is softwood?

- (a) Deodar (b) Teak
  - (c) Sal (d) Mahogany

**RRB JE 30.08.2015 (Shift-III)** 

INTE OF COM	<i>J</i> <b>8.201</b> 3 (Siiitt-III)			
Ans : (a) Difference between soft wood and hard wood-				
Softwood	Hardwood			
Lighter	Darker			
Faster	Slower			
Lighter	Heavier			
Low	High			
Distinct	Indistinct			
Cannot be distinguished	Can be distinguished			
Strong along the grains	Strong along and across the grains			
Easy	Difficult			
Exits in pores	Does not exist			
Chir, fir, kail, deodar, pine and larch and other conifers	Teak, sal, sheesham and other deciduous tree			
	Softwood         Lighter         Faster         Lighter         Low         Distinct         Cannot be         distinguished         Strong along the         grains         Easy         Exits in pores         Chir, fir, kail,         deodar, pine and         larch and other			

- conifers
   deciduous tree

   108. Small amount of carbonaceous material sprinkled on the inner surface of mould cavity is called
  - (a) Backing sand (b) Facing sand
  - (c) Green sand (d) Dry sand

RRB JE 30.08.2015 (Shift-III)

### Ans: (b) Facing sand-

• A sand used for facing of the mould is called facing sand.

• It is specially prepared sand from silica sand and clay, without the addition of used sand.

• The thickness of layer of facing sand in a mould ranges from 20 to 30 mm and is used directly next to the surface of the pattern.

- 109. Which of the following supplementary cementious materials have self-cementing properties?
  - (a) Class F fly ash
  - (b) Silica Fume
  - (c) Rice husk ash
  - (d) Ground-granulated blast furnace slag
  - RRB S.S.E. 03.09.2015 (St
- **Ans (d) : •** Ground-Granulated blast furnace slag have self-cementing property.

• Portland slag cement is produced by inter-grinding cement clinkers, hard-burnt gypsum and granulated blast furnace slag in specified proportion.

## 110. Normally the consistency of cement is measured using :

- (a) Le-Chatelier's apparatus
- (b) Blaine's parameter
- (c) Vicat apparatus
- (d) Venturimeter

### RRB S.S.E. 03.09.2015 (Shift-II)

	RRB S.S.E. 03.09.2015 (Shift-II)	
	Ans (c) : Vicat apparatus–	
	• Vicat apparatus is a penetration device used to testing	
	of hydraulic cement and similar materials to determine	
	their normal or standard consisting.	
	• It is also used to determine the initial setting time.	
	• Needle with collar is used for final setting time.	
	• Plunger is used for standard consistency.	
ed	111. The time elapsed between the moment water is	
g	added to the ordinary Portland cement and the	
ne	time when the cement completely loses its	
	plasticity and can resist certain definite	
	pressure is termed as :	
ist	(a) Initial setting time (b) Final setting time	
	(c) Hydration time (d) Gestation period	
	RRB S.S.E. 01.09.2015 (Shift-II)	
nd	Ans : (b) • Final setting time is referred as the time	
	which is measured from the instant water is added in	
ee	to the cement up to the extent it completely looses its	
erial	plasticity and attain sufficient firmness to resist	
vity	definite loading.	
·	• Initial setting time is referred as the time which is	
	measured from the instant water is added into the	
	cement upto to the extent start loosing its plasticity.	
t-III)	112. The coarseness of the grains of a mineral is	
,	known as-	
cing	(a) Fracture (b) Texture	
Jing	(c) Structure (d) Luster	
lay,	RRB JE 16.09.2015 (Shift-III	
uy,	Ans : (b) Texture- The coarseness of the grains of a	
ould	mineral is known as texture.	
t to	Luster- Luster is the way light interacts with the	
0	surface of a crystal, rock or mineral.	
tary	Fracture- A fracture is any separation in a geologic	
ting	formation, such as a joint or a fault that divides the rock	
ung	into two or more pieces.	
	113. The right time of deforestation from plain	
	areas is–	
	(a) summer season (b) winter season	
	(c) rainy season (d) spring season	
	RRB JE 16.09.2015 (Shift-III)	
t-II)	Ans : (b) Deforestation-	
nave	• Deforestation can be defined as the large scale	
	removal of trees from forests (or other lands) for the	
ding	facilitation of human activities.	
ated	• The right time of deforestation from plain area is	

• The right time of deforestation from plain area is winder season.

114. Which of the following is not used as a supplementary cementitious material?(a) Fly ash(b) Gypsum(c) Rice husk ash(d) Silica fume	
RRB S.S.E. 01.09.2015 (Shift-III)	
Ans: (b): Supplementary cementitious material is fly	Dutch Bond
ash, rice husk ash, silica fume. Artificial pozzolana, materials are a supplementary	118. Gypsum is used as an admixture in cement
cementitious material like fly ash, ground blast-furnace slag, silica fume, surkhi, rice husk ash.	grouts for (a) accelerating the setting time
115. The chemical reaction between cement and water is:	(b) retarding the setting time
(a) Hydration (b) Chlorination	<ul><li>(c) increasing the elasticity</li><li>(d) reducing the grout shrinkage</li></ul>
(c) Calcination (d) None of these	RRB S.S.E (Bilaspur/Secunderabad) 21.12.2014
RRB S.S.E (Bilaspur/Secunderabad) 21.12.2014	Ans : (b) Gypsum use in grouts:-
Ans : (a) Hydration of cement–	• Gypsam retard the setting time of cement.
• The chemical reaction between cement and water is	• The paste of cement remain in mobile condition for 3
known as hydration of cement.	to 4 hour without setting.
• The reaction takes place between the active components of cement $C_4AF$ , $C_3A$ , $C_3S$ and $C_2S$ and	• It control the rate of hydration and retard initial setting time.
water.	119. The rock having calcium carbonate as main
116. Which of these rocks would have alumina as	mineral constituent, is called:
their component?	(a) calcareous rock (b) argillaceous rock
(a) Siliceous (b) Argillaceous	(c) siliceous rock (d) sandy rock
(c) Calcareous (d) Igneous	RRB JE (Muzaffarpur) 14.12.2014
RRB S.S.E (Bilaspur/Secunderabad) 21.12.2014	Ans. (a) : Calcareous Rock-In this rock calcium is
Ans : (b) According to chemical classification, the	predominate. eg : Marble and limestone.
rocks may be classified as follows– Siliceous rocks–	<b>Argillaceous rock</b> – In this rock, alumina or clay predominates these are brittle and can't with stand
• The principal constituent of these rock is silica. They	shock. eg : slates, laterite
are hard and durable and are not easily affected by weathering action.	<b>Siliceous rock</b> – In this rock silica is predominate these are hard and durable.
• Example of such rocks are granite, map, sand stones	eg : Granite and sandstone, quartzite.
etc.	120. Bricks used for lining furnaces are:
Argillaceous rock-	(a) under burnt bricks (b) over burnt bricks
• The rocks which contain clay or alumina as a main	(c) refractory bricks (d) all of these
constituent is called argillaceous rocks. Example– Slate, laterite and kaolin.	RRB JE (Muzaffarpur) 14.12.2014
Calcareous rocks–	<ul> <li>Ans. (c) : Fire-clay bricks or refractory bricks–</li> <li>Fire-clay bricks are made from fire-clay the process of</li> </ul>
• The main constituent of these rocks is calcium	manufacturing is as of an ordinary brick, burnt at very
carbonate.	high temperatures in special kilns (Hoffman's kiln).
• The durability of these rocks depends upon the	• These are used for lining blast furnaces, ovens, kilns,
constituents present in the surrounding atmosphere.	boilers and chimneys.
• Lime stone is a calcareous rock of sedimentary origin	121. Fire bricks are used for
while marble is a calcareous rock of metamorphic	(a) To heat reflection
origin.	(b) To increase the heat flow
117. English Bond, Flemish Bond, Dutch Bond	<ul><li>(c) decrease the heat flow</li><li>(d) All of these</li></ul>
pertain to-	RRB S.S.E (Bhopal) 21.12.2014
<ul><li>(a) Masonry work</li><li>(b) Cement bonding</li><li>(c) Bonding between beams</li></ul>	<b>Ans:(c)</b> Fire bricks are used for the following purposes–
(c) Bonding in foundation	• These are used for inner surface lining of kilns,
RRB S.S.E (Bilaspur/Secunderabad) 21.12.2014	turnacco, chimney etc.
<b>Ans : (a)</b> English Bond, Flemish Bond, Dutch Bond are	• To build fire-resistance structures thereby reducing
related to masonry work.	the damage of the structure against fire accidents.
• Dutch Bond:- The Dutch bond is the modified	• For inner lining of wood-fire ovens.
version of the English bond where the corners of the	• As on insulating material for furnaces, ovens because
walls are straightened.	of their lower thermal conductivity.

	y used to impart white	Ans: (c) Hydraulic lime-It is different in chemical
colour in a paint is (a) graphite	(b) lead	composition from fat line in that it contains a definite
(c) copper sulphate	(d) zinc	amount of clay in addition to CaO, clay content in
	uwahati/Patna) 14.12.2014	hydraulic lime may range from 10 to 30% by weight.
Ans. (d) : In paint zinc im	,	• This clay plus lime composition gives the hydraulic lime a property of hydraulicity.
Pigment	Colour	Subdivision based on hydraulicity–
Zinc oxide	White	Class A – Eminently hydraulic – Clay content (21-30%)
Copper sulphate	Green	Class B–Moderately hydraulic – Clay content (21 30%)
Prussian blue, Indigo	Blue	Class C – Feebly hydraulic – Clay content (11 20/0)
Ivory black	Black	Class $D - Rich in magnesium, suitable only for$
Red lead	Red	finishing coats, do not process hydraulicity.
		126. In paints, linseed oil is used as
<b>123.</b> The outer protective		(a) a solidifier (b) a driver
(a) cambium layer	(b) pitch	(c) a vehicle (d) a water proofing base
(c) bark	(d) sap	RRB JE (Bilaspur/Guwahati ) 14.12.2014
	uwahati/Patna) 14.12.2014	
<b>Ans. (c) : Sap wood</b> – Thenclosed between the heart w		Ans : (c) Linseed oil most common material used as a vehicle of paint. It is extracted from flax seeds. It is
known sap wood. Sap wood		used in various grades.
heart wood.		<b>Carrier in paint:</b> – Carrier or vehicles are the liquid
Medullary rays – The thin r		substances which hold the ingredients of a paint in
pith to cambium layer are kn		liquid suspension.
These rays help to hold the an		They are required mainly for two reasons:-
Cambium layer – The funct		(a) To make it possible to spread the paint evenly &
wood cells on the inside an outside.	nd smaller bast cell on the	uniformly.
<b>Bark</b> – It protect the wood a	against mechanical damage	(b) To provide a binding for the ingredients of paints
Its inner layer called bast co		various vehicles used in paints are as following-
the crown downwards and sto		(i) Linseed oil
	Outer Bark	(ii) Tung oil
	Sap Wood	(iii) poppy oil
	Heart Wood	(iv) Nut oil
	Cambium layer	127. Out of the following which is clay stone with
	Pith	vesicular texture ?
MILKAKK		(a) Laterite (b) Sandstone
	Medullary Rays	(c) Limestone (d) Granite
Vinter	Annual Rings	MPSC AE PRE 23.06.2019
		Ans. (a): Argillaceous rocks-The predominant
124. Which lime is most su	uitable for white washing?	constituent is clay alumina which is actually clay,
(a) quick lime	(b) lime stone	remains mixed up in varying proportion with siliceous,
(c) kankar lime	(d) shell lime	calcueous and carboneous matter. These are hard, brittle, durable and dense in nature.
	uwahati/Patna) 14.12.2014	Ex.–Laterite, slate,
Ans. (a) : Quick lime		
commonly known as quick		<b>128.</b> Age of a tree be ascertained by–
widely used chemical compo		(a) Radius of its Stem
alkaline, crystalline solid at r		(b) Number of Annual Rings
Lean lime : It is used in roug	gh masonry work.	(c) Number of Branches
Hydraulic lime –	dan matan in ditata di	(d) Circumference of its Stem
• It has ability to set un condition with no air circulat		RRB S.S.E (Bilaspur/Secunderabad) 21.12.2014
<ul> <li>Used in foundation of unde</li> </ul>		Ans : (b) The age of a tree can be estimated by the
		number of concentric rings on a cross-section of its
125. Lime mortar is gener	-	trunk. A tree's age can be determined by counting the
(a) Quick lime	(b) Fat lime	annual growth rings in its trunk. Each ring represents one year, and the ring's thickness reveals the relative
(c) Hydraulic lime	(d) White lime	amount of rainfall that year.
KKB JE (Bilas)	pur/Guwahati ) 14.12.2014	amount of furnian that your.
Civil Engineering		VCT

