Youth Competition Times

NTA/UGC-NET-JRF/SET COMPUTER SCIENCE & APPLICATIONS Solved Papers

(Also Useful for Other State Level Competitive Examinations)

Compiled and Edited by YCT Expert Team

Computer Graphics by Balkrishna, Charan Singh, Ashish Giri

Editorial Office 12, Church Lane Prayagraj-211002 9415650134 Email : yctap12@gmail.com website : www.yctbooks.com/www.yctfastbook.com/www.yctbooksprime.com © All Rights Reserved with Publisher

Publisher Declaration Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and E:Book by APP Youth Prime BOOKS In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

CONTENT

University Grant Commission (UGC) NET : Computer Science & Applications

■ NTA/UGC NET/JRF ENGLISH Exam Syllabus	3-6
■ UGC NET/JRF Exam. Computer Science June-2012 Solved Paper II	7-12
■ UGC NET/JRF Exam. Computer Science June-2012 Solved Paper III	13-24
■ UGC NET/JRF Exam. Computer Science December-2012 Solved Paper II	25-31
■ UGC NET/JRF Exam. Computer Science December-2012 Solved Paper III	32-43
■ UGC NET/JRF Exam. Computer Science June-2013 Solved Paper II (Cancel)	44-50
■ UGC NET/JRF Exam. Computer Science June-2013 Solved Paper III (Cancel)	51-61
■ UGC NET/JRF Exam. Computer Science September-2013 Solved Paper II	62-69
■ UGC NET/JRF Exam. Computer Science September-2013 Solved Paper III	70-81
■ UGC NET/JRF Exam. Computer Science December-2013 Solved Paper II	82-88
■ UGC NET/JRF Exam. Computer Science December-2013 Solved Paper III	89-100
■ UGC NET/JRF Exam. Computer Science June-2014 Solved Paper II	101-109
■ UGC NET/JRF Exam. Computer Science June-2014 Solved Paper III	
■ UGC NET/JRF Exam. Computer Science December-2014 Solved Paper II	123-129
■ UGC NET/JRF Exam. Computer Science December-2014 Solved Paper III	130-142
■ UGC NET/JRF Exam. Computer Science June-2015 Solved Paper II	143-150
■ UGC NET/JRF Exam. Computer Science June-2015 Solved Paper III	151-163
■ UGC NET/JRF Exam. Computer Science December-2015 Solved Paper II	164-171
■ UGC NET/JRF Exam. Computer Science December-2015 Solved Paper III	172-183
■ UGC NET/JRF Exam. Computer Science June-2016 Solved Paper II	184-191
■ UGC NET/JRF Exam. Computer Science June-2016 Solved Paper III	
■ UGC NET/JRF Exam. Computer Science August-2016 Solved Paper II	205-211
■ UGC NET/JRF Exam. Computer Science August-2016 Solved Paper III	212-225
■ UGC NET/JRF Exam. Computer Science June-2017 Solved Paper II	226-233
■ UGC NET/JRF Exam. Computer Science June-2017 Solved Paper III	234-246
■ UGC NET/JRF Exam. Computer Science November-2017 Solved Paper II	247-254
■ UGC NET/JRF Exam. Computer Science November-2017 Solved Paper III	255-267
■ NTA/UGC NET/JRF Exam. Computer Science June-2018 Solved Paper II	268-284
■ NTA/UGC NET/JRF Exam. Computer Science December-2018 Solved Paper II	285-304
■ NTA/UGC NET/JRF Exam. Computer Science June-2019 Solved Paper II	305-330
■ NTA/UGC NET/JRF Exam. Computer Science December-2019 Solved Paper II	331-356
■ NTA/UGC NET/JRF Exam. Computer Science June -2020 Solved Paper II	357-380
■ NTA/UGC NET/JRF Exam. Computer Science December 2020-June 2021 Solved Paper II	381-400
■ NTA/UGC NET/JRF Exam. Computer Science December 2021-June 2022 Solved Paper II	401-422
■ NTA/UGC NET/JRF Exam. Computer Science December 2022 (11.03.2023) Solved Paper II	423-445
■ NTA/UGC NET/JRF Exam. Computer Science December 2022 (15.03.2023) Solved Paper II	446-464
■ NTA/UGC NET/JRF Exam. Computer Science June -2023 Solved Paper II	465-488
■ NTA/UGC NET/JRF Exam. Computer Science December -2023 Solved Paper II	489-512

NTA/UGC-NET Syllabus <u>New Pattern</u>

As per the revised scheme, the test will consist of two papers as below:

Paper	Marks	Number of Questions	Duration
Ι	100	50 questions. All are compulsory	1 Hour (09:30 AM to 10:30 AM) IST
II	200	100 questions. All are compulsory	2 Hour (11:00 AM to 1:00 PM) IST

Paper-I Shall consist of 50 objective type compulsory questions each carrying 2 marks. The questions which will be of general nature, intended to assess the teaching/research aptitude of the candidate. It will primarily be designed to test reasoning ability, comprehension, divergent thinking and general awareness of the candidate.

Paper-II Shall consist of 100 objective type compulsory questions each carrying 2 marks which will be based on the subject selected by the candidate.

All the questions of Paper – II will be compulsory, covering entire syllabi of earlier Paper II & Paper III (including all electives, without options).

SYLLABUS FOR PAPER-II

1. Discrete Structures : Sets, Relations, Functions, Pigeonhole Principle, Inclusion-Exclusion Principle, Equivalence and Partial Orderings. Elementary Counting Techniques. Probability. Measure(s) for information and Mutual information. *Computability*. Models of computation – Finite Automata, Pushdown Automata, Non-determinism and NFA, DPDA and PDAs and Languages accepted by these structures. Grammars, Languages, Non-computability and examples of non-computable problems.

Graph. Definition, walks, paths, trails, connected graphs, regular and bipartite graphs, cycles and circuits, tree and rooted tree. Spanning trees. Central Graphs. Centre(s) of a tree. Hamiltonian and Eulerian graphs, Planar graphs.

Groups. Finite fields and Error correcting/detecting codes.

2. Computer Arithmetic : Propositional (Boolean) Logic, Predicate Logic, Well-formed-formulae (WFF), Satisflability and Tautology.

Logic Families. TCL, ECL and C-MOS gates. Boolean algebra and Minimization of Boolean functions, Flip-flops-types, race condition and comparison. Design of combinational and sequential circuits.

Representation of Integers. Octal, Hex, Decimal and Binary. 2's complement and I's complement arithmetic. Floating point representation.

3. Programming in C and C++ : *Programming in C*. Element of C– Tokens, identifiers, data types in C. Control structures in C. Sequence, selection and iteration (s). Structured data types in C–arrays, struct, union, string and pointers.

O-O Programming Concepts. Class, object, instantiation. Inheritance polymorphism and overloading.

C++ *Programming*. Elements of C++ – Takens, identifiers. Variables and constants, Data types, Operators, Control statements. Functions parameter passing. Class and objects. Constructors and destructors. Overloading, inheritance, templates, exception handling.

4. Relational Database Design and SQL : E-R diagrams and their transformation to relational design, normalisation – 1 NF, 2NF, 3NF, BCNF and 4NF. Limitations of 4NF and BCNF.

SQL. Data Definition Language (DDL), Data Manipulation Language (DML), Data Control Language (DCL) commands. Database objects like-views, indexes, sequences, synonyms, data dictionary.

5. Data and File Structures : Data, information, Definition of data structure. Arrays, stacks, queues, linked lists, trees, graphs, priority queues and heaps.

File Structures. Fields, records and files. Sequential, direct, index sequential and relative files. Hashing, inverted lists and multilists. B trees and B+ trees.

6. Computer Networks : *Network Fundamentals*. Local Area Networks (LAN), Metropolitan Area Networks (MAN), Wide Area Networks (WAN), Wireless Networks. Inter Networks.

Reference Models. The OSI model, TCP/IP model.

Data Communication. Channel capacity, Transmission media-twisted pair, coaxial cables, fibre-optic cables, wireless transmission-radio, microwave infrared and millimetre waves. Lightwave transmission. The Telephones – local loop, trunks, multi-plexing, switching, narrowband ISDN, broadband ISDN, ATM, High Speed LANS. Cellular Radio. Communication satellites-geosynchronous and low-orbit.

Internetworking. Switch/Hub, Bridge, Router, Gateways, Concatenated virtual circuits, Tunnelling, Fragmentation, Firewalls. Routing: Virtual circuits and datagrams. Routing algorithms. Conjection control.

Network Secuity. Cryptography – public key, secret key. Domain Name System (DNS) – Electronic Mail and World Wide Web (WWW). The DNS, Resource Records, Name servers, E-mail-architecture and Servers.

7. System Software and Compilers : Assembly language fundamentals (8085 based assembly language programming). Assemblers-2-pass and single-pass. Macros and macroprocessors.

Loading, linking, relocation, program relocatability. Linkage editing. Text editors, Programming Environments, Debuggers and program generators.

Compilation and Interpretation. Bootstrap compiler. Phases of compilation process. Lexical analysis. Lex package on Unix system.

Context free grammars. Parsing and parse trees. Representation of parse (derivation) trees as rightmost and leftmost derivations. Bottom up parsers–Shift–reduce, operator precedence and LR. YACC package on Unix system.

8. Operating Systems (with Case Study of Unix) : Main functions of operating systems, Multiprogramming, multiprocessing and multitasking.

Memory Management. Virtual memory, paging, fragmentation.

Concurrent Processing. Mutual exclusion, Critical regions, lock and unlock.

Scheduling. CPU scheduling, IO scheduling, Resource scheduling, Deadlock and scheduling algorithms. Banker's algorithm for deadlock handling.

UNIX. The Unix System File system process management, bourne shell, shell variables, command line programming.

Filters and Commands. Pr, head, tail, cut, paste, srt, uniq, tr. join, etc., grep, egrep, fgrep, etc., sed, awk, etc.

System Calls (like). Create, open, close, read, write, iseek, link, unlink, fstat. umask, chmod, exec, fork, wait, system.

9. Software Engineering : System Development Life Cycle (SDLC). Steps, water fall model, Prototypes, Spiral model.

Software Metrics. Software Project Management.

Software Design. System design, detailed design, function oriented design, object oriented design, user interface design. Design level metrics.

Coding and Testing. Testing level metrics. Software quality and reliability. Clean room approach, software re-engineering.

10. Current Trends and Technologies : The topics of current interest in Computer Science and Computer Applications shall be covered. The experts shall use their judgement from time to time include the topics of popular interest, which are expected to be known for an application development software professional, currently, they include:

Parallel Computing : Parallel virtual machine (pvm) and message passing interface (mpi) libraries and calls. Advanced architectures. Today's fastest computers.

Mobile Computing: Mobile connectivity - Cells, Framework, wireless delivery technology and switching methods, mobile information access devices, mobile data internetworking standards, cellular data communication protocols, mobile computing applications. Mobile databases – protocols, scope, tools and technology. M-business.

E-Technologies : *Electronic Commerce*. Framework, Media Convergence of Applications, Consumer Applications, Organisation Applications. *Electronic Payment Systems*. Digital Token, Smart Cards, Credit Cards, Risks in Electronic Payment System, Designing Electronic Payment Systems.

Electronic Data Interchange (EDI). Concepts, Applications, (Legal, Security and Privacy) issues, EDI and Electronic Commerce, Standardisation and EDI, EDI Software Implementation, EDI Envelope for Message Transport, Internet-Based EDI.

Digital Libraries and Data Warehousing. Concepts, Types of Digital documents, Issues behind document. Infrastructure, Corporate Data Warehouses.

Software Agents. Characteristics and Properties of Agents, Technology behind Software Agents (Applets, Browsers and Software Agents).

Broadband Telecommunications. Concepts, Frame Relay, Cell Relay, Switched Multi-megabit Data Service, Asynchronous Transfer Mode.

Main concepts in Geographical Information System (GIS), E-cash, E-Business, ERP packages.

Data Warehousing. Data Warehouse environment architecture of a data warehouse methodology, analysis, design, construction and administration.

Data Mining. Extracting models and patterns from large database, data mining techniques, classification, regression, clustering, summarisation, dependency modelling, link analysis, sequencing analysis, mining scientific and business data.

Windows Programming. Introduction to Windows programming - Win 32, Microsoft Foundation Classes (MFC), Documents and views, Resources, Message handling in windows.

Simple Applications (in windows). Scrolling, splitting views, docking toolbars, status bars, common dialogs.

Advanced Windows Programming. Multiple Document Interface (MDI), Multithreading, Object Linking and Embedding (OLE). Active X controls, Active Template Library (ATL). Network programming.

PAPER-III

(CORE Group)

Unit-I: Combinational Circuit Design, Sequential Circuit Design, Hardwired and Micro-programmed processor design, Instruction formats. Addressing modes, Memory types and organisation, Interfacing peripheral devices, Interrupts.

Microprocessor architecture, Instruction set and Programming (8085, P-III/P-IV), Micro-processor applications.

Unit-II: Database Concepts, ER diagram, Data Models, Design of Relational Database, Normalisation, SQL and QBE, Query Processing and Optimisation, Centralised and Distributed Database, Security, Concurrency and Recovery in Centralised and Distributed Database Systems, Object Oriented Database Management Systems (Concepts, Composite objects, Integration with RDBMS applications), ORACLE.

Unit-III: Display systems, Input devices, 2D Geometry, Graphic operations, 3D Graphics, Animation, Graphic standard, Applications. Concepts, Storage Devices, Input Tools, Authoring Tools, Application, Files.

Unit-IV : Programming language concepts, paradigms and models. Data, Data types, Operators, Expressions, Assignment. Flow of control–control structures, I/O statements, User-defined and built-in functions, Parameter passing.

Principles, classes, inheritance, class hierarchies, polymorphism, dynamic binding, reference semantics and their implementation. Principles, functions, lists, types and polymorphisms, higher order functions, lazy evaluation, equations and pattern matching. Principles, horn clauses and their execution, logical variables, relations, data structures, controlling the search order, program development in prolog, implementation of prolog, example programs in prolog.

Principles of parallelism, coroutines, communication and execution. Parallel Virtual Machine (PVM) and Message Passing Interface (MPI) routines and calls. Parallel programs in PVM paradigm as well as MPI paradigm for simple problems like matrix multiplication.

