

Computer Organization and Architecture 3 YCT

01. Computer Organization and

 Architecture
� Von Neumann Architecture (Stored Memory

Program)

Logic

� Various General Purpose Registers–

• Address Register

• Data Register

• Accumulator

• Program Counter

• Instruction Register

• Temporary Register

• Input Register

• Output Register

Type of Bus– There are three type of Bus.

• Address Bus

• Data Bus

• Control Bus

• The address bus, which is a unidirectional path
way that allows information to travel in only one
direction, carries information about where data
will be stored in memory.

• The data bus is a bidirectional path way that
carries the actual data (information) to and from
the main memory.

• The control bus carries the control and timing
signals needed to coordinate the activities of the
entire computer. Think of this as a traffic cop.

Bus Arbitration–The overall control which decides
who will control the master bus line.

There are two approaches to bus arbitration.

• Centralization bus arbitration

• Distributed bus arbitration

Register–

1. Memory Address Register (MAR) hold on
address of the memory unit.

2. PC–Program Counter

3. IR–Instruction Register

4. R–Processor Register

Computer register are designated by capital letters.

Register Transfer– R2 ← R1

5. DR – Data Register

Bus and Memory Transfers–

Common Bus- It consists of a set of common lines
one for each bit of a register through which binary
information is transfered one at a time.

Control Signal–Determine which register is
selected by the bus during each particular register
transfer.

Bus System for four Register–

• In general bus system will multiplex K register
of n bits each to produce an n-line common bus.

• The number of multiplexers needed to construct
the bus is equal to n, the number of bits in each
register.

• The size of each multiplexer must be K×1 since it
multiplexer K data lines.

Bus Transfer–

Bus ← R2, R1 ← BUS

⇒ R1 ← R2

 1 / 8

Computer Organization and Architecture 4 YCT

Memory Transfer– Read : DR ← M[AR]

Write : M[AR] ← R1

Where, DR → Data Register

AR → Address Register

Micro-operations– Micro-operations classified into
four categories Address Register ← Program
counter

1. Register Transfer Micro-operations

2. Arithmetic Micro-operation

3. Logic Micro-operation

4. Shift Micro-operation

Register Transfer Micro-operations- These type
of micro operations are used to transfer from one
register to another binary information.

Arithmetic Micro-operation

1. Addition – R3 ← R1 + R2

2. Subtraction – R3 ← R1 – R2

23 1R R R 1← + +

3. 1's complement – 22R R←

4. 2's complement – 22R R 1← +

5. Increment – 1 1R R 1← +

6. Decrement – 1 1R R 1← −

 Arithmetic shift – The increment and decrement
micro operations are implemented with a binary up-
down counter.

Logic micro operation–

1. OR – 1 1 3R R R← ∨

2. AND – 1 2 3R R R← ∧

3. XOR – 1 2 3R R R← ⊕

4. Compliment – 1R R←

5. X-NOR – 1 2 3R R R← ⊙

Shift Micro operation–

• Logical shift

• Circular shift (Rotation)

• Arithmetic shift

Logical Shift– There are two types

• Left shift

Example–

1011 1 0 1 1 0 0 1 1 0→ =
×

• Right shift.

Example–

1011 0 1 0 1 1 0 1 0 1→ =
×

Circular shift– There are two types

• Left shift

• Right shift

Arithmetic shift– Applied on signed number after
the shift sign of the number should remain same.

Left shift– It is same as logical left shift but it is
allowed only when sign is not going to change.

Example–

Right shift–

� Instruction format–

• A group of bits which instructs computer to
perform some operation.

ISA (Instruction Set Architecture) Collection of
all instruction CPU supports.

Type of Instruction (Based on Operation)

• Data Transfer – MOV, LDI, LDA

• Arithmetic & Logic – ADD, SUB, AND, OR

• Machine Control – EI, DI, PUSH, POP

• Iterative – LOOP, LOOPE, LOOPZ

• Branch – JMP, CALL, RE T, JZ, JNZ

Type of Instruction (Based on Operand
Information)

• 4-Address Instruction

• 3-Address Instruction

• 2-Address Instruction

• 1-Address Instruction

• 0-Address Instruction

Types of CPU Organization– The number of
address fields in the instruction format of a
computer depends on the internal organization of
the registers.

There are three types of organization.

1. Single Accumulator Organization

2. General Register Organization

3. Stack Organization (LIFO)

1. Single Accumulator Organization– The
instruction format in this type of computer user one

address field.

Example–

ADD × AC ← AC + M[X];

AC → Accumulator Register

2. General Register Organization uses three and two

address instructions.

 2 / 8

Computer Organization and Architecture 5 YCT

Example–

ADD R1, R2, R3 = R1 ← R2 + R3

ADD R1, R2 = R1 ← R1 + R2

3. Stack Organization uses zero and one address
instruction.

Example–(i) PUSH (ii) ADD

In a general register CPU organization there are
eight general purpose register and ALU can perform
32-different operation.

The number of selection line of each multipliers for
selecting the operand = 3 (23 =8)

The number of bits in operation code= 5(25 = 32)

The length of the control word = 5 + 3 + 3 + 3 = 14
(for 3-address instruction)

Addressing Mode
The way of operand are choosen during program
execution is dependent on the addressing mode of
instruction.

The addressing mode may reduce the number of bits
in the addressing field of the instruction.

Instruction Cycle– CPU performs 6 phases to
execute an instruction.

Fetch cycle – Instruction fetch

Execution cycle – from decode to write back

Type of addressing mode–

• Implied Mode– Operand is specified Implied
in the definition of instruction.

Used for zero address and one address instruction.

• Immediate Mode– Operand is directly
provided as constant.