129. The comp	onent in cem	ent whic	h has the	(c) it has higher tensile strength			
property of hydrating rapidly and is							
responsible to provide not only early strength but also the ultimate strength is							
	um Silicate (b		um cilianta	Ans. (b) : Difference between cast iron and mild steel-			
	ium Aluminate	) Theater	uni sincate	Cast iron - Mild steel			
	alcium Alumino	forrito		1. It contains more than - Mild steel contains less			
(u) Tetta C			- 23.06.2019	2% carbon than 0.25% carbon			
Ans. (b) : The				2. Cast iron less stronger - Mild steel is stronger than than mild steel cast iron			
property of hydr				3. Cast iron over mild			
provide not only				steel is has relatively low - Mild steel has a higher			
strength is trical				melting point melting point than cast			
Composition of				iron			
The	Formula	Name	Symbol	4. Its ductility is less than - It is more ductile than			
principal				mild steel cast iron			
mineral				5. Cast iron is more - Its have less corrosive			
compound in Portland				corrosion resistant resistance property.			
cement				132. Chemicals used to protect timber from fungi			
Tricalcium	3CaO.SiO ₂	Alite	C ₃ A	and insects are called			
silicate	5CaO.5IO ₂	Ante	C3A	(a) timber preservatives			
Dicalcium	2CaO.SiO ₂	Belite	C ₂ S	(b) timber seasoning			
silicate		20110	020	(c) knots			
Tricalcium	3CaO.Al ₂ O ₃	Celite	C ₃ A	(d) none of the above			
aluminate	_		5	BPSC AE (GEN. ENGG.) 07.08.2019			
Tetracalcium	3CaO.Al ₂ O ₃	Felite	C ₄ AF	Ans. (a) : Preservation of timber is carried out to			
alumino	Fe ₂ O ₃			increase the life of timber Dichloro-diphenyl trichloro			
ferrite				ethane (DDT), Creosote oil, organic solvent, ASCU			
Amount		Effect		treatment and various types of chemical treatment of			
30-50%	The hydrolysi			timber which is used to protect timber from fungi and insects.			
	responsible for	/ day str	rength and	Various treatment process			
25-50%	hardness The hydrolysi	a of C S	nraaada	<b>Boucherie process</b> -By this process, sapwood of			
23-30%	slowly. At ear			almost all green timbers with the bark on and of			
	month, $C_2S$ ha			bamboos in green condition soon after felling can be			
	strength and ha		lucified off	treated using any of the inorganic water soluble			
5-11%	It rapidly reac		ter and is	preservatives.			
	responsible for			Empty cell process-It is aimed at a maximum			
	grounded clink		5	penetration of the preservative with a minimum net			
8-14%	It is responsib	le for fla	sh set but	retention.			
	generates less	heat		<b>133.</b> Compressive strength of 2 nd class brick is			
130. Which I.S.	code has classi	fied the b	ricks	(a) $105 \text{ kg/cm}^2$ (b) $70 \text{ kg/cm}^2$			
	o compressive s	trength ?		(c) $35 \text{ kg/cm}^2$ (d) $125 \text{ kg/cm}^2$			
(a) I.S. 927	<pre></pre>	) I.S. 456		BPSC AE (GEN. ENGG.) 07.08.2019			
(c) I.S. 107		) I.S. 825		Ans. (b) : Classification of brick-			
	MPSO	C AE PRE	E -27.03.2021	1. First class bricks–Its surface should be smooth and			
Ans. (c) :				rectangular with parallel sharp and straight edges and			
	1992 – Clause			square corner.			
brunt clay bricks shall be classified on the basis of							
average compressive strength.				• Its crushing strength = $105 \text{ kg/cm}^2$ or $10.5 \text{ N/mm}^2$ .			
(ii) <b>I.S 456 : 1978</b> – IS code of practice for plain and				2. Second class bricks–It is in irregular shape and size			
reinforced concrete.				and its have rough, uneven faces may consist hairline			
(iii) I.S 3495 : 1992 – Part 1 - Compressive strength				cracks.			
test of bricks		rtland a	an comont	• Its water absorption should not greater than 22%			
(iv) <b>I.S 455 : 1989</b> – Portland slag cement				• Its crushing strength = 70 kg/cm ² or 7 N/mm ² .			
specification.			al ia	<b>3.</b> Third class bricks–It is in non-uniform shape and			
0	of cast iron ove	r mild ste	ei 1s	size with irregular and distorted edges.			
(a) it has higher ductility				• Water absorption should not greater than 25% • Crushing strength = $35 \text{ kg/cm}^2$			
(b) it has re	elatively low me	ting point		• Crushing strength = $35 \text{ kg/cm}^2$			
Civil Engineering			_	NO VOT			

<b>134.</b> The function of thinner in paint is	(a) 30 minutes	(b) 1 h	our	
(a) it provides desired consistency	(c) 6 hours	(d) 10		
(b) it provides adhesion and integrity		BPSC AE (GEN		
(c) it provides colors	Ans. (d) : • Portland			
(d) it makes the surface tough after drying	variety of artificial c			
BPSC AE (GEN. ENGG.) 07.08.2019	normal setting cement		nt.	
Ans. (a) : Composition of paint-	• This cement is classi			
(i) <b>Base</b> –It is principal constituent of paint. It makes	OPC - 33 Grade (IS : 2 OPC - 43 Grade (IS : 8			
the paint film opaque and possesses binding propeties	OPC - 53 Grade (IS : 1			
which reduce shrinkage cracks. Ex.–white lead, road lead, zinc white, oxide of iron.	• The ordinary portlar		en classified as	
(ii) Solvent or thinner–It make the paint of workable	33 grade, 43 grade and			
consistency and evaporate during drying of the film.	• These are most com			
Ex.–Spirit, Naptha, Turpentine oil.	construction where requirement.	there is no spe	cial durability	
(iii) Vehicle–It works as a binder. It holds the constituent of paint in suspension and helps spread it	• Initial setting time sl	hould not be less	than 30 minute	
over the surface to be pointed. Ex.–Linseed oil, nut oil,	and final setting time			
poppy oil, tung oil.	minutes or 10 hours.	_		
(iv) <b>Pigments</b> —It used to import the desired color.	Cement	Initial	<b>Final setting</b>	
(v) Adultrants-It helps to reduce the weight and	Danid handaning	setting time 30 minute	time 10 hours	
increase durability of paint.	Rapid hardening cement	30 minute	10 nours	
135. ASCU treatment is given for	High alumina	30 minute	10 hours	
<ul><li>(a) prevention of corrosion of steel</li><li>(b) preservation of timber</li></ul>	cement			
(c) waterproofing of roof	Alumina cement	3.5 hours	5.5 hours	
(d) galvanising iron	138. The excessive a			
BPSC AE (GEN. ENGG.)-2001	unsound cement			
Ans. (b) : ASCU treatment–ASCU treatment is used	(a) Magnesia (b) Iron oxide			
for preservation of timber to enhance the strength of	(c) Alkalies (d) Water <b>RRB S.S.E. (Secunderabad) 02.09.2015 (Shift-I)</b>			
timber. ASCU stands for Arsenic Pentaoxide Copper	Ans : (a) Soundness of cement– Soundness of portland			
Sulphate. Creosote oil–It is also used for preservation of timber.	cement refers to the ability of a hardened cement paste			
Sir Abel's process–It is used to treatment of timber	to retain its volume after setting without delayed			
making for fine resistance.	expansion. Normal			
136. Efflorescence in bricks is caused by	occurring due to setting small charges in the v			
(a) over burning of bricks	this change in volume			
(b) too much lime in brick earth	such cement is terme			
(c) sodium or potassium salts in brick earth	caused by excessive			
(d) not soaking bricks in water before use.	magnesia (MgO).			
BPSC AE (GEN. ENGG.)-2001		fineness test is		
Ans. (c) : Efflorescence–These types of defect occurs	sample of 100 should not exce	gm cement, th	en the residue	
in bricks due to excess of alkalies like as sodium or	(a) 10% by volu			
potassium salts in brick earth. These defects occur when bricks come in contact with moisture, water is	(b) 10% by wei			
absorbed and the alkalies crystalize.	(c) Both the above			
<b>Chuffs</b> –Deformation of the shape of bricks caused by	(d) None of the above			
the rain water falling on hot bricks is known as chuffs.	(*)	BPSC AE (GEN	. ENGG.)-1995	
Bloating-These types defeat observed as spongy	Ans. (b) : The test fo			
swollen mass over the surface of burned bricks is	analysis or by finding			
caused due to presence of excess carbonaceous matter	Sieve analysis 100 grams of cement is sieved through			
and sulphur in brick clay.	IS sieve no. 9 for			
137. The final setting time for ordinary Portland	weighed this should no	*		
cement should be not more than		added to cement-	-	
RRB JE 29.08.2015 (Shift-I) OR	(a) Chemical re			
As per IS specification, the maximum final	<ul><li>(b) Heat is abso</li><li>(c) Heat is gene</li></ul>			
setting time for ordinary portland cement	· / -	re washed out		
should be-	(a) impuinces a		)8.2015 (Shift-I)	
Civil Engineering 2	0		YCT	