Preconditions, post-conditions, axiomatic approach for semantics, correctness, denotational semantics.

Compiler structure, compiler construction tools, compilation phases. Finite Automata, Pushdown Automata. Non-determinism and NPA, DPDA and PDAs and languages accepted by these structures. Grammars, languages-types of grammars-type 0, type 1, type 2 and type 3. The relationship between types of grammars and finite machines. Pushdown automata and Context Free Grammars, Lexical Analysis – regular expressions and regular languages. LEX package on Unix Conversion of NFA to DFA. Minimising the number of states in a DFA. Compilation and Interpretation. Bootstrap compilers.

Context free grammars. Parsing and parse trees. Representation of parse (derivation) trees as rightmost and leftmost derivations. Bottom up parsers - shift-reduce, operator precedence and LR. YACC package on Unix system. Topdown parses-left recursion and its removal .Recursive descent parser. Predictive parser, Intermediate codes – Quadruples, triples, intermediate code generation, code generation, code optimization.

Unit-V: Analog and Digital transmission, Asynchronous and Synchronous transmission, Transmission media, Multiplexing and Concentration, Switching techniques, Polling.

Topologies, Networking Devices, OSI Reference Model, Protocols for - (i) Data link layer, (ii) Network layer and (iii) Transport layer, TCP/IP protocols, Networks security. Network administration.

Unit-VI : Definition, Simple and Composite structures, Arrays, Lists, Stacks queues, Priority queues, Binary trees, B-trees, Graphs.

Sorting and searching Algorithms, Analysis of Algorithms, Interpolation and Binary Search, Asymptotic notations – big ohm; omega and theta. Average case analysis of simple programs like finding of a maximum of n elements. Recursion and its systematic removal. Quicksort–non-recursive imple-mentation with minimal stack storage. Design of Algorithms (Divide and Conquer, Greedy method, Dynamic programming, Back tracking, Branch and Bound). Lower bound theory, Non-deterministic algorithm-Non-deterministic programming constructs. Simple non-deterministic programs. NP-hard and NP-complete problems.

Unit-VII: Object, messages, classes, encapsulation, inheritance, polymorphism, aggregation, abstract classes, generalization as extension and restriction. Object oriented design. Multiple inheritance, metadata.

HTML, DHTML, XML, Scripting, Java, Servelets, Applets.

Unit-VIII: Software development models, Requirement analysis and specifications, Software design, Programming techniques and tools, Software validation and quality assurance techniques, Software maintenance and advanced concepts, Software management.

Unit-IX : Introduction, Memory management, Support for concurrent process, Scheduling, System deadlock, Multiprogramming system, I/O management, distributed operating systems, Study of Unix and Windows NT.

Unit-X: Definitions, Al approach for solving problems. Automated Reasoning with propositional logic and predicate logic-fundamental proof procedure, refutation, resolution, refinements to resolution (ordering/pruning/restriction strategies).

State space representation of problems, bounding functions, breadth first, depth first, A, A & AO*, etc. performance comparison of various search techniques.

Frames, scripts, semantic nets, production systems, procedural representations. Prolog programming.

Components of an expert system, knowledge representation and Acquisition techniques, Building expert system and Shell.

RTNs, ATNs, Parsing of Ambiguous CFGs. Tree Adjoining Grammars (TAGs). Systems approach to planning, Designing, Development. Implementation and Evaluation of MIS.

Decision-making processes, evaluation DSS, group decision support System and case studies, Adaptive design approach to DSS development, Cognitive style in DSS, Integrating expert and decision support systems.

PAPER-III (Electives)

Elective-I: *Theory of Computation*. Formal language, Need for formal computational models, Non-computational problems, diagonal argument and Russel's paradox.

Deterministic Finite Automation (DFA), Non-deterministic Finite Automation (NFA), Regular languages and regular sets, Equivalence of DFA and NFA. Minimising the number of states of a DFA. Non-regular languages and Pumping lemma.

Pushdown Automation (PDA), Deterministic Pushdown Automation (DPDA), Non-equivalence of PDA and DPDA.

Context free Grammars. Grelbach Normal Form (GNF) and Chomsky Normal Form (GNF), Ambiguity, Parse Tree Representation to Derivations. Equivalence of PDA's and CFG's. Parsing techniques for parsing of general CFG's – Early's, Cook-Kassami-Younger (CKY) and Tomita's parsing.

Linear Bounded Automata (LBA). Power of LBA. Closure properties.

Turing Machine (TM). One type, multitape. The notions of time and space complexity in terms of TM. Construction of TM of simple problems. Computational complexity.

Chomsky Hierarchy of Languages. Recursive and recursively-enumerable languages.

Elective-II: Models for Information Channel: Discrete Memoryless Channel, Binary Symmetric Channel (BSC), Burst Channel, Bit-error rates, Probability, Entropy and Shannon's measure of information. Mutual information. Channel capacity theorem. Rate and optimality of Information transmission.

Variable length Codes: Prefix Codes. Huffmann Codes, Lempel Ziew (LZ) Codes. Optimality of these codes, Information content of these codes.

Error Correcting and detecting Codes. Finite fields. Hamming distance, Bounds of codes, Linear (Parity Check) codes, Parity check matrix, Generatory matrix, Decoding of linear codes, Hamming codes. *Image Processing*. Image registration, Spatial Fourier Transforms, Discrete Spatial (20 dimensional) Fourier Transforms, Restoration, Lossy Compression of images (pictures).

Data Compression Techniques. Representation and compression of text, sound, picture and video files (based on the JPEG and MPEG standards).

Elective-III : Linear Programming Problem (LPP) in the standard form, LPP in Canonical form. Conversion of LPP in Standard form to LPP in Canonical form. Simplex – Prevention of cyclic computations in Simplex and Tableau, Big-M method, dual simplex and revised simplex.

Complexity of simplex algorithms.

Exponential behaviour of simplex.

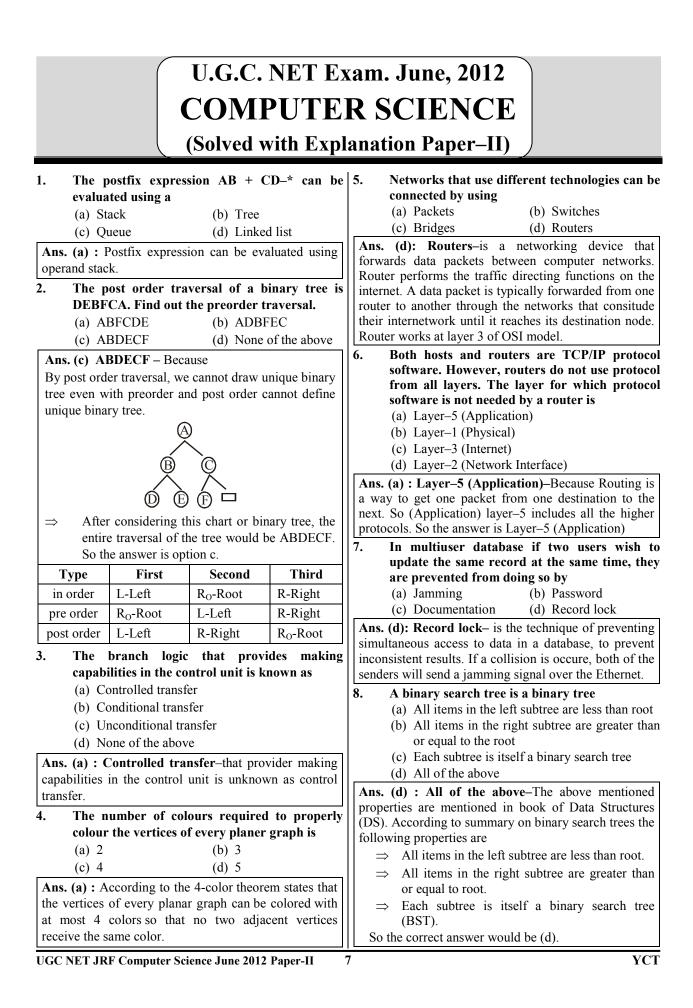
Ellipsoid method and Karmakar's method for solving LPPs. Solving simple LPPs through these methods. Comparison of complexity of these methods.

Assignment and Transportation Problems. Simple algorithms like Hungarian method, etc.

Shortest Path Problems. Dijkstra's and Moore's method. Complexity.

Network Flow Problem. Formulation. Max-Flow Min-Cut theorem. Ford and fulkerson's algorithm. Exponential behaviour of Ford and Fulkerson's algorithm. Malhotra-Pramodkumar-Maheshwari (MPM) Polynomial algorithm for solving Network flow problem. Bipartite Graphs and Matchings: Solving matching problems using Network flow problems.

Matroids: Definition. Graphic and Co-graphic matroids. Matroid intersection problem.


Non-linear Programming. Kuhn-Tucker conditions. Convex functions and Convex regions. Convex programming problems. Algorithms for solving convex programming problems. Rate of convergence of iterative methods for solving these problems.

Elective-IV : Neural Networks. Perception model, Linear separability and XOR problem. Two and three layered neural nets, Back propagation-Convergence, Hopfield nets, Neural net learning. Applications.

Fuzzy Systems. Definition of a Fuzzy set, Fuzzy relations, Fuzzy set, Fuzzy relations, Fuzzy functions, Fuzzy measures, Fuzzy reasoning, Applications of Fuzzy systems.

Elective-V: Unix. Operating System, Structure of Unix Operating System, Unix commands, Interfacing with Unix, Editors and Compilers for Unix. LEX and YACC, File system, System calls, Filters, Shell programming.

Windows. Windows environment, Unicode, Documents and Views. Drawing in a windows, Message handling, Scrolling and Splitting views, Docking toolbars and Status bars, Common dialogs and Controls, MDI, Multithreading, OLE, Active X controls, ATL, Database access, Network programming.

9. What deletes the entire file except the file structure?	
	All leaves appear in the same level.
(a) ERASE (b) DELETE	It cannot be guaranteed in binary tree, AVL tree and
(c) ZAP (d) PACK	expression tree.
Ans. (C) : ZAP–Because ZAP Command removes all	14. Which of the following TCP/IP Internet
records from a table, leaving just a table structure.	protocol is diskless machine uses to obtain its
ERASE command deletes a file from disk.	IP address from a server?
10. Which command is the fastest among the	(a) RAP (b) RIP
following?	(c) ARP (d) X. 25
(a) COPY TO <new file=""></new>	Ans. (c) : Because, ARP (Address Resolution
(b) COPY STRUCTURE TO <new file=""></new>	Protocol) is a protocol in TCP/IP protocol suite. This
(c) COPY FILE <file 1=""> <file 2=""></file></file>	protocol is used for Basic TCP/IP Operations. ARP is
(d) COPY TO MFILE-DAT DELIMITED	used to find the Ethernet (H/W) address from a
Ans. (b) : Copy structure to <new file=""> is just copying</new>	specific IP number.
the structure only.	15. Decryption and encryption of data are the
11. B + tree are preferred to binary tree in	responsibility of which of the following layer?
Database because	(a) Physical layer (b) Data Link layer
(a) Disk capacity are greater than memory	(c) Presentation layer (d) Session layer
capacities	Ans. (c) : Service by Presentation layer:
(b) Disk access is much slower than memory	Data conversion
access	Character code translation
(c) Disk data transfer rates are much less than	Compression
memory data transfer rate	Encryption and decryption
(d) Disks are more reliable than memory	16. In which circuit switching, delivery of data is
	delayed because data must be stored and
Ans. (b) : Disk access is much slower than memory	retrieved from RAM?
access. The major advantage of B^+ tree is in reducing the number of last level access which would be from	(a) Space division (b) Time division
disk in case of large data size, so B+ tree preferred	(c) Virtual (d) packet
option (b).	
	Ans. (b) : Time division
12. A Transaction Manager is which of the following?	Because, Time division multiplexing (TDM) is a method of transmitting and receiving independent
following?(a) Maintains a log of transactions	signals over a common signal Path by means of
(b) Maintains before and after database images	synchronized switches at each end of the transmission
	line so that each signal appears on the line only a
(c) Maintains appropriate concurrency control	fraction of time in alternating pattern.
(d) All of the above	17. In which Routing Method do all the routers
Ans. (d) : All of the above	have a common database?
Because transaction manager performs all the	(a) Distance vector (b) Link state
operation mentioned in option A, B & C. So the	(c) Link vector (d) Dijkestra method
answer is option (d).	
13. Leaves of which of the following trees are at the	Ans. (b) : Link state necessary database require more memory than a distance vector requires.
same level?	Link state, the complex algorithm requires more CPU
(a) Binary tree (b) B-tree	
(c) AVL-tree (d) Expression tree	time than a distance vector protocol requires. The flooding of link state packets adversely affects
Ans. (b) : A B-tree is a tree data structure in which	available bandwidth, particularly in unstable
each node has at most two children, which one referred	internetworks.
as left child and the right child.	
According to Knuth's definition, a B-tree of order m	18. Page Shift Keying (PSK) Method is used to modulate digital signal at 9600 bns using 16
is a tree which satisfies the following properties:	modulate digital signal at 9600 bps using 16 level. Find the line signals and speed (i.e.
Every node has at most m children	Modulation rate).
Every non-leaf node has at least m/2 children	(a) 2400 bauds (b) 1200 bauds
The root has at least two children if it is not leaf node.	(c) 4800 bauds (d) 9600 bauds
UGC NET JRF Computer Science June 2012 Paper-II	8 YCT