No computation required to calculate effective
address.

• Register Mode– Operand is present in the
register.

Example– LDR1 ⇒ AC ← R1

Register number is written in instruction.

• Register Indirect Mode– Register contains
address of operand rather than operand itself.

Example– LD (R1) ⇒ AC ← M[R1]

• Auto Increment or Auto Decrement
Addressing Mode– Special case of register
indirect addressing mode.

Example–

LD(R1) + ⇒ AC ←M[R1], R1 ← R1 + 1

• Direct Addressing Mode (Absolute

addressing mode)– Actual address is given in

instruction.

Use to access variables

Example– LD ADR ⇒ AC ← M[ADR]

• Indirect Addressing Mode–

Using to implement pointers and passing

parameters.

2 memory access required. Where the effective

address is stored in memory.

Example– LD@ADR ⇒ AC ← M[M[ADR]]

• Relative Address Mode– In this mode the
content of the program counter (PC) is added to
the address part of the instruction in order to
obtain the effective address.

Example– LD$ADR ⇒ AC ←M[PC + ADR]

Relative addressing is often used with
branch-type instruction.

• Base Register Mode– Used in program
relocation of programs in memory.

� Indexed Addressing Mode–

→ Use to access or implement array efficiently.

→ Multiple Registers required to implement.

→ Any element can be accessed without changing
instruction.

Example– LD AD R(x) ⇒ AC ← M [ADR + X]

Arithmetic Logic Unit (ALU)

� Inside a computer, there is an (ALU) which is
capable of performing logical operations (e.g AND,
OR, Ex-OR, Invert etc.) in addition to arithmetic
operation (Addition, Subtraction etc.). The control
unit supplies the data required by the ALU from
memory or from input devices and directs the ALU
to perform a specific operation based on the
instruction fetched from memory.

Cache Memory

Cache memory faster than main memory.

Cache hit– It required element present in cache that
called cache hit.

Hit latency– Time taken to find out whether
element present on the cache or not that is called hit
latency.

Cache miss– It required element not present in
cache, that is called 'Cache miss'.

 3 / 8

Computer Organization and Architecture 6 YCT

 Miss latency– Time taken to get something from
main memory and then place it into the cache and
then read that's called miss latency.

 Page hit– It required element present in main
memory.

 Page fault– It required element not present in main
memory.

 Tag directory– Tag directory say that required
element present in tag on not.

� Introduction to Direct mapping–

• Taking about disk and main memory we talking
about paging.
• Talking about Cache and main memory we talking

about blocks.
• Block size = lines size.

=0111

6

 • Smallest addressable unit in the memory called

word.

 Let's

 1w = 1B (means system is byte addressable)

 Block size = 4 word

 No. of black in main memory = 128/4 = 32 block

 No. of Lines in Cache = 16/4 = 4 lines

 Physical address contain = 128 = 27 = 7 bits

 Processure generate address =

Offset

00 20

01 21

10 22

11 23
Example– Main memory size = 128 KB

 Cache size = 16 KB

 Block size = 256 B

 Tag bits = 3 bit

 Tag directory size = ?

Solution – Main memory size 128 KB

 = 210 *128 B

 = 210 *27 B

 = 217 B

 Block size = 256 B = 28 B

 No. of Block
17

9

8

2
2 bit

2
= =

 Cache size = 16 KB = 214 b

Offset

 Number of line
14

6

8

Cachesize 2
2 bit

Block size 2
= = =

 Tag directory size = (Tag size * No. of lines)
 = (3*26) bit

� Fully Associative– The associative memory stores
both the address and content (data) of the memory
word. This permits any location in cache to store
any word from main memory.

Offset

 Block no. = 32 = 25 = 5 bit
 Block offset = 4 = 22 = 2 bit

� Set-Associative Mapping– The set associative
mapping is an improvement over the direct mapping
in that each word of cache can store two or more
word of memory under the same index address.

 Total number of set
No.of lines

K
=

 K is number of way

Example–
 4 way set associative cache lines = 128

 Lines size = 64 word
 Physical address = 20 bits

 Tag, set and word field are?

Solution–

 Number of lines
Cachesize

Linessize
=

 4 / 8

Computer Organization and Architecture 7 YCT

 Cache size = 26 * 27 = 213 word

 Sets
7

5

2

Lines 2
2

Set size 2
= = =

 Tag = 9, Set = 5, Word = 6

� Locality of Reference–

 1. Spatial locality

 2. Temporal locality

 • If a word is accessed now then the word adjacent

to it (close proscimity) will be accessed next.

 • Keeping more words in a block affects spatial

locality (block size).

 • If a word is referenced now then the same word

will be referenced again in future.

 • LRU is used in temporal locality.

� Cache Replacement Algorithms–

 • Replacement policy is required for associative

mapping and set associative mapping but not for

direct mapping.

 • Replacement policies are aimed to minimize miss

Penalty for future references.

Example– Consider the cache has 8 blocks for the

memory reference (5, 12, 13, 17, 4, 12, 13, 17, 2,

13, 19, 13, 43, 61, 19). What is the hit ratio for the

following cache replacement algorithms.