Ans: (a) When water is added to cement, the chemical reaction called hydration takes place and contributes to the final concrete product and heat is generated. The calcium silicates contributes most of the early strength.         141. After storage, the strength of cement- <ul> <li>(a) Decreases</li> <li>(b) Increases</li> <li>(c) Remains same</li> <li>(d) May increase or decrease</li> </ul> RRB JE 27.08.2015 (Shift-III)         Ans: (a) The strength of cement decreases after storage.         Period       Reduction in strength         3 months       20%         6 months       30%         12 merther       40%	at min (a) Di (b) Tr (c) Te (d) T Ans. (b) : Lo Formation of heat of hyd concrete which the hydration A low heat contents of evolving the $C_2S$ .	imum. is: icalcium silicat icalcium silica eicalcium alum etracalcium alum <b>RRB JI</b> w heat cemen cracks in larger tration has for ch produces le process. evolution is C ₃ S and C ₃ A maximum heat	e te inate uminate E (Muzaffarpu t (IS 12600-19) ge body of con cused the atte ss heat, at a lo achieved by which are the of hydration a	<b>(r) 14.12.2014</b> <b>89)</b> – ncrete due to ntion of the w rate during reducing the e compounds
12 months 40%	146. Excess	silica in ceme	nt	_
24 months 50%	(a) In	creases the sett	ing time	
142. Which of the following oxide is in the		ecreases the set		
LOWEST% in ordinary Portland cement?			ngth of the cen	nent
(a) Iron oxide			he setting time	
(b) Magnesium oxide			Guwahati/Patn	a) 14.12.2014
(c) Soda–Potash	Ans. (a) : Sil	ica (SiO ₂ ) [179	<b>%-25%</b> ]	
(d) Aluminium oxide	. ,	rength to ceme	-	
RRB S.S.E. (Secunderabad) 01.09.2015 (Shift-I)	-	-	of cement is in	creased but it
Ans. (c) Soda-Potash has lowest % in OPC because it is		the setting tin		creased but it
harmful ingredient of cement. [0.2 - 1%].		-	m compressiv	a strangth of
• It causes efflorescence and undergo reaction with		t for 53 grade		e strength of
aggregates.	(a) 22	0	(b) 37 MF	Pa
143. An electrochemical process over the surface of	(c) $15$		(d) 16 MF	
steel, leading to oxidation of the metal is called			MPSC AE PR	
as :	<b>Ans. (b) :</b> As	s per I.S. 269	: 2015 compres	ssive strength
(a) Oxidation (b) Corrosion	of OPC-	1	1	C
(c) Polishing (d) Laitance formation	Time	Compressiv	e strength MP	Pa (N/mm ² )
RRB S.S.E. 01.09.2015 (Shift-II)	(days)	OPC 33	OPC 43	OPC 53
Ans : (b) Electrochemical corrosion–If wet	3 days	16	23	27
electrochemical corrosion occurs damage is caused by	7 days	22	33	37
two types of electro-chemical reaction on the surface of	28 days	33	43	53
the steel. Oxidation reaction and reduction with			cement when	
oxidation reaction, otherwise termed metal dissolving	days	ry Portianu	cement will g	give after 20
reaction, metallic atoms enter into solution as metal	•	ore compressiv	e strength	
ions, while electrons remain in the metal. In steel, the		ss compressive		
iron (Fe) dissolves as follows-		ual compressiv	U	
$Fe = Fe^{2+} + 2e^{-}$		one of the abov	-	
144. The ability of the mould sand to withstand			(GEN. ENGO	G.) 07.08.2019
extreme temperature level is known as :	<b>Ans. (b) :</b> C		gain in strength	
(a) Plasticity (b) Porosity			ement compare	
(c) Collapsibility (d) Refractoriness			e after 28 da	
RRB S.S.E. 01.09.2015 (Shift-II)			the concrete p	
Ans : (d) Refractoriness-is defined as the ability of	I nortland nozz	colana cement g	ains strength at	
molding sand to withstand high temperatures without			· · · ·	· • • •
	earlier and 1	eaches the de	signed strength	
breaking down or fusing thus facilitating to get sound	earlier and a gaining streng	eaches the de gth of all concre	te depends on a	ge factor.
	earlier and r gaining streng <b>Note</b> –In this	eaches the de gth of all concre question most		ge factor. is option (c)

## **Concrete Technology**

1. Aggregate particle size distribution follows which law?	Slump (mm)		ree of ability	Consis		Uses	5
(a) Pascal's law (b) Darcy's law	0	Extre		Moist e	arth	Precast	
(c) Fuller's law (d) Ohm's law	U	low	lifery	WIDISt	Jartin	paving	
		10 W				slabs	
JSSC JE (GEN. ENGG.)- 31.10.2022	0-25	Very	low	Very d	<b>P3</b> 7	Roads	
Ans. (c) : Fuller's law–Fuller distribution is a typical	0-23	very	low	veryu	I y	(Power	
wide particle size distribution that is applied to concrete						vibrator	
aggregate gradations to achieve maximum packing	25-50	low		Dry		Mass	)
density.	25-50	10 w		Diy		concreti	na
$U(i) = 100 \times \left(\frac{i}{D_{max}}\right)^n$	50-	Mediu	ım	Plastic			labs,
$U(1) = 100 \times \left(\frac{1}{D}\right)$	100	wicun		1 lastic		heavily	
	100					section	<b>IX</b> /1 [*]
where,	100-	High		Semi-f	luid		with
i $\rightarrow$ the diameter of aggregate in each size group U(i) $\rightarrow$ Cumulative volume of aggregate under i	175	mgn		Senn-1	iuiu	congeste	
$O(1) \rightarrow Cumulative volume of aggregate under 1 mm(%)$	175					R/F	u
$D_{max} \rightarrow max$ diameter of aggregate in all size groups		·					
$D_{\text{max}} \rightarrow \text{max}$ diameter of aggregate in an size groups (mm)	3.					or single ninal size	
h $\rightarrow$ Fuller exponential		0.	0	01 20 n	am non	iinai size	e irom
		mm IS		(		<b>7</b> 0/	
2. The standard dimensions of a slump cone used in a slump test for measuring fresh properties		) 85 to			b) 0 to :		
in a slump test for measuring fresh-properties of concrete is	(c	) 30 to '		·	d) 0 to 1		
(a) Bottom diameter-10 cm, top diameter-10 cm,						G.) 04.1	
(a) Bottom diameter-10 cm, top diameter-10 cm, height-30 cm				its for si	ingle-siz	ed aggre	egate
(b) Bottom diameter-20 cm, top diameter-10 cm,	of nomi						
height-30 cm	Sieve					ingle-size	
(c) Bottom diameter-20 cm, top diameter-20 cm,	size	agg	regates	nominal	l size (b	y weight	t)
height-30 cm	(mm)						
-		63	40	20	16	12.5	10
<ul><li>(d) Bottom diameter-10 cm, top diameter-20 cm, height-30 cm</li></ul>		mm	mm	mm	mm	mm	m m
JSSC JE (GEN. ENGG.) 04.11.2022	80	100	-	-	-	-	-
JSSC JE (GEN. ENGG.)-23.10.2022	63	85 to	100	-	-	-	-
Ans. (b) : Slump test apparatus		100					
• Metallic mould in the form of frustum of cone having	40	0 to	85 to	100	-	-	-
internal dimensions as:		30	100				
$\rightarrow$ Bottom diameter - 20 cm	20	0 to	0 to	85 to	100	-	-
$\rightarrow$ Top diameter - 10 cm		5	20	100			
$\rightarrow$ Height - 30 cm	16	-	-	-	85 to	100	-
• Steel tamping rod of 16 mm dia meter and 0.6 m long					100		
with a bullet end.	12.5	-	-	-	-	85 to	10
10 cm						100	0
60 cm	10	0 to	0 to	0 to	0 to	0 to	85
30 cm 16 mm ø		5	5	20	30	45	to
							10
Tamping rod							0
	4.75	-	-	0 to	0 to	0 to	0
20 cm				5	5	10	to
Slump cone							20
• Mould/slump cone is filled with fresh concrete in four	2.36	-	-	-	-	-	0
layers and each layer is tamped for 25 times by a							to
standard rod. The subsidence of concrete under gravity							5
in mm is called slump.				•	•	•	•

**Civil Engineering** 

4. The	total load	to be ap	plied for determining		Gravel
aggi	regate crush	ing value	e of aggregates passing		
-	ugh 12.5	mm and	retained on 10 mm		
is	•				
	40 tonnes		(b) 20 tonnes		
(c)	30 tonnes		(d) 10 tonnes		
	JSS	C JE (GE	N. ENGG.) 04.11.2022		
	Aggregate c				
	-		the aggregate crushing		
			IS : 2386 (Part 5).		Sand
0			of resistance of an		Sund
		-	er gradually applied		
-		•	s test is conducted on		
			12.5 mm sieve and		
		eve. The a	aggregate is tested in a		
5	condition.	al diamate	or 152 mm) of the test		
-			er 152 mm) of the test layers of aggregate and		
		-	by the rounded and of		
-	-		ould be 400 kN or 40		
tonnes.	Ju. The tota	ii iodd silv	Julu DC 400 KIN 01 40		
	–1970 requi	res that th	ne crushing value shall		
	-		gate used for aggregate	Fined	Silt
	-		vearing surfaces and 30	grained	
			irface such as runway,		
-	pavements.	C	5,		
5. Wha	at is the na	rticle size	(diameter) range of a		
	-		component)?		
	More than 3	0	<b>I</b> /		
· · ·			lieve and retained on 75		Clay
	micron IS Si				Clay
(c)	Smaller than	n 300 mm	and to be retained on 80		
	mm IS Sieve				
(d)	Passing 80 1	nm IS Sie	we and retained on 4.75		
	mm IS Sieve	Э			
	JSS	C JE (GE	N. ENGG.) 04.11.2022		
Ans. (a) :	Basic soil c	omponents	s (IS classification) IS		
: (1498-19		1	`````		
Soil	Soil	Symb	Particle size range		
	compon	ol	and description		
	ent				
Course	Boulder	None	Round to angular,		
grained			bulky hard, rock		Organic
compo			particle, average		matter
nents			diameter more than		
	<u>a</u>		300 mm		
	Cobble	None	Round to angular,	Particle	
			bulky hard, rock	Boulder	
			particle, average	Cobble	
			diameter smaller	Gravel Sand	
			than 300 mm but retained on 80 mm	Sand	
			size	Clay	
	l		5120	Ciuy	