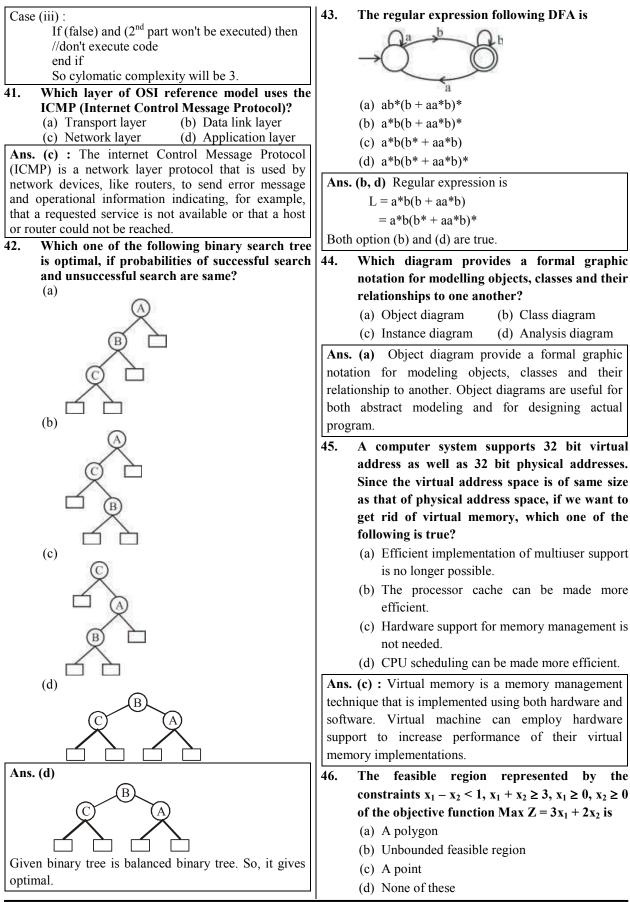
Ans. (a) : 2400 k			22. Validation means
Modulation	Baud rate	Bit rate	(a) Are we building the product right
4 - PSK	Ν	2N	(b) Are we building the right product
8 – PSK	N	3N	(c) Verification of fields
16 – PSK	N	4N	(d) None of the above
	ues are provided, or		Ans. (b) : Are we building the right product
	per second which	-	Because validation means "are we building the rig
-	5. According to table		product" and verification means "are we building the
	a baud rate N. the b	-	product right".
Ũ	provides which is 9		23. If a process is under statistical control, the
-	aud rate we have		it is
Because the sign	al level is 16. So the	answer would be	(a) Maintainable (b) Measurable
9600/4 = 2400 ba	aud.		(c) Predictable (d) Verifiable
9. The station	to hub distance ir	which it is 2000	
metres.			process whose values are known in a sense, just
(a) 100 Ba	se-Tx (b) 10	00 Base-Fx	advance of time. Because, predictable process is also
(c) 100 Ba	se- T_4 (d) 10	00 Base-T_1	said to be under statistical control.
Ans. (b) : 100 Ba			
. ,	refered by 100 Bas	e-x standard has	24. In a function oriented design, we
	n. Here 100 refers to		(a) Minimize cohesion and maximize coupling
1. 100 Base		1	(b) Maximize cohesion and minimize coupling
2. 100 Base			(c) Maximize cohesion and maximize coupling
3. 100 Base			(d) Minimize cohesion and minimize coupling
	Fx uses the 2-star	ndard fibre optic	Ans. (b) : Maximize cohesion and minimize
	the station to hub	-	coupling.
meters.			Because, the design purpose is to making couplin
20. Main aim o	of software engineer	ing is to produce	minimize and maximize the cohesion. Cohesion is
(a) Program	-	ing is to produce	way to understand that how close or bound yo
(b) Softwa			module is, and coupling is the level of interactivi
(c) Within			between modules for a good design to happe
. ,	re within budget in t	he given schedule	Cohesion should be more and coupling should be less
	ise every software v		25. Which of the following metric does not depe
	c budget and in the s	1	on the programming language used?
-	ss areas of CMM	-	(a) Line of code (b) Function count
	y a process which is		(c) Member of token (d) All of the above
(a) CMM		, MM level 3	Ans. (b) : Function count.
(c) CMM		ll of the above	Because function count does not depend of
~ /	. ,		programming language. Function count are a unit
Ans. (c) : CMM			measure a software just like a unit of measure f
	A Model there are five e number 1 to 5. The	•	temperature would be degree.
•		•	26. A/B + tree index is to be built on the na
Managed, (5) Op	anaged, (3) Defined,	(4) Quantitavery	attribute of the relation STUDENT, Assu
	n is at level 2. It me	and it has crossed	that all students names are of length 8 byt
-	the same holds true		disk block are of size 512 bytes and inc
	4, the process at	-	pointers are of size 4 bytes. Given this scena
	Level 5 is not con		what would be the best choice of the degree (
	ks about level 4. CN		number of pointers per node) of the B + tree
	level 3 includes lev		(a) 16 (b) 42
option (c) is corre	ect.		(c) 43 (d) 44