 (i) FIFO

 (ii) LRU

 (iii) Direct mapping

 (iv) 2-way set associate

 (i) FIFO
M

5,

M

12,
M

13,
M

17,
M

4,
H

12,
H

13,
H

17,
M

2,
H

13,

M

19,
M

13,
M

43,
M

61,
H

19

 Hit ratio
5 100 1

100 33
15 3 3

 = × = =

 Miss
10 2 2

100 100 66
15 3 3

 = × = × =

 (ii) LRU
M

5,

M
12,

M
13,

M
17,

M
4 ,

H
12,

H
13,

H
17,

M
2 ,

H
13,

M
19,

H
13,

M
43,

M
61,

H
19

 5(, 12 , 13 , 17 , 4 , 12 , 13, 17 , 2 , 13 , 19 , 13,

43, 61, 19)

 Hit ratio
6

100 40
15

 = × =

 Miss
9

100 60
15

 = × =

 (iii) Direct mapping

M

5,

M

5,

M

12,
M

13,
M

17,
M

4,
M

12,
M

13,
M

17,
M

2,
M

13,

M

19,
H

13,
M

43,
M

61,
M

19

 Line number = B.No mode 4

 Cache hit ratio
1

100 6.66
15

 = × =

 Miss ratio
14

100 93.333
15

 = × =

 (iv) 2-way set associate

5
M,

12
M,

13
M,

17
M,

4
M,

12
H,

13
H,

17
H,

2
M,

13
H,

19
M,

13
H,

43
M,

61
M,

19
M

 Line no. = (i mod 2) i → Block number

 Hit ratio
5

100 33.33
15

 = × =

 Miss ratio
10

100 66.66
15

 = × =

 5 / 8

Computer Organization and Architecture 8 YCT

Control Processing Unit
CPU Control Design– There are two major types

of control organization.

(i) Hardwired Control

(ii) Micro programmed control

Hardwired Control Unit– Control logic is

implemented with gates, flip-flops, decoders and

other digital circuits.

Advantage– Can be optimized to produce a faster

mode of operation.

Disadvantage– Rearranging the wires among

various components is difficult.

� Micro-Programmed Control Unit– Control Logic

is implemented with micro programmed.

Advantage– Updating the control logic is easy.

Disadvantaged– Slower than hardwired control

unit.

Control Word Sequencing

Example– CPU has 64 distinct instructions each

instruction takes 8 micro operation micro-

instruction–

(i) Signals (128 bits)

(ii) Mux select [16 mux inputs]

(iii) Address

What is size of control memory?

Solution– Total micro operations = 64*8

= 26 * 23 = 29

Memory address = 9 bits

MUX
Signals Address

select

128 4 9

Total micro Instruction = 128 + 4 + 9 = 141 bit

so size of control memory = 29 *141 bits

Difference between Horizontal Micro
Programming and Vertical Micro Programming

Horizontal Micro
Programming

Vertical Micro
Programming

1. Control Word Large Control word is
small

2. Parallelism is high No parallalism

3. Faster Slower

Difference between Hardwired Control Unit and
Micro Programming Unit

Hardwired
Control Unit

Micro Programming
Unit

1. Fixed Instruction Instruction can flexible

2. High speed Slower compared to
hardwired instruction

3. Expensive Relatively cheap

4. Complex Simple

Example– Intel
8085, Motorola
6802 Tilog 80 and
any Reduce
Instruction Set
Computer (RISC)

Example– INTEL 8080,
Motorola 68000 and any
complex instruction set
computer.

Difference between RISC and CISC

RISC CISC

Less number of
instruction

More number of
instruction

Fixed length instruction Variable length
instruction

Simple Instruction Complex Instruction

Limited addressing More & complex
addressing modes

Easy to implement using
hardwired control unit

Difficult to implement
using hardwired

One cycle per instruction Multiple cycle per
instruction

Register to register
arithmetic operation only

Register to memory &
memory to register
arithmetic operations
possible

More number of registers Less number of registers

Example– Consider the following processor design
characteristics.

(i) Register to register arithmetic operation only

(ii) Fixed length instruction format

(iii) Hardwired control unit

Which of the characteristics above are used in the

design of a RISC processor?

(a) i and ii only (b) ii and iii only

(c) i and iii only (d) i, ii and iii

 6 / 8

Computer Organization and Architecture 9 YCT

IO Organization

Peripheral Device– Devices connected to processor

externally are known as peripherals. There are three

type–

• Input Devices

• Output devices

• Storage devices

Input/Output Subsystem Of Computer– Provides

an efficient mode of communication between

control system & outside word.

Input/Output Interface– Provides a method for

transferring information between internal storage

(memory & registers) & external I/O devices.

• Serial and Parallel Transmission

(i) Serial Transmission

(ii) Parallel Transmission

Difference between Serial and Parallel

Serial Parallel

Need of shift register No need of shift

register

Burst errors Bit errors

Cheaper Costless

Less reliable More reliable

Used to more distance Used to less

distance

Asynchronous Transmission– Data is sent in

form of byte or character. This transmission is the

half-duplex type transmission. In this transmission

start bits and stop bits are added with data.

Example–

• Email

• Forums

• Letters

Synchronous Transmission– Data is sent in form

of blocks or frames. This transmission is the full-

duplex type. Between sender and receiver,

synchronization is compulsory.

Example–

• Chat rooms

• Telephonic conversations

Example-

How many 8 bit characters can be transmitted per

second over 9600 baud (bits/sec) serial

communication link using a parity synchronous

mode of transmission with 1 start bit, 8 data bits, 2

stop bits and 1 parity bit.

Solution– For 1 char = 1 + 8 + 2 + 1 = 12 bits

Characters transmitted
9600

800char / sec
12

= =

� Mode of transfer– 3-way to perform I/O

• Programmed I/O

• Interrupt driven I/O

• DMA

Programmed I/O

{1. Read the status flag.

2. It data is not available (status = 0) then go to step

1.

3. Move the data}

• Waste time processor

• Mostly devices time to transfer 1 byte.