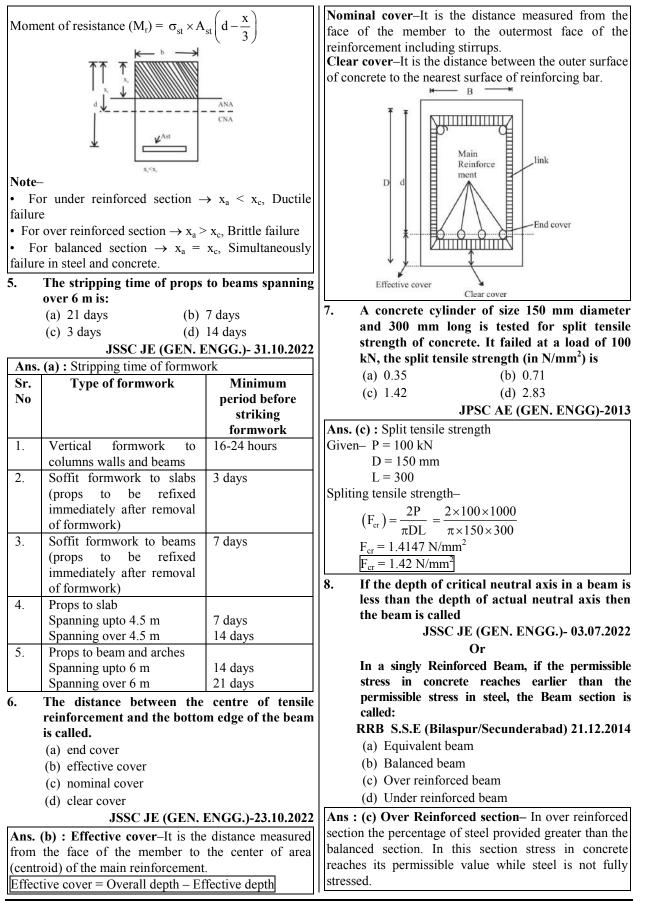
	Gravel	G	Round to angular, bulky hard, rock particle passing 80 mm sieve but retained on 4.75 mm sieve Coarse:80 mm to 20 mm sieve Fine:20 mm to 4.7 mm sieve
	Sand	S	Round to angular, bulky hard, rock particle passing 4.75 mm sieve retained on 75 mm sieve Coarse:4.75 mm to 2.0 mm sieve Medium:2.0 mm to 425 µ sieve Fine:425 µ to 75 µ sieve
ined rained	Silt	М	Particlessmallerthan75 $\mu$ sieveidentifiedbybehaviourthat it isslightlyplasticornon-plasticregardlessofmoistureof
	Clay	С	Particles smaller than 75 $\mu$ sieve identified by behaviour that it can be made to exhibit plastic properties within a certain range of moisture and exhibits considerable strength when air dried
	Organic matter	0	Organic matter in various sizes and stages of decomposition
urticle oulder obble ravel nd lt ay	> 1 80 4.7 0.0	<b>ze (mm)</b> 300 - 300 75 - 80 075 - 4.75 002 - 0.07: 0.002	5

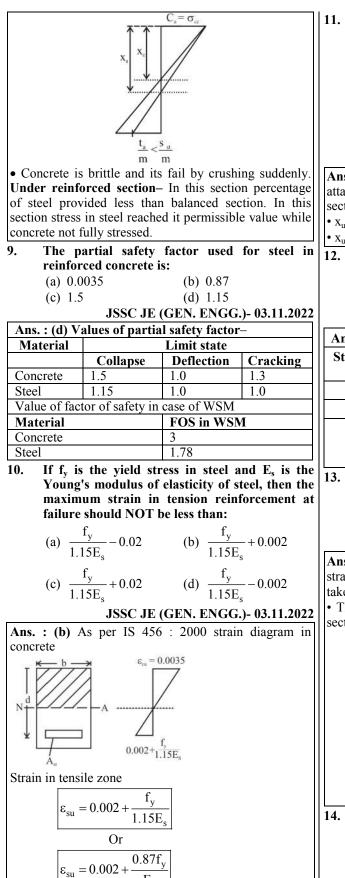
6.	Which of the following tests will NOT be used	Ans. (a) : The compressive strength of concrete is based
	to measure the workability of concrete?	on test performed upon concrete cube after 28 days of
	(a) Compaction factor test	mixing.
	(b) Slump test	Compressive strength test-
	(c) Flow test	• Size of cube $\rightarrow$ 150 × 150 × 150 mm
	(d) Segregation test	Size of cylinder $\rightarrow$ 150 mm dia, 300 mm height.
	JSSC JE (GEN. ENGG.)- 03.11.2022	• Cube would filled in 3 layers, tempered with tamping
Ans.	(d) : Workability– The term workability may be	<ul><li>rod of 16 mm dia and 600 mm length.</li><li>Rate of loading in compression testing machine = 14</li></ul>
defin	ed as the ease with which concrete may be mixed	$N/mm^2/minute.$
hand	led, transported, placed in position and compacted.	• Then immersed in water for 7 or 28 days.
• Sev	veral tests which have been developed to measure	Cube strength = $1.25 \times$ cylinder strength
the w	orkability of concrete are-	10. Which of the following is the CORRECT
	$\rightarrow$ Slump test	statement?
	$\rightarrow$ Compacting factor test	(a) Increase in water-cement ratio decreases the
	$\rightarrow$ Vee-Bee test	strength of concrete
	$\rightarrow$ Vibro-workability test	(b) Increase in water-cement ratio increases the strength of concrete
7.	Which of the following aggregates gives	(c) Water-cement ratio has no effect on the
	maximum strength in concrete?	strength of concrete
	(a) Rounded aggregate	(d) Decrease in water-cement ratio increases the
	(b) Elongated aggregate	workability of concrete
	(c) Flaky aggregate	JSSC JE (GEN. ENGG)-2017 Ans. (a) : Water cement ratio is the water used to the
	(d) Cubical aggregate	quantum of cement in the mixture by weight.
	JPSC AE (GEN. ENGG)-2013	• For proper workability the w/c ratio varies from 0.4-
	(d) : Cubical aggregate gives maximum strength	0.6.
	oncrete. It has good packing and strength in all	• Increase in water cement ratio means porosity
	tion. It provide very good bend than other and most	increases and strength decreases.
	ble for high strength concrete and pavements, the rement of cement paste is relatively more.	11. Batching of the material in making concrete
-	· ·	should be done preferably by-
8.	The Los-Angeles test for coarse aggregate is used to find its:	(a) Weight (b) Volume
		(c) Size (d) Wooden box
	(a) Compressive strength	JSSC JE (GEN. ENGG)-2017
	(b) Specific gravity	Ans. (a) : Batching-The process of measuring
	(c) Abrasion value	ingredients to prepare concrete mix is known as batching of concrete.
	(d) Impact strength	Batching
<u> </u>	JSSC JE (GEN. ENGG.)- 03.11.2022	
	(c) : The abrasion value of coarse aggregate may	
	determine by either deval machine or by Los- ngles machine.	♥     ♥       Weight     Volume
	0	batching batching
	sing Los-Angles machine the abrasive charge nsists of cast iron sphere or steel spheres	1. Weight batching–Materials are measured on the
	proximately 48 mm in diameter and each weighing	basis of weight.
-	tween 390 and 445 g.	• It is accurate method of batching.
	e test sample consists of clean aggregate dried in an	2. Volume batching-Materials are measured on the
	test sample consists of clean aggregate threa in an en at $105^{\circ}-110^{\circ}$ C to substantially constant weight.	basis of volume.
9.	The Compressive strength of concrete is based	• It is less precise method of batching.
<i>.</i>	on test performed upon concrete cube after	12. The tensile strength of concrete is normally in
	how many days of mixing?/	which percentage slab of its compressive strength?
	(a) 28 days (b) 18 days	(a) $8-12\%$ (b) $4-8\%$
	(c) 38 days (d) 30 days	$\begin{array}{c} (a) & 6 & 12 \\ (b) & 4 & 0 \\ (c) & 12 \\ -16 \\ (d) & 16 \\ -20 \\ (d) \end{array}$
	JSSC JE (GEN. ENGG)-2017	JSSC JE (GEN. ENGG)-2017

Ans. (a): The tensile strength of concrete is generally 10% of the compressive strength. • Direct tensile strength = $[0.5 - 0.625]f_{cr}$ • Split tensile strength = $(f_{ct}) = \frac{2P}{\pi DL}$ , 0.66 $f_{cr}$ • Flexure tensile strength = $(f_{cr}) = 0.7 \sqrt{f_{ck}}$	<ul> <li>Generally, high strength concrete or rich concrete is adversely affected by the use of large size aggregate, but in lean mixes or weaker concrete the influence of size of the aggregate gets reduced.</li> <li>16. The sum of percentage of a deleterious materials in aggregate cell is not to exceed         <ul> <li>(a) 5%</li> <li>(b) 10%</li> </ul> </li> </ul>
13. What will be the quantity of water required per	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
bag of cement for water-cement ratio of 0.55?(a) 27.5 litres(b) 30 litres	BPSC AE (GEN. ENGG.)-13.03.2022
(c) 25 litres (d) 22.5 litres	Ans. (a) : Deleterious materials in aggregate- The
JSSC JE (GEN. ENGG)-2017	materials whose presence in aggregate may adversely
Ans. (a) : Given,	affect the strength, workability and long termed
Water cement ratio $= 0.55$	performance of concrete are termed as deleterious materials.
Weight of one bag cement = $50 \text{ kg}$	• These are considered undesirable constituents. The
$\frac{\text{Water}}{\text{Cement}} = 0.55$	total amount of deleterious materials in aggregate
Cement	should not exceed 5% as per IS 383-1970.
$\frac{\text{Water}}{50} = 0.55$	17. The durability of concrete is proportional to
50 50	(a) Water cement ratio
Water = $0.55 \times 50$	(b) Sand content
Water = 27.5 litres.	(c) Cement – aggregate ratio
14. Compaction in concrete is done to eliminate	(d) Aggregate water ratio BPSC AE (GEN. ENGG.)-13.03.2022
(a) Air bubbles (b) Water	Ans. (c) : Durability of concrete–
(c) Impurities (d) Cement	• Durability of concrete is its capacity to resist the
JSSC JE (GEN. ENGG)-2017	forces of disintegration owing to natural causes such as
<b>Ans. (a) : Compaction of concrete</b> –Compaction of concrete is the process of consolidating concrete after	weathering, action of water containing chemicals,
placing it in position.	temperature changes including freezing and thawing,
• The main aim of consolidation of concrete is to	<ul><li>alterations in moisture content and chemical changes.</li><li>The durability of concrete is proportional to cement-</li></ul>
eliminate air bubbles and thus to give maximum density	aggregate ratio.
to the concrete.	18. Maximum size of coarse aggregate used as base
• 5% voids reduce 30% strength of concrete.	coarse in ground floor is
90	(a) 12 mm (b) 20 mm
80	(c) 40 mm (d) 50 mm
	BPSC AE (GEN. ENGG.) 15.09.2018
Strength . 60	Ans. (c) : The grading of graded coarse aggregate for
40	cement concrete flooring mix shall be within the limits given blow.
	(a) Base concrete (lean Graded from 40 mm
	cement or lime concrete) and below
	(b) Cement concrete Graded from 16 mm
$10 \xrightarrow{20} 30$	topping of thickness 40 and below
Air voids	mm and above
15. Which of the following type of mixture strength	(c) Cement concrete Graded from 12.5 mm topping of thickness 25 and below
is required for acceleration? (a) Lean mixture	mm
(b) Chemically correct A/F ratio	19. Fineness modulus is
(c) Rich mixture	(a) The ratio of fine aggregates to coarse
(d) Too lean mixture	aggregate
JSSC JE (GEN. ENGG)-2017	(b) The ratio of fine aggregates to total aggregate
Ans. (c) : Rich mixes are less susceptible to bleeding	(c) An index which gives the mean size of the
than lean mixes.	aggregates used in a mix
• Richer mixes may have more adverse effect than that	(d) None of the above $PBSC AE (CEN ENCC) 15.00.2018$
of lean mixes.	BPSC AE (GEN. ENGG.) 15.09.2018
Civil Engineering 3	4 YCT