 Because, Now we see how it comes, Let n be the degree given, key size (length of the name attribute of student). Bytes (k), index pointer size -4 bytes (b) Disk Block Size =512 bytes Degree of B+ tree can be calculated if we know the maximum number of key a internal code can have. The formula is, (n-1) * 8 + n * 4 = 512 a 8 n - 8 - 4n = 512 b n = 520/12 = 43 (Option c) The In order traversal of the tree will yield a sorted listing of elements of tree in (a) Binary tree (b) Binary search tree (c) Heaps (d) None of the above Ans. (b) : Binary search tree (b) Binary search tree (c) Heaps (d) None of the above Ans. (b) : Baray search tree (c) Heaps (d) None of the above Ans. (b) : Baray search tree (b) Binary search tree (c) Heaps (d) None of the above Ans. (b) : Baray search tree (c) Heaps (d) None of the above (a) Route discovery and registration (b) Agent discovery and registration (c) None of the above (c) Hou adveit (d) None of the above (c) Hou adveit registration (c) Agent discovery and registration (d) None of the above (c) Interleaved memory is best suited for small loo (c) Interleaved memory is best suited for small loo (c) Interleaved memory is best suited for an sequential code. (d) Cached memory is best suited for an sequential code. (d) Cached memory is best suited for an sequential code. (d) Cached memory is best suited for an sequential code. (e) and 2 are true (d) 4 and 3 are true (e) 4 and 2 are true (d) 4 and 3 are true (e) 4 and 2 are true (d) 4 and 3 are true (e) 4 and 2 are true (d) 4 and 3 are true (e) 4 and 2 are true (d) 4 and 3 are true (e) 4 and 2 are true (d) 4 and 3 are true (e) 4 and 2 are true (d) 4 and 3 are true (e) 4 and 2 are true (d) 4 and 3 are true (e) 4 and 2 are true (d) 4 and 3 are true (e) 4 and 2 are true (d) 4 and 3 are true (e)		
 Let nbe the degree given, key size (length of the name attribute of student) B bytes (k), index pointer size = 4 bytes (b) Disk Block Size = 512 bytes Output e a calculated if we know the formula is, (n-1) * h * n * b = block size (n-1) * h * n * b = block size (n-1) * h * n * b = block size (n-1) * h * n * b = block size (n-1) * h * n * b = block size (n-1) * h * n * 4 = 512 n = 520/12 = 43 (Option c) n = 520/12 = 43 (Option c) (d) None of the above Ass. (b) : Binary search tree (e) Heags (d) None of the above Ass. (b) : Binary search tree Because, In BST all elements to the root of the free will lesser than the root. Also elements greater than the root. Also elements greater than the root. (a) so calculation (b) Route discovery and registration (b) Agent discovery and registration (c) IP povides two basic functions (a) Route discovery and registration (b) Agent discovery and registration (c) IP conducity. Agent discovery and registration (b) Agent discovery and registration (c) IP conducity. Agent discovery and registration (c) When it requests I/O conduct a scovere. Catch on and interleaved memory is best suited for small loogs (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O to modio calculate a specific time slice in the CPU and it runs for that entire time. In prevents is said to be n-wai interleaved. Macintosh system are considered to be or using memory interleaving. (b) To avoid collision Ans. (a) : Before the CPU time slice expires time sline	Ans. (c) : (43)	Ans. (d) : Varies irregularly
 given, key size (length of the name attribute of student) 8 bytes (k), index pointer size = 4 bytes (b) Disk Block Size = 512 bytes ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size ⇒ (n-1) k + n * b = block size (a) Bary trace (b) Binary search tree (b) Eaause, kobile IP provides two basic functions (b) Agent discovery and registration (b) Agent discovery and registration (c) Agent discovery and registration (d) None of the above 29. Pre-emptive scheduling is the strategy of teoption is (b). 29. Pre-emptive scheduling is the strategy of teoption is (b). 29. Pre-emptive scheduling is the strategy of teoption is (c). 30. Interleaved memory is best suited for amal loop sequential code. (a) Before the CPU time slice		
 ⇒ Systes (k), index pointer size = 4 bytes (b) Disk Block Size = 512 bytes ⇒ (n-1)* k + n * b = block size ⇒ (n-1)* k + n * b = block size ⇒ (n-1)* k + n * b = block size ⇒ (n-1)* k + n * b = block size ⇒ (n-1)* k + n * b = block size ⇒ (n-1)* k + n * 4 = 512 ⇒ n = 520/12 = 43 (Option c) 27. The In order traversal of the tree will yield a sorted listing of elements of tree in (a) Binary tree (b) Binary search tree (c) Heaps (d) None of the above Ans. (b) : Binary search tree Because, In BST all elements to the root of the tree will lesser than the root. Also elements grater than the root will be right of the root, so the answer is Option (b) 28. Mobile IP provides two basic functions (b) Agent discovery and registration (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration (c) ID binding and registration (d) None of the above 29. Pre-emptive scheduling is the strategy of teoption is (b). 29. Pre-emptive scheduling is the strategy of (d) To a void collision Ans. (a) : Enfore the CPU time slice expires (b) To alow starving processes to run (c) When it requests I/O (d) To a void collision Ans. (a) : Enfore the CPU time slice expires (b) To alow starving processes to run (c) When it requests I/O (d) To a void collision Ans. (a) : Enfore the CPU time slice expires (b) To alow starving processes to run (c) When it requests I/O (d) To a void collision Ans. (a) : Enfore the CPU time slice expires (b) To alow starving processes to run (c) When it requests I/O (d) To a void collision Ans. (a) : Enfore the CPU time slice expires (b) To alow starving processes torun (c) When it requests I/O (d) To a void collision	Let n be the degree	between the submission of a process and its
 Disk Block Size = 512 bytes Degree of B+ tree can be calculated if we know the maximum number of key a internal code can have. The formula is, (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = 12 (n-1) k + n *	given, key size (length of the name attribute of student)	completion.
 Disk Block Size = 512 bytes Degree of B+ tree can be calculated if we know the maximum number of key a internal code can have. The formula is, (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b + b = block size (n-1) k + n * b + b = block size (n-1) k + n * b + block size (n-1)	= 8 bytes (k), index pointer size = 4 bytes (b)	\Rightarrow Wait time is the amount of time a process has
 Degree of B+ tree can be calculated if we know the maximum number of key a internal code can have. The formula is, (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b + b + b + b + b + b + b + b + b + b	Disk Block Size = 512 bytes	-
 maximum number of key a internal code can have. The formula is, (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b + block size (n-1) k + n * b + block size (n-1) k + n * block size<	Degree of B+ tree can be calculated if we know the	- · · ·
 formula is, (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * b = block size (n-1) k + n * d = 512 38n - 8 - 4n = 512 (a) For der traversal of the tree will yield a sorted listing of elements of tree in (a) Binary tree (b) Binary search tree (c) Heaps (d) None of the above Ans. (b) : Binary search tree (e) Heaps (d) None of the above Ans. (b) : Binary search tree Reause, In BST all elements to the root of the tree will be right of the root, so the answer is Option (b) 28. Mobile IP provides two basic functions (a) None of the above Ans. (b) : Agent discovery and registration (b) Agent discovery and registration (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration (c) IP origin agent and him agent during registration: the mobile node discovers its foreign and home agents during discovery. (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Here multiple memory is best suited for lar sequential code. (a) and 2 are true (b) 1 and 3 are true (c) 4 and 2 are true (d) 4 and 3 are true (e) 4 and 2 are true (f) and 3 are true (c) 4 and 2 are true (d) 4 and 3 are true (e) 4 and 2 are tru	maximum number of key a internal code can have. The	-
 in RR algorithm, value of time slice, plays a cruciar role in deciding how effective the algorithm is. quantum time is toos small then it could be like context switching and if quantum time is toos small then it could be like context switching and if quantum time is toos small then it could be like context switching and if quantum time is toos small then it could be like context switching and if quantum time is toos small then it could be like context switching and if quantum time is toos small then root. Also elements of the tree will lesser than the root. Also elements greater than the root. Also elements greater than the root. Will be right of the root, so the answer is Option (b) 30. The unor of the above discovery and registration (b). Segnet discovery and registration (c) is agent discovery and registration and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 31. Resources are allocation to the process in all concurrent program biject the reverts is molitoned discovers its foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration (b). To allow starving processes to run (c) When it requests I/O (c) and 2 are true (d) 4 and 3 are true (c) 4 and 2 are true (d) 4 and 3 are true (c) 4 and 2 are true (d) 4 and 3 are true (c) 4 and 2 are true (d) 4 and 3 are true (c) 4 and 2 are true (d) 4 and 3 are true (c) 4 and 2 are true (d) 4 and 3 are true and the agent during registers for the rore stime slice in the CPU and it runs for that entire time. In premptive scheduling even before the process time slice in the CPU and it runs for that entire time. In premptive scheduling even before the roces time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robi	formula is,	
 in the obstant, failed of the tree will yield a sorted listing of elements of the ree will yield a sorted listing of elements of the ree will yield a sorted listing of elements of the ree will yield a sorted listing of elements of the ree will yield a sorted listing of elements to the root of the tree will the regularly. So the answer is option (d). Ans. (b) : Binary search tree (b) Binary search tree (c) Heaps (d) None of the above Ans. (b) : Agent discovery and registration (b) Agent discovery and registration (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration (c) IP binding and registration (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration (c) IP to inductively the process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (b) : Interleaved memory is best suited for lar sequential code. (a) Interleaved memory is best suited for lar sequential code. (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires (b) To allow starving processes to run (c) Whe	\Rightarrow (n-1) k + n * b = block size	1
 ⇒ 8n - 8 - 4n = 512 ⇒ 12 = 520 ⇒ n = 520/12 = 43 (Option c) 27. The In order traversal of the tree will yield a sorted listing of elements of tree in (a) Binary tree (b) Binary search tree (c) Heaps (d) None of the above Ans. (b) : Binary search tree Because, In BST all elements to the root of the tree will lesser than the root. Also elements greater than the root will be right of the root, so the answer is Option (b) 28. Mobile IP provides two basic functions (a) Route discovery and registration (b) Agent discovery and registration (b) Agent discovery and registration (c) IP binding and registration (b) Agent discovery and registration (b) Agent discovery and registration (b) Agent discovery. A mobile node discovers is foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of the option is (b). Ans. (a) : Before the CPU time slice expires (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Kerry process is allocated a specific time slice in the CPU and it runs for that entire time. In provem the runs for that entire time. In provem the runs for supplying data. An interleaved memory with "n" banks is said to be n-way memory with "n" banks is said to be n-way memory with "n" banks is said to be n-way memory with "n" banks is said to be n-way memory with "n" banks is said to be n-way memory with "n" banks is said to be n-way memory with "n" banks is said to be n-way memory with "n" banks is said to be n-way memory with "n" banks is said to be n-way memory with "n" banks is said to be n-way memory with "n" banks is said to be n-way memory with "n" banks is said to be n-way memory with "n" banks		5
 ⇒ 12 = 520 ⇒ n = 520/12 = 43 (Option c) 27. The In order traversal of the tree will yield a sorted listing of elements of tree in (a) Binary tree (b) Binary search tree (c) Heaps (d) None of the above Ans. (b): Binary search tree in (c) No pre-emptive scheduling is the strategy of the option is (b). 28. Mobile IP provides two basic functions (c) No neor of the above inthe option is (b). 29. Pre-emptive scheduling is the strategy of the option is (b). 29. Pre-emptive scheduling is the strategy of the option is (b). 29. Pre-emptive scheduling is the strategy of the option is (b). 29. Pre-emptive scheduling is the strategy of the option is (b). 29. Pre-emptive scheduling is the strategy of the option is (b). 29. Pre-emptive scheduling is the strategy of the option is (b). 29. Pre-emptive scheduling is the strategy of the option is (b). 29. Pre-emptive scheduling is the strategy of the option is (b). 29. Pre-emptive scheduling is the strategy of the option is (b). 20. The requires the option is (c). 21. The forward registration (c) When it requests I/O (c) the option is (a). 23. Consider the CPU time slice expires (b) To allow starving process to run (c) When it requests I/O (c) the option is (a). 24. Store the CPU time slice expires (b) To allow starving process to run slice in the CPU and it runs for that entire time. In pre-printive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 20. In round robin CPU scheduling as time 		
 in = 520/12 = 43 (Option c) The In order traversal of the tree will yield a sorted listing of elements of tree in sorted listing of elements of tree in (a) Binary search tree (b) Binary search tree (c) Heaps (d) None of the above Ans. (b) : Binary search tree (a) Moute of the root, so the answer is Option (b) Mobile IP provides two basic functions (a) Route discovery and registration (b) Agent discovery and registration (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration Because, Mobile IP is the basic behind how wireless devices offer IP connectivity. Agent discovery: A mobile node discovers its foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration. (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In pre-emptive scheduling even before the process time slice in the CPU and it runs for that tentire time. In pre-emptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). Consider the following page trace: 4, 3, 2, 1, 5 Percentage of page fault that woo occur if FIFO page replacement algorithm 		
 27. The In order traversal of the tree will yield a sorted listing of elements of tree in (a) Binary search tree (b) Binary search tree (c) Heaps (d) None of the above Ans. (b) : Binary search tree Because, In BST all elements to the root of the tree will lesser than the root. Also elements greater than the root will be right of the root, so the answer is Option (b) 28. Mobile IP provides two basic functions (a) Route discovery and registration (b) Agent discovery and registration (c) None of the above Ans. (b) : Agent discovery and registration (d) None of the above Ans. (b) : Agent discovery and registration (d) None of the above Ans. (b) : Agent discovery and registration Because, Mobile IP is the basic behind how wircless devices offer IP connectivity. Agent discovery: A mobile node discovers its foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the true store the process time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		
 27. The first of the role in a construction of the second of th		
 (a) Binary tree (b) Binary search tree (c) Heaps (d) None of the above Ans. (b): Binary search tree Because, In BST all elements to the root of the tree will lesser than the root. Also elements greater than the root will be right of the root, so the answer is Option (b) 28. Mobile IP provides two basic functions (a) Route discovery and registration (b) Agent discovery and registration (c) IP binding and registration (d) None of the above 32. Catch on and interleaved memory is est suited for small loog. (c) IP binding and registration (d) None of the above 32. Catch on and interleaved memory is best suited for small loogs (c) IP binding and registration (d) None of the above 32. Catch on and interleaved memory is best suited for small loops (2) Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes torun (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice in the CPU and it runs for t		
 (a) Brary seech tree (b) Heaps (c) None of the above (c) No pre-emption (d) Circular wait (e) None of the ree will (f) Agent discovery and registration (g) Agent discovery and registration (g) None of the above (h) Sone of the above (c) IP binding and registration (d) None of the above (e) IP binding and registration (f) Agent discovery and registration (g) None of the above (h) Agent discovery and registration (g) None of the above (h) Agent discovery and registration (g) None of the above (h) None of the above (c) IP binding and registration (g) Agent discovery. A mobile node discovers its foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during tregistration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Here multiple memory his bast suited for lar sequential code. (a) I and 2 are true (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Here multiple memory his as adi to be n-wainterleaved memory is best suited for small 100 ps. Because, Here multiple memory chips are groupe together to form what we are known as banks. Each of the the typic trace is a solared to be or using memory interleaving. 33. Consider the following page trace: 4, 3, 2, 1, 3, 2, 1, 5 Percentage of page fault that woo occur if FIFO page repl		-
 (a) Solute of the order of the device of the device of the device of the device of the solution of the above (b) Agent discovery and registration (c) No pre-emption (d) Circular wait (e) No pre-emption (f) Circular wait (g) Circular wait (h) Circular wait (h) Circular wait (h) Cintel wait memory is best suited for		
 Ans. (a): Mutual exclusion is a program object the prevents simultaneous access to a shared resource. This concept is used in concurrent programming with critical section, a piece of code in which processes of threads access a shared resource. Ans. (a): Mutual exclusion is a program object the prevents simultaneous access to a shared resource. This concept is used in concurrent programming with critical section, a piece of code in which processes of threads access a shared resource. Ans. (b): Agent discovery and registration (d). None of the above Ans. (b): Agent discovery and registration Because, Mobile IP is the basic behind how wireless devices offer IP connectivity. Agent discovery: A mobile node discovers its foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration is (b). Pre-emptive scheduling is the strategy of the option is (b). Pre-emptive scheduling is the strategy of (d) To avoid collision Ans. (a): Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice in the CPU scheduling as time The round robin CPU scheduling as time 	(c) Heaps (d) None of the above	
 lesser than the root. Also elements greater than the root will be right of the root, so the answer is Option (b) 28. Mobile IP provides two basic functions (a) Route discovery and registration (b) Agent discovery and registration (c) IP binding and registration (d) None of the above 29. Ans. (b): Agent discovery: A mobile node discovers its foreign and home agents during discovery. 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision 20. The option is (a). 20. In round robin CPU scheduling as time 30. In round robin CPU scheduling as time 	Ans. (b) : Binary search tree	
 lesser than the root. Also elements greater than the root will be right of the root. Also elements greater than the root will be right of the root. So the answer is Option (b) 28. Mobile IP provides two basic functions (a) Route discovery and registration (b) Agent discovery and registration (c) IP binding and registration (d) None of the above 20. Ans. (b) : Agent discovery: A mobile node discovers its foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of (C) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 	Because, In BST all elements to the root of the tree will	Ans. (a) : Mutual exclusion is a program object that
 28. Mobile IP provides two basic functions (a) Route discovery and registration (b) Agent discovery and registration (c) IP binding and registration (d) None of the above 20. Catch on and interleaved memories are ways speeding up memory access between CPU a slower RAM. Which memory models are busiled (i.e. Improves the performance most which program) (1) Cached memory is best suited for small loops (2) Interleaved memory is best suited for small loops (3) Interleaved memory is best suited for lar sequential code. (4) Cached memory is best suited for lar sequential code. (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). Consider the following page trace: 4, 3, 2, 1, 3 2. Catch on and interleaved memory is best suited for small loop (2) Interleaved memory is best suited for small loops (3) Interleaved memory is best suited for lar sequential code. (a) I and 2 are true (b) I and 3 are true (b) To alvoid collision 	lesser than the root. Also elements greater than the root	prevents simultaneous access to a shared resource.
 (a) Route discovery and registration (b) Agent discovery and registration (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration Because, Mobile IP is the basic behind how wireless devices offer IP connectivity. Agent discovery: A mobile node discovers its foreign and home agents during discovery. Registration. the mobile node discovers its current location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To alvoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time b b b c c c c c c c c c c c c c c c d	will be right of the root, so the answer is Option (b)	This concept is used in concurrent programming with a
 (a) Route discovery and registration (b) Agent discovery and registration (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration Because, Mobile IP is the basic behind how wireless devices offer IP connectivity. Agent discovery : A mobile node discovers its foreign and home agents during discovery. Registration : the mobile node discovers its current location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time the option is (a). 30. In round robin CPU scheduling as time the option is (a). 30. In round robin CPU scheduling as time the option is (a). 30. In round robin CPU scheduling as time the option is (a). 30. In round robin CPU scheduling as time the option is (a). 30. In round robin CPU scheduling as time the option is (a). 30. In round robin CPU scheduling as time the option is (a). 30. In round robin CPU scheduling as time	28. Mobile IP provides two basic functions	critical section, a piece of code in which processes or
 (b) Agent discovery and registration (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration Because, Mobile IP is the basic behind how wireless devices offer IP connectivity. Agent discovery: A mobile node discovers its foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 32. Catch on and interleaved memory access between CPU a scheduling as time	-	threads access a shared resource.
 (c) IP binding and registration (d) None of the above Ans. (b) : Agent discovery and registration Because, Mobile IP is the basic behind how wireless devices offer IP connectivity. Agent discovery: A mobile node discovers its foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		32. Catch on and interleaved memories are ways of
 (d) None of the above Ans. (b): Agent discovery and registration Because, Mobile IP is the basic behind how wireless devices offer IP connectivity. Agent discovery: A mobile node discovers its foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In pre- emptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		
 Ans. (b): Agent discovery and registration Because, Mobile IP is the basic behind how wireless devices offer IP connectivity. Agent discovery: A mobile node discovers its foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In pre- emptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		
 which program) which program) (1) Cached memory is best suited for small loop (2) Interleaved memory is best suited for small loops (3) Interleaved memory is best suited for lar sequential code. (4) Cached memory is best suited for lar sequential code. (4) Cached memory is best suited for lar sequential code. (5) Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (6) To allow starving processes to run (7) When it requests I/O (8) To allow starving processes to run (9) When it requests I/O (1) Cached memory is best suited for lar sequential code. (2) Interleaved memory is best suited for lar sequential code. (4) Cached memory is best suited for lar sequential code. (6) I and 3 are true (7) 4 and 2 are true (9) 4 and 3 are true (1) Cached memory is best suited for lar sequential code. (1) Cached memory is best suited for lar sequential code. (2) Interleaved memory is best suited for lar sequential code. (3) Interleaved memory is best suited for lar sequential code. (4) Cached memory is best suited for lar sequential code. (6) To allow starving processes to run (7) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In pre-emptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		
 (1) Cached memory is best suited for small loops (2) Interleaved memory is best suited for small loops (3) Interleaved memory is best suited for lar sequential code. (4) Cached memory is best suited for lar sequential code. (5) Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		
 Agent discovery: A mobile node discovers its foreign and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		(1) Cached memory is best suited for small loops.
 and home agents during discovery. Registration: the mobile node registers its current location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 	-	
 (3) Interleaved memory is best suited for lar sequential code. (3) Interleaved memory is best suited for lar sequential code. (4) Cached memory is best suited for lar sequential code. (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		
 location with the foreign agent and him agent during registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		*
 registration. Are two basic functions involved here, so the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		
 the option is (b). 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		÷
 29. Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		
 temporarily suspending a gunning process (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		-
 (a) Before the CPU time slice expires (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time Ans. (b) : Interleaved memory is best suited for small 100 ps. Because, Here multiple memory chips are groupe together to form what we are known as banks. Each of then take turns for supplying data. An interleaved memory with "n" banks is said to be n-was interleaved. Macintosh system are considered to be or using memory interleaving. 30. In round robin CPU scheduling as time		
 (b) To allow starving processes to run (c) When it requests I/O (d) To avoid collision Ans. (a) : Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time State of the temporarily suspended from its execution. 30. In round robin CPU scheduling as time		
 (c) When it requests I/O (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		•
 (d) To avoid collision Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In pre- emptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 	•••	-
 Ans. (a): Before the CPU time slice expires Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		
 Because, Every process is allocated a specific time slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		6
 slice in the CPU and it runs for that entire time. In preemptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		
 emptive scheduling even before the process time slice expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 		
 expires. It is temporarily suspended from its execution. So the option is (a). 30. In round robin CPU scheduling as time 33. Consider the following page trace : 4, 3, 2, 1, 3, 2, 1, 5 Percentage of page fault that wou occur if FIFO page replacement algorithm 	1	
So the option is (a).3, 2, 1, 5 Percentage of page fault that would occur if FIFO page replacement algorithm		
30. In round robin CPU scheduling as time occur if FIFO page replacement algorithm		818 / / / /
· · · · ·		3, 2, 1, 5 Percentage of page fault that would
		occur if FIFO page replacement algorithm is
	quantum is increased the average turn around	used with number of frame for JOB m = 4 will
time be :		be :
(a) Increases (b) Decreases (a) 8 (b) 9		(a) 8 (b) 9
(c) Remains constant (d) Varies irregularly (c) 10 (d) 12	(c) Remains constant (d) Varies irregularly	(c) 10 (d) 12
UGC NET JRF Computer Science June 2012 Paper-II 10 YO		IO YCT