� Interrupt Initiated IO–

• IO device has a provision (interrupt signal) to

inform to CPU about communication

When CPU receives interrupt–

• It completes execution of current instruction

• Saves the status (PC, PSW etc.) of current process

onto the stack

• Branches to service the interrupt

• Resumes the previous process by taking out the

values from stack.

� DMA (Direct Memory Access)

• Enables data transfer between I/O and memory

without CPU intervention.

• Need a hardware : DMAC

Starting Address – Memory Address starting from

where data transfer should be perform.

Data Count– No of bytes or word to be transferred.

� Modes of DMA Transfer

• Burst mode (all data transfer at the same time)

• Cycle stealing (it happen word by word)

• Interleaving DMA (Whenever CPU does not

require system buses (doing internal work) then

only control of the buses given to DMAC).

 7 / 8

Computer Organization and Architecture 10 YCT

� Flynn's Classification of computer

• SISD– Single Instruction Stream, Single Data
Stream

Example– Von-neamann

• SIMD– Single Instruction Stream, Multiple Data
Stream

Example– Pipeline processor

• MISD– Multiple Instruction Stream, Single Data
Stream only hypothetical

• MIMD – Multiple Instruction Stream, Multiple
Data Stream

Example– Multiple Pipelines (Super Scalar
Computer (ILP))

� Pipelining

• Pipelining is useful, when same processing is
applied over multiple inputs.

• Technique to decompose a sequential process into
sub-operations.

• Sub-operations performed in all segments.

• Task: one operation performed in all segments.

� General Consideration about pipeline

• Consider a K segment pipeline with clock cycle
time = tp to perform n tasks.

Time required to perform 1st task = K*tp

Time required to perform remaining (n –1) tasks =
(n–1)tp

Time required for all n tasks = (K+n–1)tp

(K + n – 1) is total cycle.

• Consider a non-pipeline system that takes tn time
to perform a task

Time required for n task = n*tn

• Performance of a pipeline is given by speed up
ratio.

Speed up ratio
Non pipeline time

Pipeline time

−
=

()
n

p

n * t
S

K n 1 t
=

+ −

as the number of task increases, n>>K (Ignore K–1)

n
ideal

p

t
S

t
=

Latency– Time after machine takes next input.

• Latency in non-pipeline = tn

• Latency in pipeline = tp

Throughput– No of input processed per unit of

time
() p

n

K n 1 t
=

+ −

Ideal case–

p

1
Throughput

t
=

Example– Consider a 5 stage pipeline with cycle time
of 15 ns. Calculate processing time of pipeline

for 500 tasks.

n = 500, K = 5, tp = 15

processing time of pipeline = (K + n – 1)tp

= (5 + 500 – 1)15

= 504 × 15

= 7560 n sec

� Instruction Pipeline

If pipeline processing is implemented on instruction

cycle.

IF : Instruction fetch

ID : Instruction decode & Address calculation

OF : Operand Fetch

EX : Execution

WB : Write Back
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I1 IF ID OF EX WB

I2 IF ID OF EX WB

I3 IF ID OF EX WB

I4 IF ID OF EX WB

I5 IF

I6

I7

I8 IF ID OF EX WB

I9 IF ID OF EX WB

− −

Assume in cycle number 5, I4 decoded as branch

instruction.

By standard ⇒ Branch decision is made in

'Execution' phase.

• After execution phase next instruction can be

fetched.

Actually only instruction executed (n = 6) K = 5 for

n input, no. of cycles = K+ n – 1

 = 5 + 6 – 1

 = 10

3 cycles are extra (stall cycles because of branch)

Total = 10 + 3 = 13 cycles

Total execution time = cycle * tp

� Pipeline Hazards– Situations that prevent the next

instruction from being executing its designated

clock cycle.

• Hazard lead to have stall cycles

There are three type–

1. Structural Hazard/Resource Conflict

2. Data Hazard/Data Dependency

3. Control Hazard/Branch difficulty

Structural Hazard– When multiple instruction

need same resource.

Control Hazard– All Instruction who change the

program counter leads to control hazard because of

branch instruction.

Data Hazards Classification–

• RAW (Read After Write) [Flow/true data

dependency]

• WAR (Write After Read) [Anti Data dependency]

• WAW (Write After Write) [Output data

dependency]

Powered by TCPDF (www.tcpdf.org)

 8 / 8

Data Structure and Algorithm 11 YCT

02. DATA STRUCTURE AND

 ALGORITHM
DATA STRUCTURE

Data- Data is a collection of raw, unorganized facts and
details like text, observations figures, symbols, and
descriptions of things etc.
Data can be record and does not have any meaning
unless processed.
Information- Information is processed, organized, and
structured data.
Definition of data structure – A data structure is a
collection of data, generally organized so that items can
be stored and retrieved by some fixed techniques.

Data structure operation

Insertion- Add a new data in the data structure.
Example–

Deleting- Remove a data from the data structure.
Example-

10 20 30 40 50

Deleting

20 10 30 40

Sorting- Arrange data in increasing or decreasing order.
Example-

 data- 20, 30, 10, 5, 6

5 6 10 20 30

Searching- Final the location of data in data structure.
Example-

5 6 10 20 30

a[0] a[1] a[2] a[3] a[4]

Search = 10 → a[2]

Merging- Combining the data of two different sorted
files into a single sorted.

Example-

Traversing- Accessing Each data Exactly one in the
data structure so that Each data item is traversed or
visited.

Example-

Arrays in Data structure

Array- Array is a fixed size sequenced collection of
data items of same type.