	nonosa Modul	lug The finen	aga madulua		• • • • • • • •			
	Ans. (c): Fineness Modulus– The fineness modulus				The workability is associated with the following four			
of an aggregate is an index number which is roughly proportional to the average size of particles in the				<b>concepts</b> – 1. Ease of flow (internal friction)				
aggregate. The coarser the aggregate, the higher the				2. Prevention of se				
	fineness modulus. The fineness modulus is obtained				arshness			
		of the weight		4. Prevention of b				
		viding it by 100						
	Limit of finen		-		ne following concret			
Maximur		Fineness r	nodulus	1 1	1:1.5:3 (cement	: fine aggregate :		
aggre	gate	Maximum	Minimu	coarse aggr	0 ,	20		
			m	(a) M10	(b) M			
Fine agg	gregate	2.0	3.5	(c) M20	(d) M			
Coarse	20 mm	6.0	6.9		NHPC JE (EE) 05			
aggregate	40 mm	6.9	7.5		following concrete	grades has mix		
	75 mm	7.5	8.0	proportion are-				
	150 mm	8.0	8.5	Grade of	Characteristics	Mix		
		owing types		concrete	strength	proportion		
		ness property		M5	5	1:5:10		
		bjected to fatig	gue loads?	M7.5	7.5	1:4:8		
•	ht weight conc			M10	10	1:3:6		
	f-compacting of							
	er reinforced c			M15	15	1:2:4		
(d) Plai	in cement cond			M20	20	1:1.5:3		
		E (EE) 05.04.2		M25	25	1:1:2		
		d concrete hav		24. The recom	mended slump of co	oncrete for hand-		
		ts better tough		placed pave				
L		subjected to fat		(a) 2-4 inc	hes (b) 3	-4 inches		
		ng is an exam	ple for grade	(c) 4-6 inc	hes (d) 1	-3 inches		
	ent concrete ?				RRB S.S.E. 02.0	9.2015 (Shift-III)		
(a) CC		(b) OPC 5	3	Ans : (d) • For	hand placed paven	nent slump value		
(c) M2		(d) Fe415			1 - 3 inches $(25 - 7)$			
		(Civil) 04.04.2		• For trench fill –	100 - 150 mm			
<b>Ans. (c) : •</b> Th	he M20 is an e	example for gra	de of cement	• For heavily rein	forced section in sla	b. beam. columns		
concrete.				– 50- 100 mm		-,,		
		s the characteri	stics strength	25. Separation	of water or sand o	or cement from a		
after 28 days o				-	ed concrete is know			
	- 1:3:	de of concrete	<u> </u>	(a) Segreg		Creeping		
M10 M15	- 1:3: - 1:2:			(c) Bleedin		Flooding		
M19 M20	- 1:1.5			. ,	(U) I	U		
M25	- 1:1:				(Bhaspul/Kolkata/M	-14.12.2014		
		ncrete which	reduces the	Ans $(a)$ · Place	ding- It is an auto			
		required to						
	e is called :	required to	compute the	mixing water within or emergence to the surface from freshly placed concrete is usually due to excessive				
	gregation	(b) Worka	bility	vibrations imparted to concrete to achieve full				
	ting Time	(d) Bleedi	•	compaction.				
(0) 200	e	E (ME) 06.04.2	C		s separation of coars	e aggregate from		
Ans $(h) \cdot W_{0}$		concrete–Worl	. ,	fine aggregate.				
		ete in its stage.		26. Coarse agg	regate means the a	ggregate that are		
		as the ease with		retained on	-			
-		transported,		(a) 2.36 m	n I.S. Sieve			
compacted.	- 3	1 7		(b) 2.0 mm				
	ility of concre	ete has also bee	en defined as	(c) 4.75 m				
the amount of	f work require	ed to place con	ncrete and to					
compact it tho	roughly.					PRE -27.03.2021		
	-			ļ				

<ul> <li>4.75 mm IS sieve are ider They are obtained by na artificial crushing of rock coarse aggregate can be 80 r</li> <li>27. Which strength of co (a) Compressive (c) Fatigue</li> </ul>	tural disintegration or by s. The maximum size of nm.	<ul> <li>30. The tensile strength of concrete is approximately what percent of compressive strength of concrete.         <ul> <li>(a) 50%</li> <li>(b) 20%</li> <li>(c) 10%</li> <li>(d) 5%</li> </ul> </li> <li>RRB JE 27.08.2015 (Shift-I)</li> <li>Ans : (c) Tensile strength of concrete 10% of its compressive strength of 10%         <ul> <li>= Tensile strength</li> <li>Compressive strength</li> </ul> </li> </ul>			
Ans. (a) :		$100 \times 10\% = 100 \times 10$			
• Compressive strength of	concrete is maximum.	$=\frac{100\times10^{-10}}{100}=\frac{100\times10}{100\times100}=0.1$			
1 0	of concrete is the most	31. According to IS 456, nominal mix concrete can			
	concrete, because other	be used upto which of the following grade			
	strain relationship, tensile	(a) 10 (b) 15			
	bond strength, modulus of ermeability, durability etc.	(c) 20 (d) 25			
depends on it.	inteadinity, duradinity etc.	RRB S.S.E. (Secunderabad) 02.09.2015 (Shift-I)			
28. Cement concrete is a		Ans : (c) According to IS 456, nominal mix concrete			
(a) Elastic material	.=	can be used up to M20 or lower.			
(b) Visco-elastic mat	terial	Nominal mix ratio-			
(c) Non elastic mater		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
(d) Plastic material	141	M10 - 1:3:6			
	RB JE 26.08.2015 (Shift-III)				
Ans : (b) Cement is a vis		M20 – 1:1.5:3			
concrete has combination		Design method-			
behaviour where the app		1. Nominal mix (up to M20)			
instantaneous elastic strain f	followed by a viscous, time-	2. Design mix (IS 10262-1982)			
dependent strain.		<b>32.</b> The batching tolerance for cement as per IS 456 is			
	ard specifications, concrete				
is designated into-		(c) $\pm 2\%$ (d) $\pm 3\%$			
(a) 3 grades	(b) 5 grades	RRB S.S.E. (Secunderabad) 02.09.2015 (Shift-I)			
(c) 7 grades	(d) 10 grades	Ans: (c) The batching tolerance for cement as per IS :			
	RB JE 27.08.2015 (Shift-III)				
Ans : (c) As per Indian	-	The accuracy of the measuring equipment shall be with in $\pm 3\%$ of the quantity of aggregate; admixtures and			
concrete is designated into	9	water.			
Grade	Group	<b>33.</b> Which one of the following does not react with			
M10		concrete-			
M15	Ordinary group	(a) Sewage water (b) Sulphuric acid			
M20		(c) Vegetable oil (d) Alcohol			
M25		RRB JE 28.08.2015 (Shift-III)			
M30		Ans : (d) Alcohol does not react with concrete due to			
M35		this is non acidic and non corrosive, there is no present			
M40	Standard concrete	of minerals in cement and aggregates.			
M45		So, generally we can say that alcohol can used safely in concrete.			
M50		34. The rapid development of rigidity in a freshly			
M55		mixed Portland cement paste, mortar, or			
M60		concrete, usually happens with evolution of			
M65		considerable heat. This rigidity cannot be			
M70	High strength concrete	dispelled, nor can the plasticity be regained, by			
M75		further mixing without addition of water. This			
M80		is called as			
Civil Engineering		26 VCT			


<ul> <li>(a) False set</li> <li>(b) Flash set</li> <li>(c) Rigidity index</li> <li>(d) Set acceleration</li> <li>RRB S.S.E. 02.09.2015 (Shift-II)</li> </ul> Ans : (b) The rapid development of rigidity in a freshly	Ans : (b) According to IS of specimen to be tes compressive strength is 3. Consider no. of samples	
mixed Portland cement paste, mortar, or concrete, usually happens with evolution of considerable heat.	concrete volume –	aspenaning as quanning or
This rigidity cannot be dispelled, nor can the plasticity	Concrete work in m ²	Number of sample
be regained, by further mixing without addition of	1-5	1
water. This is called as flash set.	6-15	2
35. Bleeding of concrete is said to occur when-	16-30	3
(a) Finer particles settle down at the bottom	31-50	4
(b) Coarser particles get separated	> 51	4 + 1 sample for each
(c) Cement paste rises to the surface of concrete	- 51	additional 50 m ³ or part
(d) Finer particles collect in isolated pockets		there of
RRB JE 29.08.2015 (Shift-I)	<b>39.</b> In general, the coeffi	
Ans : (c) Bleeding of concrete is said to occur when	8 /	icient of thermal expansion t depend on which of the
cement paste rises to the surface of concrete and	following factors	t depend on which of the
forming a thin layer on top of the concrete.	(a) Type of cement	(b) Type of aggregate
Reasons-		() <u>)</u>
1. Insufficient compaction		
2. Poorly graded aggregate	(d) The quality of wa	
3. Laceration (cuts)		S.S.E. 03.09.2015 (Shift-III)
4. Crushing injuries	Ans : (d) Physical prope	
36. Grading of aggregate in a concrete mix is	thermal expansion, etc depe	
necessary to achieve–	of cement. Physical prope	erties do not depend upon
<ul><li>(a) Adequate workability</li><li>(b) Higher density</li></ul>	quality of water.	
(c) Reduction in voids		ing is not a non-destructive
(d) Better durability	test used for concrete	
RRB JE 29.08.2015 (Shift-II)	(a) Rebound hamme	
Ans : (c) Grading of aggregate in a concrete mix is	(c) Ultra-sonic	(d) Direct tensile test
necessary to achieved reduction in voids.		S.S.E. 03.09.2015 (Shift-III)
For a good gradation of aggregate which have minimum	Ans : (d) Tests of concrete	-
void and sample paste generally fill the voids in the	not destroyed are known as	non-destructive tests. Non-
aggregate.	destructive test are –	
The paste requirement is the factor controlling the lost,		o find compressive strength
since cement is the most expensive component.	of concrete.	
<b>37.</b> The recommended slump for pumped concrete	(ii) <b>Pull off test</b> $\rightarrow$ To find off	1 0
is:	(iii) Ultrasonic test→ To	check quality of concrete
(a) 1-2 inches (b) 2-4 inches	and aggregates.	1
(c) $3-4$ inches (d) $4-6$ inches	Direct tensile test is a	
<b>RRB S.S.E. 03.09.2015 (Shift-I)</b>	specimens to find tensile	
<b>Ans : (d)</b> Slump test used to find workability of concrete slump value for pumped concrete work is 4 to	strength of concrete is diffinities often taken to the determination of the strength of the determination of the strength of t	
6 inches.	or the splitting tensile str	-
• If coarse aggregate of size greater than 38mm are	direct tensile.	iongui and computing the
used, then slump test is not conducted. For low water		no hofono stuil-in- Al-
content mix slump value is zero.	41. The minimum tin formwork for colum	me before striking the
38. According to IS 516, what is the minimum	(a) 14 – day	(b) 7 – day
number of specimen to be tested for estimating	(a) $14 - day$ (c) $3 - day$	(d) $16 - 24$ hr.
the compressive strength		
(a) 2 (b) 3	· · · · · · · · · · · · · · · · · · ·	erabad) 01.09.2015 (Shift-I)
(c) 4 (d) 5	· · ·	time before striking the
RRB S.S.E. 03.09.2015 (Shift-III)	formwork for columns as p	er 15 456 is 16-24 hr.