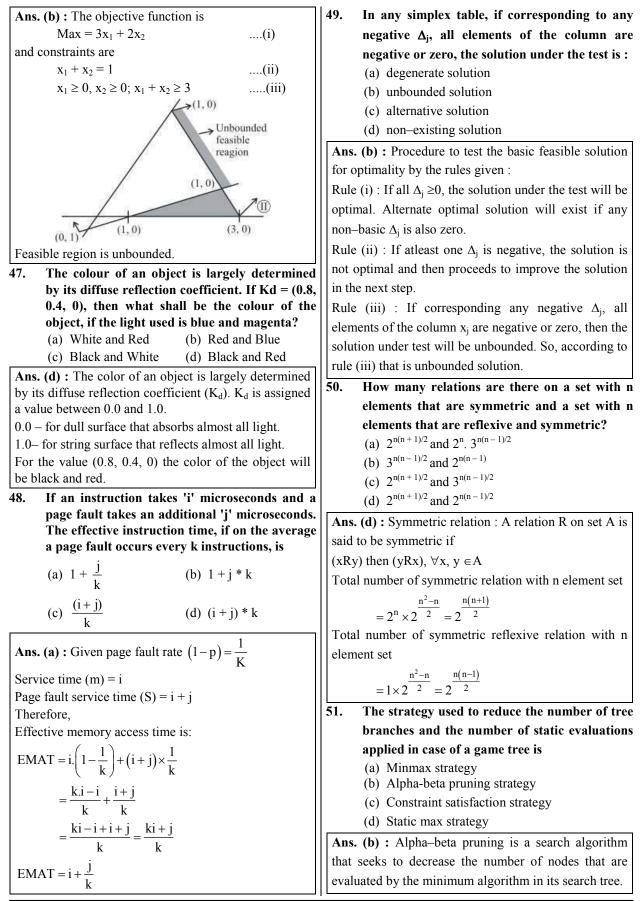
Ans(a) + 10	37. Interrupts which are initiated by an instruction
Ans. (c): 10 Because reference string is $4, 3, 2, 1, 4, 3, 2, 1, 5$	are
Because, reference string is 4, 3, 2, 1, 4, 3, 2, 1, 5 number of frames m = 4	(a) Internal (b) External
\Rightarrow First 4 references (4, 3, 2, 1) cause page faults and	(c) Hardware (d) Software
brought into empty frames	
\Rightarrow next reference (4) is already available and so there	Ans. (c) : Hardware
is no page fault	Interrupts are of three types–(1) External interrupts,
\Rightarrow next reference (3) is also ready available and so	(2) Internal interrupts, (3) Software interrupts.
there is no page fault	Hardware interrupts are used by devices to
\Rightarrow the next reference (5) replaces page 4 which was	communicate that they require attention from the
brought the first no. of page fault = 5	operating system.
\Rightarrow next reference (4) replace page 3 which is the next	38. printf("%c" 100)
to come in no. of page faults = 6	(a) Prints 100
\Rightarrow next reference (3) replaces 2 no. of page faults till	(b) Prints ASCII equivalent of 100
now = 7	(c) Prints garbage
\Rightarrow next reference (2) replaces 1 a which was to last	(d) None of the above
pages to come in no. of page fault till now = 8	Ans. (b) : Prints ASCII equivalent of 100
\Rightarrow next reference (1) replaces 5 which as the first to	Because the %c format prints the ASCII equivalent of
come in the second cycle no. of page faults till now	the value.
= 9	39. For the transmission of the signal, Bluetooth
\Rightarrow the last reference in the reference string is 5 which	wireless technology uses
will replace 4 no. of page faults till now = 10	(a) Time division multiplexing
\Rightarrow the page faults are the 10 so the answer is option (c).	(b) Frequency division multiplexing
34. Check sum used along with each packet	(a) Time division dupley
computes the sum of the data, where data is	(d) Frequency division duplex
treated as a sequence of (a) Integer (b) Character	Ans. (c) : Time division duplex is the application of
(a) Integer(b) Character(c) Real numbers(d) Bits	time division multiplexing to separate outward and
	return signals.
Ans. (b) : Character	Here Bluetooth technology uses time division duplex
Because, check sum is the error detecting mechanism when data is treated as a sequence of character. parity	transmission duplex.
is a mechanism used when data is treated as a sequence	
of bits.	8
35. If an integer needs two bytes of storage, then	a. Recursive languages are closed under complementation.
the maximum value of a signed integer is	I I I I I I I I I I I I I I I I I I I
(a) $2^{16} - 1$ (b) $2^{15} - 1$	b. Recursively enumerable languages are closed under union
(c) 2^{16} (d) 2^{15}	
Ans. (b): $2^{15} - 1$	 c. Recursively enumerable languages are closed under complementation.
In case of magnitude Representation the Range is from	Which of the above statements are true?
$(2^{n-1}-1)$ to $(2^{n-1}-1)$	
Min no. that can be represent in this system is $-(2^{n-1}-1)$	(a) 1 only (b) 1 and 2 (a) 1 and 2 (d) 2 and 2
Max no. that can be represent in this system is $(2^{n-1}-1)$	(c) 1 and 3 (d) 2 and 3
In case 2's complement no. system the range is -2^{n-1}	Ans. (b) : 1 and 2
to $2^{n-1}-1$	Because, recursive languages are closed under the
Max no. that can be represent in this system $2^{n-1}-1$	following operations-
So, Max no. can be represented here which $2^{n-1}-1$ is	(1) Keene star, (2) concatenation, (3) union, (4)
$2^{16} - 1 \rightarrow 2^{15} - 1$	intersection, (5) complement, (6) set difference
36. Which of the following logic families is well	Recursively enumerable languages are enclosed under
suited for high-speed operations?	the following operation.
(a) TTI (b) ECL	(1) Keene star, (2) concatenation, (3) union, (4)
(c) MOS (d) CMOS	intersection
Ans. (b) : ECL	Recursively enumerable languages are not closed
Because, ECL (Emitter coupled logic) is a high speed	under compliment, so the statement (1) and (2) are
integrated circuit bipolar transistor logic family.	only true.
UGC NET JRF Computer Science June 2012 Paper-II	

41. What is the routing algorithm used by RIP and	
IGRP?	that enables the determination of person'
(a) OSPF (b) Link-state	position. (a) Bluetooth
(c) Dynamic (d) Dijkstra vector	(b) WAP
Ans. (d) : Dijkestra vector	(c) Short Message Service
Because, RIP (Routing information Protocol) and	(d) Global Positioning System
IGRP (interior Gateway Routing Protocol) are the	
example of distance Vector Routing Protocol and open	Ans. (d) : Global Positioning System is a satellite
shortest path (OSPF) is an example of Link State	based navigation system.
Routing Protocols. Distance vector algorithms are	46. A complete microcomputer system consists of
based on Belma and ford algorithm. Link State	(a) Microprocessor (b) Mamory
Routing Protocols is based on Dijkestra algorithm. So	(b) Memory
the options are OSPF, link state, dynamic are ruled out.	(c) Peripheral equipment
So the answer is option (d).	(d) All of the above
42. Identify the incorrect statement	Ans. (d) : All of the above
(a) The overall strategy drives the E-Commerce	Because, In complete microcomputer system there is a
data warehousing strategy.	Microprocessor or and a memory part as well and there is peripheral equipment part is also there, so the correct
(b) Data warehousing in an E-Commerce	option is (d).
environment should be done in a classical	47. Where does a computer add and compar
manner.	data?
(c) E-Commerce opens up an entirely new world	(a) Hard disk (b) Floppy disk
of web server.	(c) CUP chip (d) Memory chip
(d) E-Commerce security threats can be grouped	Ans. (c) : CUP chip
into three major categories.	Because, Hard disk, Floppy disk, Memory chip are the
Ans. (d) : The threat environment for E-Commerce	storage devices so these are ruled out and now the
data warehousing application, security threats can be	correct option is (c).
grouped into three major categories.	48. Pipelining strategy is called implement
Loss of data secrecy	(a) Instruction execution
Loss of data integrity	(b) Instruction prefetch
Loss of denial of service	(c) Instruction decoding
Because, E-commerce security threats are more than 3	(d) Instruction manipulation
in number and so the incorrect statement is d.	Ans. (b) : Instruction prefetch is often combined with
43. Reliability of software is directly dependent on	pipelining in an attempt to keep the pipeline busy.
(a) Quality of the design	So the option is (b).
(b) Number of errors present	49. Which of the following data structure is linea
(c) Software engineers experience	type?
(d) User requirement	(a) Strings (b) Lists
Ans. (b) : Software reliability is measured in term of	(c) Queues (d) All of the above
Mean time between failures. Reliability of software is	Ans. (d) : All of the above
number between 0 and 1. Reliability increases when	Because, strings, Link lists and queues are linear type
errors or bugs from the program are removed, so the	data structure because the data of these option were
option is b.	arranged or organized in sequential or linearly, where
-	data elements attached one after another.
44is not an E-Commerce application.(a) House banking	50. To represent hierarchical relationship betwee
(b) Buying stocks	elements, which data structure is suitable?
(0) Duying stocks	(a) Dequeue (b) Priority
(a) Conducting or custing	(c) Tree (d) All of the above
(c) Conducting an auction	
(d) Evaluating an employee	Ans. (c) : A Tree structure is a way of representing the
	Ans. (c) : A Tree structure is a way of representing the hierarchical nature of a structure in a graphical form. so the answer is option (c).

COMPUTE	xam. June, 2012 R SCIENCE anation Paper–III)
 1. Consider the following pseudo code segment: K: = O for i1: = 1 to n for i2: = 1 to i1: For im: =1to im - 1 K: = K + 1 The value of K after the execution of this code shall be (a) C (n + m - 1, m) (b) C (n - m + 1, m) (c) C (n + m - 1, m) (d) C (n - 1 + 1, n) Ans. (a): C (n + m - 1, m) Because, In order to understand the solution to this problem let us consider some sample value of n and m. Let us say n = 3 and m = 2. The value of m also decides the number of inner loop we have. When we say m = 2, the total number of loops we have is 2 only n decides the range of outer most loop, so the psudocode can be under stood as k = 0 for i = 1 to n for m = 1 to i k = k + 1 ⇒ For the value of n = 3 and m = 2, the value of k would be incriminated in following manner 1 m k 1 1 1 2 1 2 2 2 3 3 1 4 3 2 5 3 3 6 ⇒ Value of i ranges & rom 1 to n where n = 3 ⇒ Value ko k is k = 6 at the end of iteration C (n + m -1/m) = C (3+2-2) = C (4, 2) = 4!/2! * 2! = 6. 2. In Delta Rule for error minimization (a) Weights are adjusted w.r. To change in the output (b) Weights are adjusted w.r. To difference between desired output and actual output (c) Weights are adjusted w.r. To difference between input and output (d) None of the above	* ' /
UGC NET JRF Computer Science June 2012 Paper-III 1	3 YCT

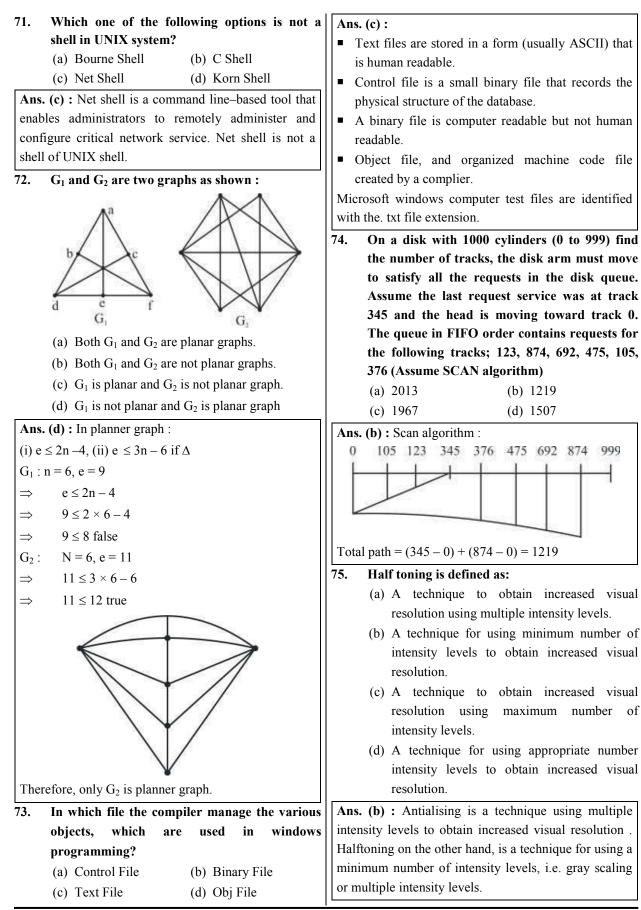

Ans. (a) :	10. In an image compression system ¹⁶ 3 ⁸⁴ bits are
Give two fuzzy set	used to represent 256 × 256 image with 256
$\mu_{\rm A} = \{0, 2, 0.4, 0.8, 0.5, 0.1\}$	gray level. What is the compression ratio for
$\mu_{\text{A}} = \{0.1, 0.3, 0.6, 0.3, 0.2\}$	this system?
so, $\mu_A U_B(\mathbf{x}) = \{0.2, 0.4, 0.8, 0.5, 0.2\}$	(a) 1 (b) 2
and	(c) 4 (d) 8
$\mu_{\rm A} U_{\rm B}(\mathbf{x}) = \{0.8, 0.6, 0.2, 0.5, 0.8\}$	Ans. (*) number of bits required to store a 256×256
$= 1 - \{0.1, 0.3, 0.6, 0.3, 0.1\}$	image with 256 gray level is 256 gray level is=2 ⁸
$=\{0.9, 0.7, 0.4, 0.7, 0.9\}$	Therefore, compression ratio = $256 \times 256 \times 8/16384 = 32$
7. Match the following:	11. X.25 is Network.
(a) OLAP 1. Regression	(a) Connection Oriented Network
(b) OLTP 2.Data Warehouse	(b) Connection less Network
(c) Decision Tree 3. RDBMS	(c) Either Connection Oriented or Connection
(d) Neural Network 4. Classification	Less
(a) 2 3 1 4 (b) 2 3 4 1	(d) Neither Connection Oriented nor Connection
(c) 3214 (d) 3241	Less
Ans. (b) : In OLTP database there is detailed and	Ans. (a) X.25 is an ITU-T standard protocol suite for
current data. In OLTP database schema used to store	packet switched Wide Area Network communication.
transaction data usually 3NF. OLAP is characterized	NSAP addressing facility was added in the X.25 revision of the specification, and this enabled X.25 to
by relatively low volume of transactions.	better meet the requirements of OSI connection-
Decision tree is used for classification of data in data	Oriented Network service (CONS).
mining and AI.	12. Which of the following can be used for
Neural networks are used for the purpose of	clustering of data?
unsupervised learning, regression or classification.	(a) Single lever perception
8. Which level of Abstraction describes what data	(b) Multilayer Perception
are stored in the Database?	(c) Self organizing map
(a) Physical level	(d) Radial basis function
(b) View level	Ans. (c) : Self Organizing map is a type of Artificial
(c) Abstraction level	Neural Network that is trained using unsupervised
(d) Logical level	learning to produce a low dimensional maps. In maps consisting of thousands of nodes, it is possible to
Ans. (d) : Logical level	perform cluster operations on the map itself.
Because, Logical level describes what data are stored	13. Which of the following is scheme to deal with
in the data base and what relationship among those	deadlock?
data.	(a) Time out (b) Time in
9. The problem that occurs when one transaction	(c) Both A & (B) (d) None of the above
updates a database item and them the transaction fails for some reason is	Ans. (a) : Time out
(a) Temporary Select Problem	Because, One of the strategy to avoid dead lock
(b) Temporary Modify Problem	situation in java multithreading is using timeout.
(c) Dirty Read Problem	Suppose, one thread has acquired lock on one resource
(d) None	and now waiting for lock on another resource. After certain time period if it can not acquire lock on
Ans (c) : The temporary (or dirty read) problem this	resource and then it should stop waiting for lock on
problem occurs when one transaction updates a	resource 2. Also it should release lock on resource 1.
database item and then transaction fails for some	Thus lock is avoided, so the Answer is a
reason. The updated item is accessed by another	14. It the pixels of an image are shuffled then the
transaction before it is changed back to its original	parameter that may change is
value.	(a) Histogram (b) Mean
	(c) Entropy (d) Covariance