• Access a particular element = array name [index]
= Int a []

• data items are stored in continuous locations.
How the data is to be accessed, how you can calculate
the address.

 a[0]=6, a[1]=2, a[2]=4, a[3]=3, a[4]=0

Formula-

 Address of a[i] = Base +i * (size of data type)
i = 0, 1, 2……..(n - 1)
n = size of array

 so if want to, i = 2;
Int size = 4 bit

= 100+2×4
= 108

• Random Access taking Constant time.

• Name [LB:UB] LB ≤ UB
 LB = Lower Bound
 UB = Upper Bound

 1 / 17

Data Structure and Algorithm 12 YCT

Size of array = UB-LB+1
Consider an array A [6:18].

Total number of element in array
By formula

 Size of array = UB – LB+1
= 18 – 6 + 1
= 13

Searching Array–

• Searching an array means to find a particular element
in the array. The search can be used to return the
position of the element or check if it exists in the
array.

• Linear Search Time complexity
Average O (n)
Best O (1)
Worst O (n)

• Binary search Time complexity

Average O (log n)
Best O (1)
Worth O (n)

• Pointer is an address of another variable
Example–

int b = 10;
int* P; b P

10 200

P = & b; 200 204
� 2-D Array

The two-dimensional array can be defined as an array of
array.
2D array syntax–

data type array_name [row][columns];
Representation of 2-D Arrays in memory

Row major order-
 a [i][j] = B+((i*n)+ j)*size.
IF start (0,0)

A [i][j] = [((i-1)*n+(j-1))*size + Base if start (1,1)
Colom major

A [i][j] = ((i*m) + i)*size + Base

Linked List

A Linked list is a Linear data structure in which the
elements are not stored at contiguous memory location.

• A liked list is a dynamic data structure.

• Each element is called a node which has two part,
info part stores the information and pointer part
which point to the next element.

Operation On Linked List-

1. Creation - This operation are used to created a linked
list in this node is created and linked to the Another
node.

2. Insertion- This operation is used to insert a new node
in the linked list.

3. Deletion- In this operation, elements can be deleted
at the starting of the list.

4. Traversing- It is a process of going through all the
nodes of linked list from one End to the other end.

Type of Linked List

• Singly Linked List- A singly linked list is a
unidirectional linked list. It is the simplest type of
linked list in which every node contains some data and a
pointer to the next node of the same data type.

•
Doubly Linked List- A doubly linked list is a
bidirectional linked list that contains a pointer to the
next as well as the previous node in sequence.

• Circular Linked List- A circular linked list is that in
which the last node contains the pointer to the first node
of the list.

• Circular Doubly Linked List- A circular doubly
linked list is a mixture of a doubly linked list and a
circular linked list.

 2 / 17

Data Structure and Algorithm 13 YCT

Representation of Linked List–

• A data item

• An address of another node
We wrap both the data item and the next reference in a
struct as.

Syntax–

Struct node
{ Int data;
Struct node*next;
};

� Linked list Applications

• Dynamic memory allocation.

• Implemented in stack and queue.

• In undo functionality of software.

• Hash tables, graphs.

STACKS

Stack is a non-primitive linear data structure.
It is an ordered list in which addition of new data item
and deletion of already existing data item is done from
only one End know as Top of Stack (TOS).

• It follows the LIFO pattern, which means the last
added element will be the first to be Removed from the
stack.
� Stack has two operation– 1. PUSH Operation

2. POP Operation
PUSH Operation- Every PUSH operation TOP is
incremented by one.

TOP = TOP + 1
In case the Array is full no new Element is added. This
condition is called stack full or stack over flow
condition.

• The process of adding a new element of the TOP of
stack is called PUSH operation.
POP Operation- The process of Deleting an element
from the top of stack is called POP.
After Every POP operation the stack TOP is
decremented by one.
TOP = TOP-1

(This is called operation stack underflow).

Stack Notation- There are three stack notation.

• Infix Notation- Where the operator is written in
between the operands.
Example- A + B + operator

A, B operands

• Prefix Notation- In this operator is written before
the operands. It is also know as polish Notation.

 Example- +AB

• Post fix Notation- In this operator is written After
the operands. It is also know as suffix Notation.

 Example- AB+

• Convert the following Infix to prefix and postfix

for (A + B)* C/D+E
∧

F/G

Prefix –

(A+B)* C/D + E ∧ F/G

+ AB* C/D + E ∧ F/G
Let + AB = R1R1

* C/D + E^F/G
R1 * C/D+^ EF/G

Let ^ EF = R2
R1 * C/D+R2/G
R1 */CD + R2/G

Let /CD = R3
R1*R3 + R2/G
R1*R3 + /R2G

Let /R2G = R4
R1*R3 + R4
*R1R3 + R4

Let *R1R3 = R5
R5 + R4
+R5R4

Now enter the value of R5, R4, R3, R2, R1

+*R1R3/R2G
+*+AB/CD/AEFG

Post fix-

(A+B)*C/D+E ∧ F/G

AB+*C/D+E ∧ F/G
Let AB+=R1

R1*C/D+EF ∧ /G

Let EF ∧ =R2

R1*C/D+R2/G
 R1*CD/+R2/G

Let CD/ = R3
R1*R3+R2/G
R1*R3+R2G/

Let R2G/=R4

R1*R3+R4

R1R3*+R4

Let R1R3*=R5

R5+R4+

 3 / 17

Data Structure and Algorithm 14 YCT

Now Enter the value of R5,R4,R3,R2,R1
 R5R4+
 R1R3*R4+
 AB+CD*R2G/+

 AB+CD* EF ∧ G/+

QUEUE

• Queue is a Non primitive Linear data structure.

• The first added Element will be the first to be remove
from the queue that is the reason queue is called
(FIFO) type list.

• In queue Every insert operation Rear is incremented
by one. (R = R + 1) and every delete operation front
is increment by one.