T	ype of formwork		mum time before king formwork	speci	fied f	of the cube strength of the grade of concrete for the corresponding age and no individual
1.	Vertical formworks		16-24 hours			strength less than 75 percent.
to co	olumns, wall beam			44.		ich of the following is not used in the design
2.	Soffit formwork to		7 days			oncrete mixes as per the relevant Indian
bear	m		5			dard?
3. P	Props left under slab					Air content
	emove after				( )	Water content
(a) \$	Spanning up to 4.5		7 days		· · ·	Admixture content
(b) \$	Spanning over to 4.5		14 days		(d)	Bulk density of cement
. ,	rops left under beam					RRB S.S.E. 01.09.2015 (Shift-III)
	rches can be remove			Ans	: (d	) Factors affecting the choice of mix
after				prop	ortion	ing.
	Spanning up to 6 m		14 days	• Co	mpres	sive strength
	Spanning over to 6m		21 days	• Wo	orkabi	lity
. ,	1 0		*	• Ma	ximu	m nominal size of aggregate
	The minimum time l		<u> </u>	• Gra	ding	and type of aggregate.
	arches (less than 6 m	· –		45.	Stre	ngth of commonly used concrete, for
	(a) 14-day		7-day			structing low rise residential building is:
	(c) 3-day	· · /	16-24 h			300 psi (b) 8000 psi
<b>A</b>			01.09.2015 (Shift-II)			15000 psi (d) 25000 psi
	(a) According to IS which props are remov		000, minimum time		~ /	<b>S.S.E (Bilaspur/Secunderabad) 21.12.2014</b>
	which props are remov	cu.	Minimum period			
S.	Type of formwo	rk	before striking			Strength of commonly used concrete, for
No.	i ype of formitte	I K	formwork.			ng low rise residential building is 15000 psi.
1.	Vertical formwork	s to	16 – 24 hours	46.		activity of batching in production of
	columns, wall beam					crete refers to:
2.	Soffit formworks to	slabs	3 days		(a)	Weighing of all ingredients within the acceptable tolerances for all batches
		efixed			(b)	Weighing of all ingredients
	immediately after re	emoval				Most accurate weighing of cement & water
-	of formwork )				(0)	that influence strength of concrete
3.	Soffit formworks to b		7 days		(d)	Measuring the workability of concrete
	(props to be information to be informatiis to be informatiis to be informatiis to be informatiis to be	refixed				S.S.E (Bilaspur/Secunderabad) 21.12.2014
	of formwork )	movai		Ang		The activity of batching in production of
4.	Props to slabs–					efers to weighing of all ingredients within the
••	(a) Spanning up to 4.	5 m	7 days			tolerances for all batches.
	(b) Spanning over 4.5		14 days			It refers to controlling the quantity of each
5.	Props to beam and ar					equired for making a concrete mix in each
	(a) Spanning upto 6		14 days	batch		1 · · · · · · · · · · · · · · · · · · ·
	(b) Spanning over 6	m	21 days			, admixture & water measured with accuracy
	Concrete in a member				-	atch quantity & cement has $\pm 2\%$ of batch
shall be considered acceptable, if the average		quan		1 5		
	equivalent cube strength of the cores is equal to		There	e are t	two types of batching-	
	t least X% of the converse of X	-	iding cube strength.	1. W	eight	batching
	<b>Vhat is the value of X</b> a) 70		75	2. Vo	olume	batching
	a) 70 c) 80	(b)	75 85	47.	The	grade M25 of concrete would approx, refer
((	,		83 03.09.2015 (Shift-II)			ne mix
Anal			, ,			1:3:6 (b) 1:2:4
	d) : Concrete is the me hall be considered					1:1:2 (d) $1:2:4$
						B JE (Bilaspur/Guwahati/Patna) 14.12.2014
Juiva	equivalent cube strength of the cores is equal to at least			1	NN.	b 312 (bhaspui/Guwanau/1 atha) 14.12.2014

Ans. (c):			
Grade	e of	Characteristics	Mix
concr		strength	proportion
M5		5	1:5:10
M7.:	5	7.5	1:4:8
M10		10	1:3:6
M15		15	1:2:4
M13		20	1:1.5:3
M25		25	1:1:5:5
		on of sand in concre	te is
. ,		ice shrinkage	
	-	note in cement hydra	ation
	-	vent efflorescence	
(d)		f the above	
		BPSC AE (GEN. E	,
		used in concrete as	an inert material.
		in concrete mix–	
		nd in concrete to red	
		e volume of mortar a	and makes mortar
more ecor			
		structure more	resistant against
atmospher	-		a the donaity of
mortar.	graued	l type sand adds to	o me defisity of
		•	
	-	ggregate in concret	
	-	es more water for go	•
. ,		nore cement for a gi	ving strength
. ,		greater shrinkage	. (1 1
(a)	Leads to	o poor development	
	<b>D</b>		EN. ENGG.)-2001
		led aggregate– It re	-
		le angular aggregate	requires highest
water cem			tio romaina 20 1
		<b>ite</b> – It have voids ra	
		of angular aggreg cles is good and deve	-
	-	rounded aggregate.	eropinent of bond
		- These types of	aggregates least
		than 3/5 of mean dir	
		the following is	not a physical
	•	materials?	
	Abrasio		
	Swellin	•	
. ,		bsorption	
(d)	Bulk de	•	
		JSSC JE (GEN. EN	
	: Abra	sion is not a phys	sical property of
materials.			
	-	er adsorption and	bulk density are
physical p	roperty	of materials.	

## REINFORCEMENT CEMENT CONCRETE

1. Based on the assumptions made in the design	(f) The maximum strain in the tension reinforcement in		
for the limit state of collapse in flexure at IS :	the section at failure shall not be less than:		
456 - 2000, the limiting values of the depth of			
neutral axis for Fe-415 grade of steel is	$\frac{f_y}{1.15E_s} + 0.002$		
(a) 0.50 (b) 0.46	5		
(c) 0.53 (d) 0.48	where, $f_v = characteristic strength of steel$		
JSSC JE (GEN. ENGG.) 04.11.2022	$E_s = modulus of elasticity of steel$		
Ans. (d) : Limiting depth of neutral axis	3		
	3. According to IS : 456-2000 'Plain and Reinforced Concrete-Code of Practice',		
$\left(\frac{x_{u}}{x_{u}}\right) = \frac{0.0035}{0.072}$	is the partial safety factor taken for concrete in		
$\left(\frac{x_{u}}{d}\right)_{lim} = \frac{0.0035}{0.0055 + \frac{0.87f_{y}}{E}}$	assessing the strength of a structure of structural		
Es	member for the limit state of collapse.		
0.0035d	(a) 1.5 (b) 1.0		
$(x_u)_{lim} = \frac{0.87 f}{0.87 f}$	(c) 0.5 (d) 0		
$(x_u)_{lim} = \frac{0.0035d}{0.0055 + \frac{0.87f_y}{E_s}}$	JSSC JE (GEN. ENGG.) 04.11.2022		
E _S	Ans : (a) According to IS : 456-2000 for partial		
<ul> <li>Value of (x_u)_{lim} for various grades of steel–</li> </ul>	safety factor $\gamma_m$ for material strength-		
Grade (x _u ) _{lim} As per IS code	• When assessing the strength of a structure or structural		
Fe250 0.5313 0.53	member for the limit state of collapse, the value of		
Fe415 0.4791 0.48	partial safety factor, $\gamma_m$ should be taken as 1.5 for		
Fe500 0.4560 0.46	concrete and 1.15 for steel.		
2. According to IS : 456-2000 'Plain and	4. Reinforced concrete sections in which tension		
Reinforced Concrete-Code of Practice, and	4. Reinforced concrete sections in which tension steel reaches yield strain at loads lower than		
based on the assumptions made in the design	the load at which concrete reaches failure		
for the limit state of collapse in flexure, for	strain are called .		
design purposes the compressive strength of	JSSC JE (GEN. ENGG.) 04.11.2022		
concrete in the structure shall be assumed to be	Or		
times the characteristic strength.	If the actual neutral axis of a beam lies above		
(a) 0.65 (b) 0.68	the critical neutral axis, then the beam is said		
(c) 0.66 (d) 0.67	to be a/an:		
JSSC JE (GEN. ENGG.) 04.11.2022	JSSC JE (GEN. ENGG.)- 03.11.2022		
Ans. (d) : Limit state of collapse : Flexure	Or		
Assumptions–	In which of the following sections will the		
(a) Plain sections normal to the axis remain plane after	position of actual neutral axis (n) shift above		
bending.	the critical neutral axis $(n_c)$ i.e. $n < n_c$ and steel		
(b) The maximum strain in concrete at the outmost	is fully stressed and concrete is under stressed?		
compression fiber is taken as 0.0035 in bending.	(a) under reinforced section		
(c) The relationship between the compressive stress	(b) critical section		
distribution in concrete and the strain in concrete may	(c) over reinforced section		
be assumed to be rectangle, trapezoid, parabola or any	(d) balanced section		
other shape which results in prediction of strength in	JSSC JE (GEN. ENGG.)-23.10.2022		
substantial agreement with the result of test.	Ans : (a) Under reinforced section–		
(d) For design purposes, the compressive strength of	In which tension steel reaches yield strain at loads lower		
concrete in the structure shall be assumed to be 0.67	than the load at which concrete reaches failure strain are		
times the characteristic strength. The partial safety	called under reinforced sections. It should be		
	remembered that yielding of steel does not mean		
factor $\gamma_m = 1.5$ shall be applied in addition to this.	internetion in the pretains of steel does not medin		
(e) The tensile strength of the concrete is ignored.	ultimate failure of the beam.		





## In an under-reinforced beam-

- (a) the depth of neutral axis is less than the maximum depth of neutral axis
- (b) the depth of neutral axis is more than the maximum depth of neutral axis
- (c) the depth of neutral axis is equal to the maximum depth of neutral axis
- (d) the area of steel is more than the required maximum percentage of steel

## JSSC JE (GEN. ENGG)-2017

Ans. (a) : When  $x_u < (x_u)_{lim}$ , the steel in the tensile zone attains its maximum stress earlier, than concrete, the section will be under reinforced.