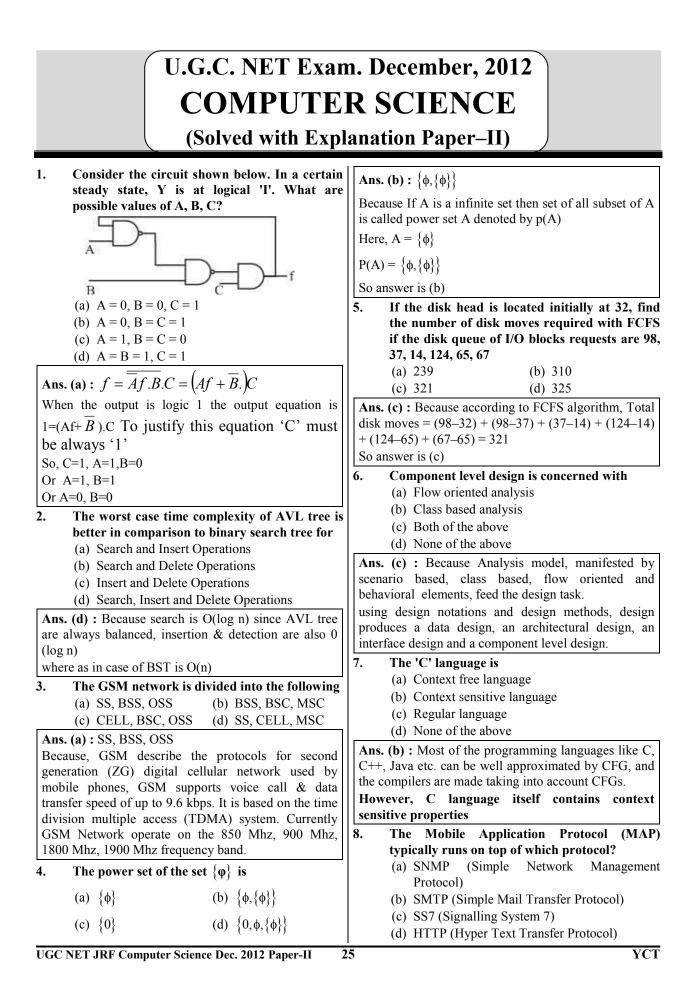
Ans. (d) : Covariance	18. Consider a schema R (A. B. C. D) and
Because, Covariance is a measure of how much two	functional dependencies $A \rightarrow B$ and $C \rightarrow D$. Then
random variable change together. So when pixel of an	the decomposition R_1 (A, B) and R_2 (C, D) is
image suffered then covariance is changed.	(a) Dependency preserving but not lossless join
15. The common property of functional language	(b) Dependency preserving and lossless join
and logical programming language(a) Both are declarative	(c) Lossless join but not dependency preserving
(b) both are based on 1-calculus	(d) Lossless Join
(c) Both are procedural	Ans. (a) : Dependency preserving but not lossless join
(d) Both are functional	Because, for lossless after decomposition of relation
Ans. (a) : Both are declarative	into if there is any common attribute in the
Functional and logical programming languages are	decomposed relation and that attribute is key in any of
characterized by declarative programming style. In	relation then it is lossless.
logical programming languages, programs consist of	Here no attribute are common R1 and R2
logical statements and program executes by searching	so this one is not lossless
for proof of the statements.	For dependency from the dependencies of the spited
16. Given the following statements:	schemas then it is dependency preserving
(1) The power of deterministic finite State	
machine and nondeterministic finite state	here from R1 === A \rightarrow B from R2 === C \rightarrow D can be
machine are same	divided so it is DP, then the answer is (a)
(2) The power of deterministic pushdown	19. The quantiser in an image-compression system
automaton and nondeterministic	is a
pushdown automaton are same	(a) lossy element which exploits the psycho
Which of the above is the correct statement	visual redundancy
(s)?	(b) lossless element which exploits the psycho
(a) Both 1 and 2 (b) Only 1 (c) Only 2 (d) Nuclear 1 and 2	visual redundancy
(c) Only 2 (d) Neither 1 nor 2 (1)	(c) lossy element which exploits the statistical
Ans. (b): Only (1)	redundancy
Because, we are now that finite machine is of two types one is deterministic finite state machine and the	(d) lossless element which exploits the statistical
other one non deterministic finite state machine. Both	redundancy
machine accept regular language only, so the power of	Ans. (a) : Lossy element which exploits the psycho
DFA = NFA, so the first statement is true.	visual redundancy
There is no algorithm exist which convert NPDA into	Because, Quantization, involved in image processing is
DPDA. So, power of NDPA is more than DPDA.	a lossy compression technique achieved by
hence the answer is (b)	compressing a range of values to single quantum
17. Let $Q(x, y)$ denote " $x + y = 0$ " and let there be	value. When the number of discrete symbols in a given
two quantifications given as	stream is reduced and the stream becomes more
(i) $\exists y \forall x \mathbf{Q}(\mathbf{x}, \mathbf{y})$	compressible.
(ii) $\forall x \exists y \mathbf{Q}(\mathbf{x}, \mathbf{y})$ which of the following is	so the answer is a
valid? where x & y are real numbers. Then	20. Data Warehouse provides
(a) (i) is true & (ii) is false.	(a) Transaction Responsiveness
(b) (i) is false & (ii) is true.	(b) Storage. Functionality Responsiveness to
(c) (i) is false & (ii) is also false.	queries
(d) both (i) & (ii) are true.	(c) Demand and Supply Responsiveness
Ans. (b)	(d) None of the above
$\exists y \forall x Q(x+y=0)$ is false	Ans. (b) : Storage functionality responsiveness to
Since for all x single y not exist whose addition	
produce result 0.	queries
i.e., $x+y = 0$	Because, data warehouses are supposed to provide
$\forall x \exists y Q(x+y=0)$ is true	storage functionality and responsiveness oriented
Because for every x then exist y=-x whereas addition	databases. Also data warehouse are set to improve the
produce result as 0.	data access performance of database.
UGC NET JRF Computer Science June 2012 Paper-III 1	5 YCT


21. A * algorithm $f = g + h$ to estimate the cost of	(c) malloc () (d) real loc ()
getting from the initial state to the goal state,	Ans. (d) : real loc ()
where g is a measure of the cost of getting from	Because, mal loc and cal loc are used to allocate
initial state to the current node and the	dynamic memory.
function h is an estimate of the cost of getting	
from the current node to the goal state. To find	free is used to frees the allocated memory be cal loc
a path involving the fewest number of steps, we	and mal loc
should set	Real loc is used to reallocated or modifies the previous
(a) $g = 1$ (b) $g = 0$	allocated space, hence the answer is d
(c) $h = o$ (d) $h = 1$	25. Which is not the correct statement (s)?
Ans. (a) : $g = 1$	(a) Every context sensitive language is recursive.
Because, a* algorithm is the most important form of	(b) There is a recursive language that is not
best first search,	context sensitive.
F = g + h	(i) 1 is true, 2 is false.
g is the measure of cost getting from initial to the	(ii) 1 is true and 2 is true.
current node and the function,	(iii) 1 is false, 2 is false.
h is and estimate of the cost of getting from the current	(iv) 1 is false and 2 is true.
node to the goal state.	Ans. (b) : Since context sensitive languages are subset
Now if want to find a path involving the first number	of recursive languages.
of steps then we set the cost of going from a node to its	Therefore, both statements are correct.
successor (i.e. g) as a constant usually 1. hence the	26. The mechanism that binds code and data
answer is a	
22. The transform which possesses the highest	together and keeps them secure from outside
'energy compaction' property is	world is known as
(a) Slant transform	(a) Abstraction (b) Inheritance
(b) Cosine transforms	(c) Encapsulation (d) Polymorphism
(c) Fourier transforms	Ans. (c) : Encapsulation is an OOP concept that binds
(d) Karhunen-Loeve transforms	together the data and functions that manipulate the data
Ans. (d) : Karhunen-Loeve transforms	and that keeps both safe form outside interference and
Because, most of the signal information is	misuse. Data encapsulation led to the important OOP
concentrated in few low frequency components of the	concept of data hiding.
transform, so approaching the Karjunen-Loeve	27. Identify the addressing modes of below
transforms, which is optimal in the decor relation	instructions and match them:
sense.	(a) ADI 1. Immediate addressing
23. Which one of the following prolog programs	(b) STA 2. Direct addressing
correctly implement "if G succeeds then	(c) CMA 3. Implied addressing
execute goal Pelse execute goal θ?	(d) SUB 4. Register addressing
(a) if-else $(G, P, \theta) := !$, call (G) , call (P) .	(i) $a - 1, b - 2, c - 3, d - 4$
if-else (G, P, θ) :- call (θ)	(ii) $a - 2, b - 1, c - 4, d - 3$
(b) if-else (G, P, θ) :- call (G) , !, call (P) .	(iii) $a - 3, b - 2, c - 1, d - 4$
if-else (G, P, θ) :-call (θ)	(iv) $a - 4, b - 3, c - 2, d - 1$
(c) if-else (G, P, θ) :- call (G), call (P), !.	Ans. (a) : ADI. Immediate addressing
if-else (G, P, θ) :- call (θ)	Because. the instruction ADI adds same content to the
(d) All of the above	accumulator. It is an immediate addressing made
Ans. (b) : If G succeeds then execute goal P else	instruction. The instruction STA stores the content of
execute goal θ :	the accumulator in the particular memory location
If else (G, P, θ) : call (G) , !, call (P)	specified as operand, CMA takes complement of the
If else (G, P, θ) : call (θ) , (f, θ) : call (f)	contents of the accumulator. SUB instruction subtracts
	the content of the register to the contents of the
24. The memory allocation function modifies	accumulator.
the previous allocated space.	Hence the answer is a
(a) cal loc () (b) free ()	
UGC NET JRF Computer Science June 2012 Paper-III 1	6 YCT

28. Which one of the following is not a Greibach	32. The equivalent grammar corresponding to the
Normal from grammar?	grammar
(a) $S \rightarrow a bA aA bB$	$G: S \rightarrow aA$,
$A \rightarrow a$	$A \rightarrow BB$,
$B \rightarrow b$	$B \rightarrow aBb \in$
(b) $S \rightarrow a aA AB$	is
	(a) $S \rightarrow aA, A \rightarrow BB, B \rightarrow aBb$
$A \rightarrow a$	(b) $S \rightarrow a aA, A \rightarrow BB, B \rightarrow aBb ab$
$B \rightarrow b$	(c) $S \rightarrow a aA, A \rightarrow BB B, B \rightarrow aBb$ (d) $S \rightarrow a aA, A \rightarrow BB B, B \rightarrow aBb ab$
(c) $S \rightarrow a A aA$	(d) $S \rightarrow a aA, A \rightarrow BB B, B \rightarrow aBb ab$
$A \rightarrow a$	Ans. (d) : Given grammar is : $S \rightarrow aA$
(a) 1 and 2 (b) 1 and 3	$S \rightarrow dA$ $A \rightarrow BB$
(c) 2 and 3 (d) 1, 2 and 3	$A \rightarrow BB$ $B \rightarrow aBb \in$
Ans. (c) : (2) and (3)	Removing null-production from the grammar :
Because, the symbol on the right hand side of the	Nullable variables are {A, B}, so,
production must be terminal. It can be followed by	$S \rightarrow a aA$
zero or more variables in grammar (2) of the question	$A \rightarrow B BB$
$S \rightarrow ABv$ is the production. AB are two non-terminals	$B \rightarrow aBb ab$
can be in GNF (Greiback Normal Form Grammar). In	33. Which one of the following statements is
grammar not allowed in GNF. So the grammar which	incorrect?
is not in GNF is (2) and (3) so the option is c	(a) The number of regions corresponds to the
29. Which of the following IP address class is a	cyclomatic complexity.
multicast address?	(b) Cyclometric complexity for a flow graph G is
(a) Class A (b) Class B (a) Class C (d) Class D	V G = N - E + 2, where E is the number of
(c) Class C (d) Class D	edges and N is the number of nodes in the
Ans. (d) : IPv4 multicast addresses are defined by the leading address bits of 1110, originating from the class	flow graph. (c) Cyclometric complexity for a flow graph G is
full network design of the early internet when this	V G = E - N + 2, where E is the number of
group of addresses was designated as Class D.	edges & N is the number of nodes in the flow
30. While unit testing a module, it is found that for	graph.
a set of test data, maximum 90% of the code	(d) Cyclometric complexity for a flow graph G is
alone were tested with a probability of success	VG=P+1, where P is the number of predicate
0.9. The reliability of the module is	nodes contained in the flow graph G.
(a) at least greater than 0.9	Ans. (b) : Cyclometric complexity is a software metric
(b) equal to 0.9	(measurement) used to indicate the complexity of a
(c) at most 0.81	program. The complexity M is defined as : M = E - N + 2P
(d) at least 1/0.81	where, E is the number of edges, N is number of
Ans. (c) : almost 0.81	vertices and P is number of connected component of
Because, code tested maximum 90%	flow graph. For a single program (component) P is
Probability of success is 0.9	always equal to 1.
so the reliability of module almost $0.9 \times 0.9 = 0.81$	Also, the number of regions corresponds to the
hence the answer is option c	cyclomatic complexity (M) and
31. The upper bound computing time of m coloring decision problem is	M = P + 1
(a) O (nm) (b) O (nm)	where P (nodes whereas out degree more than 1) is number of predicated notes contained in the flow graph G.
(c) $O(nmn)$ (d) $O(nmmn)$	
Ans. (c) : O (nmn)	34. Consider a weighted undirected graph with positive edge weights and let (u, v) be an edge
Because, the O (nm ⁿ) is the only bound of computing	in the graph. It is known that the shortest path
time of M coloring.	from source vertex s to u has weight 53 and
UCC NET IDE Computer Science June 2012 Pener III	7 VCT