BASIC OPERATION OF QUEUE

• Enqueue: Add an element to the end of the queue.

• Dequeue: Remove an element from the front of the
queue.

• Is Empty: Check if the queue is Empty.

• Is full: Check if the queue is full.

• Peek: Get the value of the front of the queue without
removing it.

Application of Queue-

• CPU scheduling, Disk scheduling

• Handling of interrupts in real time system

• Call center phone system use Queues to hold people

calling them in order.

• Unlike stack, Queue is also considered as the ordered
list of the data the ordered list of the data that has a
similar data type.

Priority Queue- Priority Queue is an Extension of
queue with following properties. An element with high
priority is dequeued before an element with low
priority.

Operations-

• Insert (item, priority): Inserts an item with given
priority time (O(logn)).

• Get highest priority (): Returns the highest priority
item. operation implemented by linear searching the
highest priority item in array. O(1).

• Delete highest priority (): Removes the highest
priority operation can be implemented by first
linearly searching an item, the removing the item by
moving all subsequent items one position back. (time
O(logn)).

• Heap is generally preferred for priority queue
implementation because heaps provide better
performance compared array or linked list.

Circular Queue- A circular queue is one in which the
insertion of a new element is done at very first location
of queue is full.

• A circular queue overcome the problem of utilized

space in linear queues implemented as arrays.

BINARY TREE

• Binary tree is a finite set of data item which is either empty
of consists of a single item called root and two disjoint
binary tree called the left sub tree and right sub tree.

• In Binary tree, every node can have maximum of two
children which are known as left child and right child.

Types of Binary Tree

Full Binary Tree- A Binary tree is full if every node
has 0 or 2 child.

 4 / 17

Data Structure and Algorithm 15 YCT

Complete Binary Tree- A Binary tree is complete
Binary tree if all level are completely filled.

Perfect Binary Tree- A Tree in which all internal
nodes has two children and all leaves are at the same
level in which all level has 2n children.

Traversal of Binary Tree

1. Preorder traversal (NLR) Node left Right
2. In order traversal (LNT) Left Node Right
3. Post order traversal (LRN) Left Right Node
Example-

B-Tree

B-Tree is a self-balancing tree. in most of the other self-
balancing searching (like AVL and Red-Black tree). It
assumed that everything is in the main memory.

Time complexity of B-Tree

Algorithm Time complexity

Search O (logn)

Insert O (logn)

Delete O (logn)

Properties of B-Tree

• All nodes of the leaf must be on the same level.

• At least two root nodes are required.

• Each B-Tree node a maximum of m children.

• Each node in a B- tree includes at least m/2 children,
except the root and the leaf node.

• Maintains sorted data.

• Minimum children:
leaf = 0
root = 2

Internal nodes =
m

2

• Every node has max. (m-1) keys

• Min key:- root node → 1

m

allother 1
2

 = −

GRAPH

Graph in data structure are non linear data structure
made up of a finite number of vertices and the edges
that connect them. Graph in data structure are used to
address real problem in which it represents the real
problem in which it represents the problem area as a
network like telephone networks, circuit network and
social network.

This graph has a set of vertices
V = { 1, 2, 3, 4, 5} and a set of edges
E = {(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (4,5)}
Operation Of Graph In Data Structure

• Creating graphs

• Insert vertex

• Delete vertex

• Insert edge

• Delete edge
Graph Traversal Algorithm–

Graph traversal is a subset of tree traversal. There are
two techniques to implement a graph traversal
Algorithm.
1. Breadth - first Search or BFS
2. Depth – first – search or DFS
BFS- Two data structure for traversing the graph.

• Visited array (size of the graph)

• Queue data structure

• Using the FIFO concept.

• Until the queue is not empty and no vertex is left to
be visited.

BFS 1 2 3 4 5 6

 5 / 17

Data Structure and Algorithm 16 YCT

DFS- The (DFS) algorithm traverses or explores data
structure such as trees and graphs. The DFS algorithm
begins at the root nodes and examines each branch as
for feasible before backtracking.

• Examine any two data structures for traversing the graph.

• Visited array (size of the graph)

• Stack data structure

• Using the FIFO principle.

• Stack data structure is not empty.

DFS 1 2 4 5 3 6

Application of graph

• The friend suggestion system on facebook is based
on graph theory.

• Graph transformation system manipulate graph in memory
using rules. Graph databases store and query graph–
structure data in a transaction–safe permanent manner.

Difference between stack and Queue

Stack Queue

The collection of element
in last in first out (LIFO).

The collection of Element
in first in first out (FIFO)

Objects are inserted and
removed at the same end
called TOP of sack.

Objects are inserted and
removed from different ends
called Front and Rear end.

Insert operation is called
PUSH operation.

Insert operation is called
Enqueue operation.

Delete operation is called
POP operation.

Delete operation is called
Dequeue operation.

In stack There is no
wastage of memory space.

In Queue there is a wastage
of memory space.

Plate counter at marriage
Reception is an Example
of stack.

Students standing in a line
at fees counter is an
Example of Queue.

Non-Linear Data

structure

Linear Data structure

The non- linear data
structure are
comparatively difficult
implement and
understand as compared
to linear data structure.

The linear data structure are
comparatively easier to
implement

The data element
connect to each other
hierarchically.

The data element connect to
each other sequentially.

It is not easy to traverse
in multiple runs

You can traverse in a single
run.

It is memory friendly. It is not very memory friendly.

Map, Graph, Tree List, Array, Stack, Queue

Array Linked list

Array is a collection
of Homogeneous
(same) data type.

Linked-list is a collection
of node (data & address)

Size of an Array is
fixed

Size of list is not fixed.