•  $x_u < (x_u)_{lim} \rightarrow Over reinforced section$ 

•  $x_u = (x_u)_{lim} \rightarrow Balanced$  section

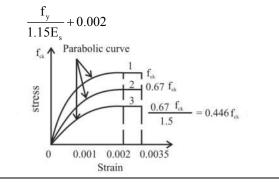
(c) 1:3:6

- What is the recommended mix for the construction of long span arches? (a) 1:1:2
  - (b) 1:2:2
  - (d) 1:4:8

JSSC JE (GEN. ENGG)-2017

Ans. (a) :		
Strength	Nominal mix Design	Uses
M10	1:3:6	For PCC work
M20	1:1.5:3	For ordinary RCC work
M25	1:1:2	For heavy Loaded RCC work such as Beam arches column

What is the assumed maximum strain in concrete for limit state of collapse in flexure? (b) 0.035


(a) 0.0035 (c) 0.35

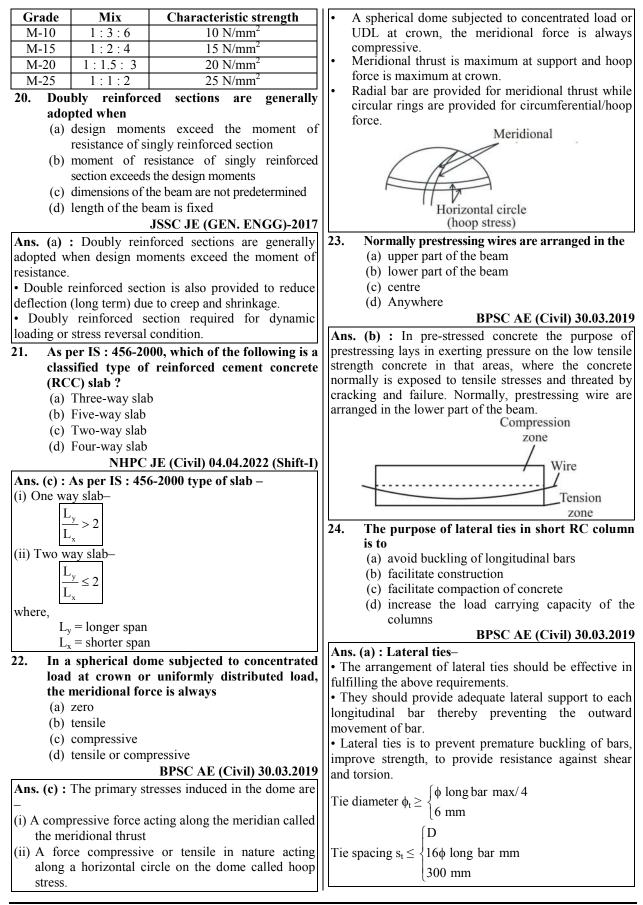
JSSC JE (GEN. ENGG)-2017

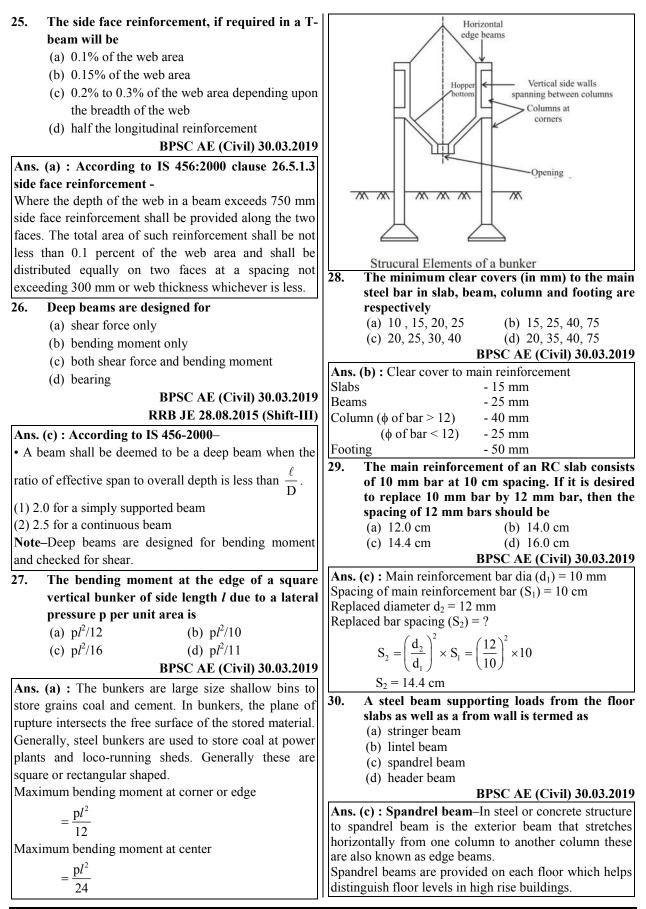
(d) 3.5

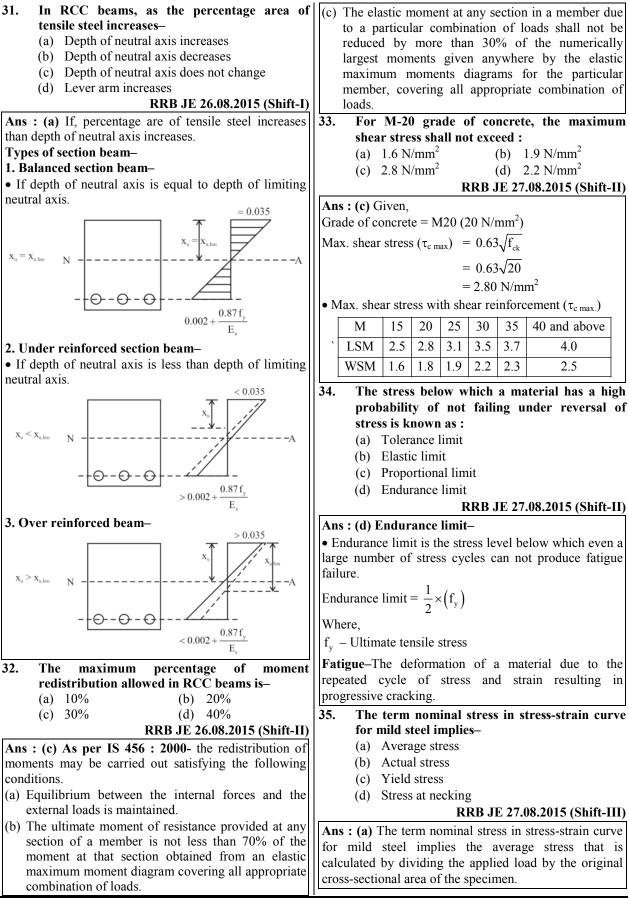
Ans. (a) : As per IS 456-2000, cl. 38.1- the maximum strain in concrete at the outer most compression fiber is taken as 0.0035 in bending.

• The maximum strain in tension reinforcement in the section at failure shall not be less than




- The minimum shear reinforcement is provided in a beam if
  - (a) nominal shear stress is less than the design shear strength of concrete
  - (b) nominal shear stress is more than the design shear strength of concrete


**Civil Engineering** 


(c) nominal shear stress is eq	ual to the design	Effectively held	in posi	tion a	at both	(	0.80 <i>l</i>				
shear strength of concrete	ends restrained against rotation at										
(d) nominal shear stress is equal to the		one endEffectively held in position and2.00 l									
permissible shear stress						-	2.00 <i>l</i>				
	EN. ENGG)-2017	restrained again									
Ans. (a) : If nominal shear stress is		end but not he	1								
shear strength than minimum shear	reinforcement is	restrained again end	ist totat	ion a	t other						
provided.		17. As per IS:	456.2	000	nartial s	ofaty	facto	r for			
Minimum shear reinforcement		Dead Load									
$0.87 f_y A_{sv} \left[ \frac{d}{S_v} \right] = 0.4 \text{ bd}$		combinatio				maps	C 101	Ioau			
$\left  0.8 / I_y A_{sv} \right  = 0.4 \text{ bd}$					EN. ENC		31.10	.2022			
			00000	OR		,	01.10				
• If $\tau_v < \frac{\tau_c}{2}$ then No shear	reinforcement is	The value	of nart	-		or in	limit	state			
2		of collapse									
provided.		load is	ior the	com		or uc	au an	unve			
• If $\frac{\tau_c}{2} < \tau_v < \tau_c$ then minimum shea	r reinforcement is	(a) 1.5			(b) 1.2						
		(c) 1			(d) 0.8						
provided.		(-)		JSSG	C JE (GE	N. EN	(GG)	-2017			
• If $\tau_v > \tau_c$ then shear reinforcement	s designed for $(\tau_v$	<b>Ans. (a) :</b> Th									
$-\tau_{\rm c}$ )bd.		recommended by									
• If $\tau_c > (\tau_c)_{max}$ then redesign section	1.	following table	,			U					
15. The value of load which has a	95% probability	Partial safety fac	tor for	load	s, V _f						
of NOT being exceeded durin		Load	Lin	nit st	ate of	Lim	it sta	te of			
the structure is known as		combination		collap			viceat				
(a) characteristic load (b) co	llapse load		DL	LL	WL/EL	DL	LL	WL/			
(c) ultimate load (d) w	orking load		1.5	1.5		1.0	1.0	EL			
JSSC JE (G	EN. ENGG)-2017	DL+LL DL+WL/EL		1.5	-	1.0		-			
Ans. (a) : As per IS 456:2000 cl-36.2	DL+WL/EL		-	1.5	1.0	-	1.0				
Characteristic load-It means that t	DL+LL+WL/EL	0.9	1.2	1.2	1.0	0.0	0.8				
which has a 95% probability of no	t being exceeded	This Value is to									
during the life of structure.	overturning or str				Staun	ny ag	zamsi				
↑ F _m	18. For a 45° c				r the	addi	tional				
	length for				ii the	uuui	nonui				
				(a) 0.36 d (b) 0.42 d							
/ ¦ ∖ _F		(c) 0.24 d (d) 0.60 d									
				JSSO	C JE (GE		(GG	-2017			
$K \longrightarrow Load \rightarrow$ 1.64 $\sigma$		Ans. (b) :					,				
Characteristic loa	d	K ^d					At				
16. In columns when both end	s are restrained		_			/	2				
against translation and rotat											
length is/	,										
(a) 1L (b) 2l		K 1	L	к—		€—d					
(c) 1.2L (d) 0.	65L	$= \frac{d}{d}$	-d = -d	d	$\frac{1}{5^{\circ}} - d = d($	1.42-	-1)				
JSSC JE (GEN. ENGG)-2017		sin 45°		sin 45	S°		<i>,</i>				
Ans. (d) :	= 0.42d										
Compression member (End Recommended		19. Grades of Concrete in Indian Standard Code									
condition)	value of	are specified and designated by									
effective		(a) mix	.1.		(b) dur	-	ý				
length		(c) workability (d) quality									
Effectively held in position and 0.65 <i>l</i>		JSSC JE (GEN. ENGG)-2017									
	0.65 l				animu :-		<u>(</u>	<b>Ans. (a) :</b> Concrete mix design is the process of selecting suitable ingredients of concrete and			
restrained against rotation in both	0.65 l		crete n			the p	roces				
restrained against rotation in both ends		selecting suitab	crete n ole ing	gredie	ents of	the p conc	roces rete	and			
restrained against rotation in both ends Effectively held in position at both	1.00 l	selecting suitable determining their	crete n ole ing r relativ	gredie ve am	ents of nounts wit	the p conc h the	roces rete objec	and ctive			
restrained against rotation in both ends		selecting suitab	crete n ble ing r relativ concrete	gredie ve am e of t	ents of ounts wit the require	the p conc h the ed wo	roces rete objec orkabi	and ctive ility,			