shortest path from s to v has weight 65. Which	Ans. (a) : 6, 1
statement is always true?	Because, hence the answer is a $(6, 1)$
(a) Weight $(u, v) < 12$	
(b) Weight $(u, v) = 12$	
(c) Weight $(u, v) \ge 12$	
(d) Weight $(u, v) > 12$	expression expression
Ans. (c) : Weight $(u, v) \ge 12$	
Because, if weight $(u, v) \le 12$ then the min. weight of	Stack
(s, u) = weight of $(s, u) +$ weight of $(u, v) = 53+(<12)$	Stack
will be less than 65	
so that answer is c	
35. Consider the regular expression (a + b) (a +	
b) (n-times). The minimum number of states in	
finite automaton that recognizes the language	
represented by this regular expression contains	Ctook
(a) n states	39. The following CFG S \rightarrow aB bA, A \rightarrow a as
(b) $n+1$ states	bAA, $B \rightarrow b \mid bs \mid aBB$ Generates strings of
(c) $n+2$ states	terminals that have
(d) 2n states	(a) Odd number of a's and odd number of b's(b) Even number of a's and even number of b's
Ans. (b) : n + 1 states	(c) Equal number of a's and b's
Because, without trap for 1 symbol (a + b) or b,	(d) Not equal number of a's and b's
required 2 states and for 2 symbols (a + b) required 3	Ans. (c) : Given CFG is :
states and so on so, $n + 1$ states for NFA	$S \rightarrow aB bA$
n + 2 states for DFA (include trap state)	$A \rightarrow a aS bAA$
asking for minimum so $n + 1$ states	$B \rightarrow b bS aBB$
36. Number of binary trees formed with 5 nodes is	The language of given CFG is set of all strings that
(a) 32 (b) 36	have equal number of a's and b's. Other CFG may also possible for this language.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40. Consider the following pseudo-code: If $(A > B)$
	and $(C > D)$ then
Ans. (d) : 42	$\mathbf{A} = \mathbf{A} + 1$
Because, $C = \frac{{}^{2n}C_n}{1} = \frac{{}^{10}C_5}{1} = \frac{256}{10} = 42$	$\mathbf{B} = \mathbf{B} + 1$
n+1 $n+1$	Endif The cyclomatic complexity of the pseudo-code
so the option is d	is
37. Are we building the right product? This	
statement refers to	(c) 4 (d) 5
(a) Verification	Ans. (b) : Cyclomatic complexity directly measures
(b) Validation	the number of linearly independent paths through a
(c) Testing	program's source code : Given, if $(A > B)$ and $(C > D)$ then
(d) Software quality assurance	A = A + 1
Ans. (b) :	$\mathbf{B} = \mathbf{B} + 1$
Validation : Are we building the right product?	end if
	Case (i):
 Verification : Are we building the product right? 	if (true) and (true) then //execute some code
38. The following postfix expression is evaluated	
using a stack $823^{23} + 51^{23}$ - The top two	Case (ii) :
elements of the stack after first * is evaluated	if (true) and (false) then
(a) 6, 1 (b) 5, 7	//don't execute code
(c) 3, 2 (d) 1, 5	end if
UGC NET JRF Computer Science June 2012 Paper-III	18 YCT

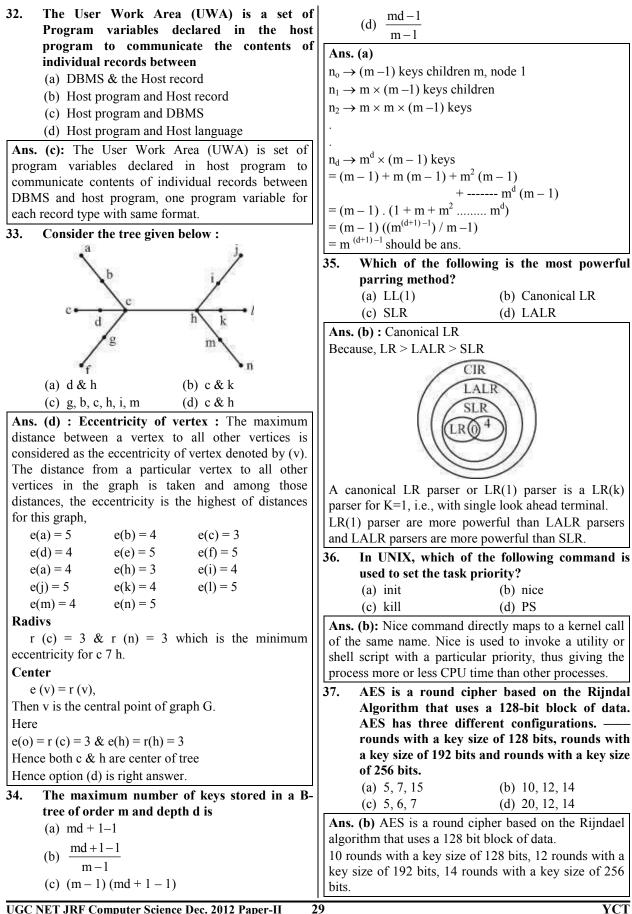

UGC NET JRF Computer Science June 2012 Paper-III 19



52.	Mate	ch of following:			55.	Mai	tch the follo	wing w	ith respec	t to java. Util. *	
52.	Mau	List–I		List-II	1		s methods:	wing w	iiii respec	t to java. Oth.	
	A.	Regular	1.	Pushdown	╢	cius	List-I		Li	ist-II	
	11.	Grammar	1.	automaton		(a)	Bit Set			ie zone gettime	
	B.	Context free	2.	Linear bounded	Ħ	(u)	Bit Set		zone	-	
	D.	Grammar	2.	automaton		(h)	Calendar			nashcode ()	
	C.	Unrestricted	3.	Deterministic finite	╂	· · ·	Time zone		. ,	nextInt ()	
	C.		5.	Deterministic minte		~ /	Random			d setID (String	
	D	Grammar Context Sensitive	4	Tumina mashina	┨	(u)	Rundom			ame)	
	D.		4.	Turning machine			Α	В	C	D	
	C	Grammar			₽	(a)	2	1	4	3	
	Code		,	D		(u) (b)	3	4	1	2	
	(a) 3	•	1	D 4		(c)	4	3	2	1	
						(d)	2	1	3	4	
	(b) (a)			2	Ans	(a):	_	1	5	· · ·	
	(c) (d)			+ 	56.			mag ga	id to be d	object oriented,	
A	(d) 3	0 2 4		1	50.					ipulate kernel	
Ans.			• /							hods on their	
53.			cuit	and find the output			dles.	mvok	ing men	ious on then	
	func	tion f(x, y, z)					Windows N	т	(b) Win	ndows XP	
	x	MUX				· · ·	Windows V			10 ws 91	
	У—		0	7	Ans	()				said to object-	
	z —		MUX	→f						•	
	x	•	1		oriented because the only way to manipulate Kernel objects is by invoking methods (API functions) on						
	y		 (1_)	— —	their handles. On the other hand, it lacks some of the						
		$\overline{x}z + xy + \overline{y}z$		$x\overline{z} + xy + \overline{yz}$	most basic properties of object oriented systems such						
	(c)	$xz + xy + \overline{yz}$	(d)	$xz + x\overline{y} + \overline{y}z$			ance and poly			a systems such	
Ans.	(a) :	Given logic diagran	n is :		57.			-		raps the signal	
		x			57.		-				
		y MUX	g		sent on a Ctrl + C input and has a signal handling routine that saves appropriate files						
		27		$MUX \rightarrow f$. When a Ctrl	
		x						0	-		
		y			+ C input is given to this process, what is the mode in which the signal handling routine						
Func	tion f						cutes?	ii the	signai na	numig routine	
		y'(g) + y(x)					User mode		(b) Ker	nel mode	
		y'(x.Z' + y'z) + x.y				~ /	Super user r	node		vileged mode	
		x.y'z' + y'z + x.y			Ans		-			n the context of	
		x(y + y'z') + y'z							-	ess must run to	
		x(y+z')+y'z				lle sig		es mem	i, so a proc	ess must run to	
	= x	xy + x'z + y'z			58.	CP	-	. han	dlag an	intonunt he	
54.				of bits) of Header	50.		cuting an int			interrupt by	
		th field in IPv4 hea	der?				As soon as a	-			
	(a) 2		(b)						-	gister at the end	
	(c) 8		~ /	16		(0)	of fetch cyc	-	nonupt reg	sister at the end	
		-		cond field (4 bits) is		(c)	•		interrunt	register after	
				which is the number		(0)	-	-	-	rrent instruction	
				nce an IPv4 header		(d)	-		-	register at fixed	
may	conta	in a variable numl	ber o	f options, this field		(u)	time interva	-	interrupt i	egister at fixed	
-				nis is also coincides	A.m.a	(2)			the avec	ution of each	
				a 4-bit field the						errupt pins to	
		and maximum	valu	e of 5 and 15					s the fifte	mupt pins to	
respe	ctivel	у.			1600	ginze	the interrupt	ı			
UCCI	NFT I	RF Computer Scien	ce Im	na 2012 Panar-III 2	21					YCT	

59. The perspective projection matrix, on the view							
plane $z = d$ where the centre of projection is the	Ans. (a) :						
origin (0, 0, 0) shall be :							
	receiver/transmitter) is manufacturer by Intel						
$\begin{bmatrix} 0 & 0 & 0 & d \end{bmatrix} \qquad \begin{bmatrix} d & 0 & 0 & 0 \end{bmatrix}$	number as 8251A.						
(a) $\begin{vmatrix} 0 & 0 & d & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix}$ (b) $\begin{vmatrix} 0 & d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix}$	• A microcontroller is a small computer on a single						
(a) 0 0 0 0 (b) 0 0 0 0	integrated circuit. Small device C compiler as 8051.						
d 0 0 1 0 0 1 0	• One of best known programmable interrupt						
	controller is 8259A, was included in the X86 PC.						
$\begin{bmatrix} 0 & 0 & 0 & d \end{bmatrix} \qquad \begin{bmatrix} d & 0 & 0 & 0 \end{bmatrix}$							
(c) $\begin{vmatrix} 0 & 0 & d & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix}$ (d) $\begin{vmatrix} 0 & d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix}$	• 8257 is known as microprocessor 8257 DMA						
(0) 0 0 0 0 0 0 0 0 0	controller.						
	62. The optimal solution of the following						
Ans. (b) : The projection transformation as a matrix	assignment problem using Hungarian method						
	is						
d ₀ 0 0 0	(i) (ii) (iii) (iv)						
$= \begin{vmatrix} 0 & d_0 & 0 & 0 \end{vmatrix}$	A 8 26 17 11						
$= \begin{bmatrix} 0 & 0 & d_0 & 0 \end{bmatrix}$	B 13 28 4 26						
$n_1 n_2 n_3 0$	C 38 19 18 15						
The place $z = d$ is parallel, to the x y plane (N = K)	D 19 26 24 10						
$N(n_1, n_2, n_3) = (0, 0, 1)$ and $R_0(x_0, y_0, z_0) = (0, 0, d)$	Codes :						
So, $d_0 = n_1 x_0 + n_2 y_0 + n_3 z_0 = d$	$\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D}$						
$u_0 = n_1 x_0 + n_2 y_0 + n_3 z_0 = u$ Therefore, the projection matrix is :	(a) (i) (ii) (iii) (iv)						
	(b) (i) (iii) (ii) (iv)						
d 0 0 0	(c) (i) (iii) (iv) (ii)						
$= \begin{vmatrix} 0 & d & 0 & 0 \\ 0 & d & 0 & 0 \end{vmatrix}$	(d) (i) (iv) (ii) (iii)						
	Ans. (b) :						
$\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$	(a) $Cost = 8 + 28 + 18 + 10 = 64$						
60. Radio signals generally propagate according to							
the following mechanisms:	(c) $Cost = 8 + 4 + 15 + 26 = 53$						
(a) Modulation, Amplification, Scattering							
(b) Reflection, Diffraction, Scattering	(d) $Cost = 8 + 26 + 19 + 24 = 77$						
(c) Amplification, Diffraction, modulation	63. If a and b are the end points of a line, then						
(d) Reflection, Amplification, Diffraction	which one of the following is true?						
Ans. (b) : Reflection, diffraction and scattering are the	(a) If both end points are left, right, above or						
three fundamental phenomenon that cause signal	below the window, the line is invisible.						
propagation in a mobile communication, apart from	(b) If both end points are left, right, above or						
LOS communication.	below the window, the line is completely						
61. Identify the devices given below with their IC	visible.						
numbers:	(c) If both end points are left, right, above or						
List-I List-II	below, the line is trivially visible.						
(A) USART (1) 8251	(d) If both end point are left, right, above or						
(B) Micro controller (2) 8051	below the window, the line is trivially						
(C) Interrupt controller (3) 8259	invisible.						
(D) DMA controller (4) 8257							
A B C D	Ans. (d) : In simple visibility algorithm, if a and b are						
(a) $1 2 3 4$	the end points of the line, with components x and y for						
(a) $1 2 3 1$ (b) $2 1 4 3$	each line. Visibility is true then check for totally						
(c) 3 4 1 2	invisible lines. If both endpoints are left, right, above						
(d) $4 1 2 3$	or below the window, then line is trivially invisible.						