Memory is allocated
from stack.

Memory is allocated from
heap.

Work with static data
structure

Work with dynamic data
structure.

Array Element are
independent to each
other.

Linked list Element are
depend to each other.

Array take more time
(Insertion & Deletion)

Linked- list take less time
(Insertion & Deletion)

Tree Graph

There is a unique node
called root in tree.

There is no unique node.

Tree is a collection of
node and edges.
Ex- T{node, Edges}

Graph is a collection of
vertices/nodes and edges.
Ex G = {V,E}

There will not be any
cycle/loops.

There can be loops/cycle.

In this Pre-order, In-
order and post order
Traversal.

In this BFS and DFS
traversal.

HEAP DATA STRUCTURE

A Heap is a special Tree-based structure in which the
tree is complete binary tree.

A B C D E F G

1 2 3 4 5 6 7

 6 / 17

Data Structure and Algorithm 17 YCT

Formula-

 if a Node is at index i
 its left child is at = 2*i
 its right child is at = 2*i+1

 it parent is at =
i

2

(This is true when your heap is starting from index 1.)
If you represent a binary tree in an array then they
should not be any empty locations or gaps in between
the elements bins from first element to last element in
between anywhere.

• Height of a complete binary tree will be minimum
only that is log n.

HEAP

Max Heap- A max heap is a complete binary tree in
which the value in each internal node is greater than or
equal to the values in the children of the node. Max
heap data structure is useful for sorting data using heap
sort.

50 > 30, 20 30 > 15, 10 20 > 8, 16
Min Heap- A min heap is a heap where every single
parent node including the root, is less than or equal to
the value of its children nodes. The most important
property of a min heap is that the node with the
smallest, or minimum value, will always be the root
node.

 10 < 30, 20 30 < 35, 40 20 < 32, 25

Operations of Heap

• Heapify– a process of creating a heap from an array.

• Insertion– time complexity O (log N)

• Deletion – time complexity O (log N)

• Peek–To check or find the most prior element in the
heap.

HASHING

Hashing is a technique or process of mapping keys and
values into the hash table by using a hush function. It is
done for faster access to elements.

• Hashing storing and Retrieving data in O (1) time.

• Search key (24, 52, 91, 67, 48, 8 3)

• Hash Table

• Hash Function (K mod 10, K mod n, Mid, Square)
folding method.

K mod n = (n-1)

 ↓
24 mod 10 =4
52 mid 10= 2
91 mod 10=1
67 mod 10=7
48 mod 10=8
83 mod 10=3

B-Tree & B
+
Tree

 Data is stored in leaf
as well as internal
nodes

Data is stored only in leaf
nodes.

Leaf nodes not linked
together

Linked together like
Linked list.

Searching is slower
deletion complex

Searching is faster,
deletion easy (directly
from leaf node)

ALGORITHM

Analysis of Algorithms

• A well defined procedure to solve a specific problem

is called Algorithm.

• Data structure + Algorithm = Programming

• Algorithms Criteria

 7 / 17

Data Structure and Algorithm 18 YCT

Asymptotic Notations

Asymptotic notations are abstract notation for describe
the behavior of Algorithm and determine the rate of
growth of a function.

1. Big O Notation

 • The Big O Notation defines an upper bound of an
algorithm. Therefore, it gives the worst-case
complexity of an algorithm.

 • O (g(n)) = {f(n): there exist positive constants C
and n0 such that

 O ≤ f (n) ≤ Cg(n) for all n > n0

2. Omega (Ω) Notation:

Omega notation represents the lower bound of the
running time of an algorithm. thus, it provides the best
case complexity of an algorithm.

3. Theta (θ) Notation:

Theta notation encloses the function from above and
below. It is used for analyzing the average case
complexity of an algorithm.

() () ()1 2C g n f n C g n≤ ≤

1 2 0 0C C 0,n n , n 1≥ ≥ ≥

f(n) = θ(g(n))

Worst Case Analysis– The case that causes a
maximum number of operation to be executed.
Best Case Analysis– The case that causes a minimum
number of operations to be executed .
Average Case Analysis– We take all possible inputs
and calculate the computing time for all of the inputs,
sum all calculate values and divide the sum by the total
number of inputs.

BUBBLE SORT

Algorithm–

1. Start with an array of unsorted numbers
2. Defines a function called 'bubblesort" that takes in

the array and the length of the array as parameters.
3. In the function, create a variable called "sorted" that

is set to false.
4. Create a for loop that iterates through the array

starting at index 0 and ending at the length of the
array –1

5. Within the for loop, compare the current element
with the next element in the array.

6. If the current element is greater than the next elements,
swap their positions and set "sorted" to true.

7. After the for loop, check if "sorted" is true.
8. If "sorted" is true, call the "bubblesort" function

again with the same array and length as parameters.
9. If "sorted" is false, the array is now sorted and the

function will return the sorted array.
10. Call the "bubbleSort" function with the initial

unsorted array and its length as parameters to befin
the sorting process.

• It is stable sorting techniques.

• Recursive relation in Bubble sort.
 T(n) = T (n-1) +n

 8 / 17

Data Structure and Algorithm 19 YCT

• It is In place sorting

• Time complexity = θ (n2)
Space complexity = 1 + n

= θ (n)

Best case = θ (n)

Worst case = θ (n2)

Average case = θ (n2)

SELECTION SORT

Algorithm–

1. Initialize minimum value(min_idx) to location 0.
2. Traverse the array to find the minimum element in

the array.
3. While traversing if any element smaller than min_idx

is found then swap both the values.
4. Then, increment min_idx to point to the next

element.
5. Repeat until the array is sorted.