**Civil Engineering** 

YCT







<ul> <li>36. Minimum grade of concrete to be used in reinforced concrete is— <ul> <li>(a) M 10</li> <li>(b) M 15</li> <li>(c) M 20</li> <li>(c) M 25</li> </ul> </li> <li>RRB JE 27.08.2015 (Shift-III) Ans: (c) According to IS code 456: 2000– <ul> <li>Minimum grade of concrete to be used in reinforced concrete is M20. According to IS code 456: 1978– </li> </ul></li></ul>	• The higher percentage of steel reinforcement and the grade of concrete, the higher the permissible shear stress. $\tau_{c} = 0.85\sqrt{0.8 f_{ck}} \frac{\left(\sqrt{1+5\beta}-1\right)}{6\beta}$ Here, $\beta = \frac{0.8 f_{ck}}{6.89 P_{t}} \text{ and } P_{t} = \frac{100 A_{s}}{bd}$
<ul> <li>Minimum grade of concrete to be used in reinforced concrete is M15.</li> <li>37. How is the deflection in RC beams controlled as per IS : 456 ? <ul> <li>(a) By using large aspect ratio</li> <li>(b) By using small modular ratio</li> <li>(c) By controlling span/depth ratio</li> <li>(d) By moderating water-cement ratio</li> </ul> </li> </ul>	<ul> <li>41. According to IS-456, the modulus of elasticity of steel can be assumed as : <ul> <li>(a) 200 kN/mm²</li> <li>(b) 225 kN/mm²</li> <li>(c) 250 kN/mm²</li> <li>(d) 300 kN/mm²</li> </ul> </li> <li>RRB S.S.E. 03.09.2015 (Shift-I)</li> <li>Ans : (a) According to IS : 456-2000– <ul> <li>Modulus of elasticity of steel is 200 kN/mm² or 2×10⁵</li> </ul> </li> </ul>
RRB JE 28.08.2015 (Shift-II)         Ans : (c) According to IS 456-2000 clearly states that the control of deflection is governed by suitable a value which is span to effective depth ratios.         38. In the conventional pre-stressing, the diagonal tension in concrete– <ul> <li>(a) increase</li> <li>(b) decreases</li> <li>(c) does not change</li> <li>(d) may increase of decrease</li> </ul> <li>RRB JE 29.08.2015 (Shift-III)</li>	<ul> <li>N/mm².</li> <li>42. Which of the following is not applicable to limit state method? <ul> <li>(a) The stresses are obtained from design loads and compared with design strengths</li> <li>(b) The method follows linear stress-strain behavior of both the materials i.e. steel and concrete</li> <li>(c) The ultimate stresses of the materials are used as allowable stresses</li> <li>(d) Partial safety factors are used</li> </ul> </li> </ul>
<ul> <li>Ans : (b) • In the conventional prestressing, the diagonal tension reduces as whole section is under compression generally in prestressing.</li> <li>39. The reinforced concrete beam curved in plan is designed for- <ul> <li>(a) Bending moment and shear</li> <li>(b) Bending moment and torsion</li> <li>(c) Bending moment</li> <li>(d) Bending moment, shear and torsion</li> </ul> </li> </ul>	<ul> <li>RRB S.S.E. 03.09.2015 (Shift-III)</li> <li>Ans : (b) Assumption as per IS 456 : 2000.</li> <li>(a) Plane section normal to the axis remain plane after bending.</li> <li>(b) The maximum strain in concrete at outermost compression fiber is taken as 0.0035 in bending.</li> <li>(c) The relationship between the stress strain distribution in concrete is assumed to be parabolic.</li> <li>(d) The tensile strength of the concrete is neglected.</li> </ul>
<ul> <li>RRB JE 29.08.2015 (Shift-I)</li> <li>Ans : (d) ● A reinforced concrete beam curved in the plane is structural element that is subjected to different types of loads. The loads can cause the beam to bend, shear or twist.</li> <li>40. Permissible shear stress in concrete is a function of— <ul> <li>(a) Grade of concrete</li> <li>(b) Grade of steel</li> <li>(c) Percentage of steel reinforcement</li> </ul> </li> </ul>	distribution in concrete and the strain in concrete
<ul> <li>(d) Percentage of steel reinforcement and grade of concrete</li> <li>RRB JE 29.08.2015 (Shift-II)</li> <li>Ans : (d) The permissible shear stress in concrete is a function of the percentage of steel reinforcement and the grade of concrete.</li> </ul>	

Ans : (d) Types of prestres	sing–	Ans : (c) • The failure of column depends upon its			
(i) Hydraulic prestressing		slenderness ratio. The load required to cause above mentioned failures decreases as the length of			
(ii) Thermal prestressing (Thermo-electric			e		
prestressing)			eases, the cross-sectional area		
<ul><li>(iii) Chemical prestressing</li><li>(iv) Mechanical prestressing</li></ul>		commonly classified as sho	stant. Therefore, columns are		
(v) External prestressing	,		-		
(v) External prestressing (vi) Internal prestressing.			5, if the maximum aggregate com 20 mm to 40 mm, the		
	456, the approximate		ontent requirement changes		
0	· •	(in kg/cum) by :	ontent requirement enanges		
of grade M50 ( $f_{ck} = 3$	strength (MPa) of concrete	(a) $-20$	(b) 20		
(a) $4.9$	(b) 5.5	(c) -30	(d) 30		
(a) $4.9$ (c) $2.5$	(d) $6.5$		S.S.E. 01.09.2015 (Shift-III)		
			te is increased from 20mm to		
,	erabad) 01.09.2015 (Shift-I)		e area decrease, due to which		
Ans. (a) Given,			aste is required. Adjustments		
Grade of concrete = $M50$			rete for aggregates other than		
$f_{ck} = 50 \text{ N/mm}^2 \text{ or MPa}$		40mm nominal maximum	size aggregate as per IS : 456		
Flexural strength $(f_{cr}) = 0.7$	$\sqrt{f_{ck}}$	: 2000.			
$= 0.7\sqrt{50}$		Nominal maximum	Adjustment to minimum		
		aggregate size (mm)	cement content (kg/m ³ )		
$f_{cr} = 4.949 \text{ N/mm}^2 \text{ or MPa}$ $f_{cr} = 4.9 \text{ MPa}$		10	+ 40		
	stress for a Fe 415 is :	20	0		
(a) 415 MPa	(b) 395 MPa	40	- 30		
(c) 500 MPa	(d) 550 MPa				
RRB S.S.E. (Secund	erabad) 01.09.2015 (Shift-I)		e is advantageous because of		
Ans. (a)	, , ,	its:			
Grade of steel	Minimum yield stress	(a) fire resistance a (b) less maintenanc			
Fe 250	250	(c) monolithic char			
Fe 415	415	(d) all of above			
Fe 500	500		E (Muzaffarpur) 14.12.2014		
			crete as an economic building		
46. According to Is	· · · · · · · · · · · · · · · · · · ·		types of loading. Concrete		
	naximum cement content in		steel reinforcement resists		
(a) $500$	y ash and slag) allowed is (b) 400	tension forces.			
		Advantages of Reinforced Concrete-			
(c) 450	(d) 600	• The monolithic character of reinforced concrete gives			
	S.S.E. 01.09.2015 (Shift-II)	it more rigidity.			
	56 : 2000 - under normal	• Maintenance cost of RCC is practically nil.			
	m cement content (including	• It has good resistance to damage by fire and weathering (because of concrete)			
fly ash and slag) allowed is	•		-		
• Cement content not including fly ash and ground		• It is durable and RCC pr			
granulated blast furnace slag in excess of 450 kg/m ³			lasticity (E) of concrete as		
should not be used unless special consideration has		-	is given by (notations are		
been given in the design to the increased risk of cracking due to drying shrinkage in thin sections or		conventional)			
	-		(b) $E = 5000 \sqrt{f_{ck}}$		
to early thermal cracking and to the increased risk of damage due to alkali silica reactions.		(c) $E = 5500 \sqrt{f_{ck}}$	(d) $E = 10000 \sqrt{f_{ck}}$		
		$\mathbf{RRB JE (Bilaspur/Guwahati) 14.12.2014}$			
47. The failure of column depends upon-		Ans : (b) • Modulus of ela			
(a) Weight of column (b) Length of column			-		
(b) Length of colum		As per IS code 456 : 2000	$E_{c} = 5000 \sqrt{f_{ck}}$		
<ul><li>(c) Slenderness ratio</li><li>(d) Cross sectional area of column</li></ul>			F 5700 C		
		As per IS code 456 : 1978	$E_{c} = 5/00\sqrt{I_{ck}}$		
R	RB JE 16.09.2015 (Shift-III)				

• Tensile strength / flexural strength / modulus of	Ans. (d) : High strength concrete is necessary for the		
rupture of concrete in flexure.	following reasons-		
$F_{cr} = 0.7\sqrt{f_{ck}}$	• When the stress is transferred to concrete by bond		
	action, the high strength concrete offers high bond		
$f_{ck}$ = Characteristic strength of concrete (MPa)	stress.		
51. Lateral ties in RCC columns are provided to	• Shrinkage cracks will be very little.		
resist	• Due to the larger modulus of elasticity of high		
(a) Bending moment	strength concrete, the elastic and creep-strain are		
(a) Bending moment (b) Shear	small resulting in smaller loss of pre-stress in the		
(c) Bucking of longitudinal steel bars	steel reinforcements.		
(d) Both Bending moment and shear	54. If tensile stresses in concrete are neutralised by		
	introducing initial compressive stresses, such		
RRB JE (Bilaspur/Guwahati ) 14.12.2014	concrete is known as		
Ans : (c) • The role of lateral ties is to prevent	(a) Reinforced cement concrete		
premature buckling of bars, improve strength, to	(b) Prestressed cement concrete		
provide resistance against shear and torsion, to hold	(c) Fiber-reinforced cement concrete		
bars in position during construction etc.	(d) Prefabricated cement concrete		
52. In a Cantilever beam carrying gravity load,	MPSC AE PRE -09.07.2017		
main reinforcement to resist Bending moment	Ans. (b) : Prestressed cement concrete-If tensile		
is provided	stresses in concrete are neutralized by introducing initial		
RRB JE (Bilaspur/Guwahati ) 14.12.2014	compressive stresses, such concrete is known as		
Or	prestressed cement concrete.		
In a cantilever beam, the major reinforcement	55. What is the ratio of modulus of elasticity of		
is provided:	steel and modulus of elasticity of concrete?		
JSSC JE (GEN. ENGG.)- 31.10.2022	<ul><li>(a) Young modulus</li><li>(b) Poisson's ratio</li></ul>		
(a) above the neutral axis	(c) Modular ratio		
(b) as vertical stirrups	(d) None of above		
(c) as a helical reinforcement	(d) None of above MPSC AE PRE -27.03.2021		
(d) below the neutral axis	Ans. (c) : Modular ratio–It is defined as the ratio of		
Ans. (a) : The cantilever beam carry gravity load, top	modulus of elasticity of steel $(E_s)$ to that of concrete		
fibers above neutral axis are subjected to tensile stresses	$(E_c)$		
so main reinforcement is provided above the neutral			
axis.	Modular ratio (m) = $\frac{E_s}{E_s}$		
100000000000000000000000000000000000000	e		
	Poisson's ratio–The Poisson ratio is defined as the ratio		
7	of transverse strain to the longitudinal strain under an		
(-)	axial load. It is denoted by $\mu$ . The value of poisson ratio		
BMD	for steel within the elastic region range from 0.25 to 0.33.		
	56. In pre-stressed concrete high strength concrete and steel are desirable because :		
	(a) Results in smaller cross-section		
Curvature diagram	(b) High bearing stresses are generated in		
	anchorage zones		
	(c) The shrinkage cracks are reduced		
	(d) All of the above		
	MPSC AE PRE -27.03.2021		
53. In a pre-stressed concrete member, it is	<b>Ans. (d) :</b> In pre-stressed concrete high strength concrete and steel are desirable because–		
advisable to use:	• The smaller cross-section of member results in smaller		
(a) low strength concrete only	self weight.		
(b) high strength concrete only	• High bearing stresses are generated in anchorage		
(c) low strength concrete but high tensile steel	zones		
(d) high strength concrete and high tensile steel	• The shrinkage cracks are reduced, with higher		
(d) high strength concrete and high tenshe seen RRB JE (Chennai) 14.12.2014	modulus of elasticity and smaller creep strain.		