• Recursive relation

 T(n) = T (n - 1) +(n - 1)

• Max swap = (n-1) Complexity θ(n)

• Min swap = 0

• It is unstable sorting

INSERTION SORT

Algorithm– To sort an array of size N in ascending
order:
1. Iterate from arr[1] to arr[N] over the array.
2. Compare the current element (key) to its predecessor.
3. If the key element is smaller than its predecessor,

compare it to the elements before. Move the greater
elements before. Move the greater elements one
position up to make space for the swapped element.

• Number of comparison–
()n n 1

max
2

−
=

min = n – 1

• Best case = θ(n)

Worst case & Average case = θ(n2)

• Insertion sort = Position +Shifting

• It is highly affected due to order of input.

• Recursive time T (n) = T (n-1)+n

= θ (n2)

 space = θ(n)

• Stable sorting

QUICK SORT

• It is Divide and conquer technique.

• It is unstable sorting

• Best case = θ (n logn) = Average case

Worst case = θ (n2)

• Recursive
T(n) = 2T(n/2)+n

Using master theorem

θ (n logn)

• Number of comparison =
n(n 1)

2

−

Merge Sort

Algorithm–

MergeSort(arr[],l,r)
If r > 1

1. Find the middle point to divide the array into two
halves.

middle m = l + (r – 1)/2
2. Call mergeSort for first half:

Call mergeSort(arr, l, m)
3. Call mergeSort for second half:

Call mergeSort(arr, m + 1, r)
4. Merge the two halves sorted in steps 2 and 3:

Call merge(arr, l, m, r)

• It is stable sorting.

• It is pure divide & conquer.

• Recursive–
T(n)= 2T(n/2)+n

• Complexity–

Best case = Average case = Worst case = θ(n logn)

RADIX SORT

• It is counting Based sorting.

• It is outplace sorting

• Q (n k)

• Q (n*R) space complexity.

RECURSION

A recurrence is an equation or inequality that describes a
function in terms of its values on smaller inputs. To solve a
Recurrence Relation means to obtain a function defined on
the natural numbers that satisfy the recurrence.

• There are four methods for solving Recurrence
(i) Substitution method (iii) Iteration method
(ii) Recursion tree (vi) Master method

 9 / 17

Data Structure and Algorithm 20 YCT

(i) Substitution method–

{ }x

1 n 0
T(n)

T(n 1) 1 n o

T(n) T(n 1) 1......(i)
T(n) T(n 1) 1

T(n 1) T(n 2) 1.......(ii)

Substitution T(n 1)

T(n) [T(n 2) 1] 1 From equ (ii)

T(n) T(n 2) 2

T(n) T(n 3) 3

Continue for k time

T(n) T(n k) k

=
=

− + >

= − +
= − +

∴ − = − +
−

= − + +

= − +

= − +

= − +

∵

⋮

⋮

⋮

Assume n k 0

T(n) T(n n) n n k

T(n) T(0) n

T(n) 1 n (n)

− =

= − + ∴ =

= +

= + ∴θ

(ii) Recursion Tree –

T(n)=
1 n 0

T(n 1) n n 0

=

− + >

0+1+2…….n-1+n=
n(n 1)

2

+

n(n 1)
T(n)

2

+
=

2(n)θ

(iii) Iteration Method–

T(n)=
1 n 0

T(n 1) n n 0

=

− + >
T(n)=T(n-1)+n { T(n) T(n 1) 2= − +∵

T(n)=[T(n-1)+n-1]+n…..(i) {T(n-1)=T(n-2)+n-1

T(n)=T(n-2)+n-1]+n…...(ii)
T(n)=T(n-3)+(n-2)+(n-1)+n……(iii)

 :
: Continue of k time

 :
T(n)=T(n-k)+(n-(k-1))+(n-(k-2)+……+(n-1)+n

 Assume n-k=0

n k∴ =
T(n)=T(0)+1+2+3+…..n-1+n

 =1+
n(n 1)

2

+

T(n)=1+
2n(n 1)

(n)
2

+
= θ

• T(n) = 2T(n 1) + 1−
 By solving recursion tree

 1+2+23+…..+2K = 2k+1 (This is GP series)

= θ(2n)
(iv) Master theorem for Decreasing function

T(n)= aT(n-b)+f(n)
a>0, b>0 and f(n)=O(nK) where K≥0
Case

• If a<1 • If a=1 • If a>n
O(nk) O(nK+1) O(nKan/b)
O(f(n)) O(n*f(n)) O(f(n)an/b)

• Master Theorem for Dividing function

(i) logb
a T(n)=a T(n/b)+f(n)

 a≥1

(ii) b> f(n)=θ(nklogPn)

Case1: if logb
a>k them θ(nlogb

a)
Case2: if logb

a=k

If P>-1 θ(nklogp+1n)

If P=-1 θ(nklog log n)

If P<-1 θ(nk)

Case3: If logb
a<K If P ≥ 0 θ(nklogpn)

 If P < 0 O(nk)
T(n) = 2T(n/2) + 1

a = 2, b = 2, f(n) = O(1) = θ(n0log0n)
log2

2 = 1 > K = 0

Case1: θ(n1)
Recurrence Relation

() ()

()

2

2 3

2

T(n) = T(n 1) + 1 O(n)

T(n) = T(n 1) + 1 O(n)

T(n) = T(n 1) + log n O(n logn)

T n = T n 1 + n O(n)

n
T(n) = T(n 2) + 1 O n

2

T(n) = T(n 100) + n O(n)

−

−

−

−

−

−

 10 / 17

	1701239025_284
	1701239025_285
	Computer_Science___Engineering_Information_Theory_English_Medium_compressed