64.	Identi numb	•	vices gi	ven belov	v with their IC	 67. Let a* H and b * H be two co-sets of H. (i) Either a * H and b * H are disjoint 						
		List-I		L	ist-II	(i) a * H and b * H are identical						
	(A) N	etworked-			connect to BS	Then						
	· /	ontrolled H	Hand	~ /		(a) only (i) is true (b) only (ii) is true						
		f (NCHO)				(c) (i) or (ii) is true (d) (i) and (ii) is false						
		obile-Assi		(2) Pro	cess via channel							
		andoff (M			target BS	H are either disjoint or identical.						
		orward Ha			t Generation							
	(0) 1	, , , , , , , , , , , , , , , , , , ,			log Cellular	68. HTML is defined using SGML an						
				Sys	-	standard, information processing-text and office systems (SGML) for text information						
	(D) H	ard Hando	ff	•	ond Generation	processing.						
	(D) 11		11		ital Cellular	(a) $ISO - 8878$ (b) $ISO - 8879$						
				Sys		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
		А	В	C Sys	D							
	(\mathbf{a})	A 3	В 4	2 2	D 1	Ans. (b) : The Standard Generalized Markup						
	(a) (b)					Language (SGML; ISO 8879 : 1986) is a standard for defining generalized markup language for documents.						
	(b)	2	3	1	4							
	(c)	2	1	4	3	69. What is the meaning of 'Hibernate' in						
	(d)	4	3	1	2	Windows XP/Windows 7?						
	. (a) :					(a) Restart the computers in safe mode.						
65.				• •	rocesses P ₁ and							
			-		sections. The							
					In variables S_1							
	and S ₂	2 are rand	omly as	ssigned,		(d) Shutdown the computer without closing the						
		P ₁			P ₂	running applications.						
	Whil			While		Ans. (d) : Hibernation (or suspend to disk) in						
		$= = S_2;$		-	S_2); critical	computing is powering down a computer while retaining its state. Upon hibernation the computer						
	sectio	on $S_1 = S_2$;		section S	$\mathbf{S}_1 = \mathbf{S}_2;$	saves the contents its Random Access Memory (RAM)						
	Which				0	to a hard disk or other non–volatile storage.						
		bes the pr										
		lutual excl				70. Assume that we have constructor functions for both base class and derived class. Now consider						
	(b) P1	ogress but	t not mu	tual exclu	sion	the declaration in main(). Base $* P = New$						
	(c) N	either mut	ual excl	usion nor	progress	Derived: in what sequence will the constructor						
	(d) B	oth mutual	exclusi	on and pr	ogress	be called?						
Ans	. (c) : (On first at	tempt b	oth proce	ess can go into	(a) Derived class constructor followed by Base						
criti	cal secti	on simulta	aneously	7. So muti	ual exclusion is	class constructor						
not s	satisfied					(b) Base class constructor followed by derived						
		-	-		go into critical	class constructor.						
secti	ion. So p	progress is	also no	t satisfied.		(c) Base class constructor will not be called.						
66.					ns, then what is	(d) Derived class constructor will not be called.						
		quency in	kiloher	tz?		Ans. (b) : Here A derived class object is created first						
		$^{-3}$ KHz		(b) 10^{-2}		and then assigned to a base class pointer, whenever a						
	(c) 1() ^{–1} KHz		(d) 1 K	Hz	derived class object is created, the base class						
Ans	. (a) : Fi	requency =	$= = \frac{100}{100}$	$\frac{1}{0 \mathrm{msec}} =$	10 ⁻³ KHz	constructor gets called first and then the derived class constructor.						



	12 W/L'sh sfifts falls size 's fame?
Ans. (c) : Because, main SS7 functions are	13. Which of the following is true?
 Setting up and tearing down circuit switched connections 	(a) A relation in BCNF is always in 3NF.(b) A relation in 2NF is always in BCNF
 Advanced network features such as those 	(b) A relation in 3NF is always in BCNF.(c) BCNF and 3NF are same.
offered by supplementary service	(d) A relation in BCNF is not in 3NF.
■ SMS & EMS	
 Mobility Management in Cellular Networks 	Ans. (a) : BCNF: FD $x \rightarrow y$, where x is superkey of
 Support for in services 	relation and y is attribute(s).
9. If a packet arrive with an M-bit value is 'I' and	3NF: FD $x \rightarrow y$, where either x is a superkey of relation or y is a prime attributes.
a fragmentation offset value '0', then it is —	There, BCNF is stronger than 3NF, means 3NF
fragment.	relations are subset of BCNF relations but converse
(a) First (b) Middle	may not be true.
(c) Last (d) All of the above	14. Given memory partitions of 100 K, 500 K, 200
Ans. (a) : Because, M = 1 indicates that this packet is	K, 300 K and 600 K (in order) and processes of
not the last packet among all fragments	212 K, 417 K, 112 K, and 426 K (in order),
offset = 0 means this packet carries $0 * 8 = 0^{\text{th}}$ byte	using the first-fit algorithm, in which partition
from the original packet Hence answer is (a)	would the process requiring 426 K be placed?
	(a) 500 K (b) 200 K
10. The number of bit strings of length eight that will either start with a 1 bit or end with two	(c) 300 K (d) 600 K
bits 00 shall be	Ans. (*) 400 K cannot be placed. So, none option is
(a) 32 (b) 64	true.
(c) 128 (d) 160	15. What is the size of the Unicode character in
Ans. (d) : Because string starting with 1-8 places, 1	Windows Operating System?
places fixed, 7 places have 2 choices $2 \land 7 = 128$	(a) 8-Bits (b) 16-Bits
ending with 00 - 8 places 2 fixed = $2 \land 6 = 64$	(c) 32-Bits (d) 64-Bits
Common string will be there that have been counted	Ans. (b) : Because, Unicode is a worldwide character
twice are starting with 1 and ending with 00. Such	encoding standard. The system uses unicode
number of string will be.	exclusively and string manipulation.
Fix 3 position rest have a choices = 32	These function use UTF – 16 (wide character)
total = 128 + 64 - 32 = 160	encoding. Which is most common encoding of unicode
11. In compiler design 'reducing the strength' refers to	and the one used for native unicode encoding on
(a) reducing the range of values of input	windows operating system
variables.	10. In which tree, for every node the neight of its
(b) code optimization using cheaper machine	left subtree and right subtree differ almost by
instructions.	one? (a) Binary search tree
(c) reducing efficiency of program	(b) AVL tree
(d) None of the above	(c) Threaded Binary Tree
Ans. (b) : Strength reduction is a compiler	(d) Complete Binary Tree
optimization technique where expensive operations are	Ans. (b) : AVL tree is a self balancing binary search
replaced with equivalent but less expressive	tree where the difference between heights of left and
operations. The classic example of strength reduction	right subtrees cannot be more than one for all nodes. If
converts "strong" multiplications inside a loop weaker addition. Something that frequently occurs in array	at any time they differ by more than one, nodes. If at
addressing.	any time they differ by more than one, rebalancing is
12. In which addressing mode, the effective	done to restore this property.
address of the operand is generated by adding	Hence the correct answer is (b)
a constant value to the contents of register?	17. The design issue of Datalink Layer in OSI
(a) Absolute (b) Indirect	Reference Model is
(c) Immediate (d) Index	(a) Framing
Ans. (d) : Index mode: The address of the operand is	(b) Representation of bits
obtained by adding to the contents of the general	(c) Synchronization of bits
register (called index register) a constant value.	(d) Connection control
UGC NET JRF Computer Science Dec. 2012 Paper-II 2	26 YCT

Ans	(a) : Because, framing is related to data link layer	(c) Round Rect () (d) Pie ()
	option (b) and (c) are related to physical layer and	Ans. (b) : Because, Ellips is the API which is use to
optio	on (D) is related to transport layer means framing	draw a circle.
	one at the data link layer whereas fragmentations is	example : ellipse (56, 46, 55, 55);
	e as network layer and segmentation is done at	\Rightarrow An ellipse with an equal height and width is a
trans	sport layer.	circle. The first two parameters set the location
18.	Given the following expressions of a grammar	third sets the width and fourth sets the height.
	$\mathbf{E} \rightarrow \mathbf{E} * \mathbf{F} / \mathbf{F} + \mathbf{E} / \mathbf{F}$	22. In DML, RECONNECT command cannot b
	$\mathbf{F} \rightarrow \mathbf{F} - \mathbf{F} / \mathbf{id}$	used with
	Which of the following is true?	(a) OPTIONAL Set (b) FIXED Set
	(a) * has higher precedence than +	(c) MANDATOR Set (d) All of the above
	(b) – has higher precedence than *	Ans. (b) : Fixed: a member record cannot exist on its
	(c) $+$ and $-$ have same precedence	own. Moreover, once it is inserted in a set occurrence,
	(d) + has higher precedence than *	it is fixed if cannot be reconnected to another set
Ans	. (b) : Because to check the precedence check the	occurrence.
leve	l in which the operator occurs lower the leveled	Reconnect command: if the connection to the server
	er the priority and vice versa as – is lower *, – has	is lost, automatically try to reconnect attempt is made
	er priority than *	each time the connection is lost. To suppress
So a	nswer is (b)	reconnection behavior, use "skip-reconnect".
19.	The maturity levels used to measure a proces	23. Coaxial cables are categorized by Radi
	are	Government rating are adapted for specialize
	(a) Initial, Repeatable, Defined, Managed,	functions. Category RG-59 with impedanc
	Optimized.	75Ω used for
	(b) Primary, Secondary, Defined, Managed,	(a) Cable TV (b) Ethernet
	Optimized.	(c) Thin Ethernet (d) Thick Ethernet
	(c) Initial, Stating, Defined, Managed,	Ans. (a) : Because, Coaxial cable is a type of electrical
	Optimized.	cable that has an inner conductor surrounded by a
	(d) None of the above	tubular insulating layer and RG - 59/U is a specific
	(a) : Because, capability maturity model (CMM)	type of Coaxial cable, often used for low-power video
	development model created after a study of data	and RF signal connections. RG-59 Coaxial cable is
	ected from organizations. The term "maturity" tes to degree of formality and optimization of	commonly packed with consumer equipment, such as
	esses to degree of formality and optimization of the sesses to formality defined steps, to managed result	VCP's or digital cable receivers.
	rics, to active optimization of the process.	24. RAD stands for
	M Levels	(a) Rapid and design
0	Level 1 > initial	(b) Rapid Aided Development
	Level 2 > Repeatable	(c) Rapid Application Development
	Level 3 > Defined	(d) Rapid Application Design
	Level 4 > Managed	Ans. (c): Rapid application development (RAD) is a
	Level 5 > Optimized	software development methodology that uses minimal
20.	The problem of indefinite blockage of low-	planning in favor of rapid prototyping. A prototype is
_	priority jobs in general priority scheduling	working model which is functionality equivalent to a
	algorithm can be solved using :	component of the product.
	(a) Parity bit (b) Aging	25. Suppose that someone starts with a chai
	(c) Compaction (d) Timer	letter. Each person who receives the letter i
Ans	. (b) : Because a major problem with priority	asked to send it on to 4 other people. Som
	duling is indefinite blocking or starvation. A	people do this, while some do not send an
	tion to the problem of indefinite blockage to the	letter. How many people have seen the letter
	priority process is aging. Aging is a technique of	including the first person, if no one receive
	ually increasing the priority of processes that wait	more than one letter and if the chain letter end
	e system for a long period of time.	after there have been 100 people who read but did not send it out? Also find how man
	ption (b) is right choice.	but did not send it out? Also find how man neonle sent out the letter?
21.	Which API is used to draw a circle?	people sent out the letter? (a) 122 & 22 (b) 111 & 11
	(a) Circle () (b) Ellipse ()	(a) $122 \otimes 22$ (b) $111 \otimes 11$ (c) $133 \otimes 33$ (d) $144 \otimes 44$
UGC	NET JRF Computer Science Dec. 2012 Paper-II 2	YC'

 Ans. (c) : Because, from basic, consider one sender, he sent to four other who only read "two" they send to seven other "three" they send to ten other receiver who only recall this form AP having common difference-3, & a/q total number of receiver who only read is 100 that is over last term. So, 4 + (n-1) * 3 = 100 n = 33 this is the number of reader who send to four other already there are 100 viewer who only read So total viewer will 100 + 33 = 133 26. A hash function f defined as f (key) = key mod 13, with linear probing is used to insert keys 	 29. Which of the following are two special functions that are meant for handling exception that occurs during exception handling itself? (a) Void terminate () and Void unexpected () (b) Non void terminate () and void unexpected () (c) Void terminate () and non void unexpected () (d) Non void terminate () and non void unexpected () Ans. (a): The exception handling mechanism relies on two function, terminate () and unexpected (), for coming with arrays related to the exception handling
55, 58, 68, 91, 27, 145. What will be the location	
of 79? (a) 1 (b) 2	mechanism itself.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Void terminate ()
Ans. (d) : Given, hash function $f(key) = key \mod 13$	If an exception is thrown but not caughtIf the exception handling mechanism find the stack
with linear probing to resolve collision.	is corrupted.
Key are : 55, 58, 68, 71, 27, 145 and 79	 If a destructor propagates an exception during stack
$55 \mod 13 = 3$	unwinding due to another exception.
$58 \mod 13 = 6$	Void unexpected
$65 \mod 13 = 3$ (collision, so next) = 4	If a function throws an exception by its exception
$91 \mod 13 = 0$	specification then:
$27 \mod 13 = 2$	■ The stack is unwounded for the function
$145 \mod 13 = 2$	■ The function unexpected () is called
79 mod $13 = 1$ (collision, so next) = 2 (again collision, so next)	30. Which of the following memory allocation
= 3 (again collision, so next)	scheme suffers from external fragmentation?
= 4 (again collision, so next)	(a) Segmentation
= 5	(b) Pure demand paging
So, index 5 is alloted to key 79.	(c) Swapping
27. Which of the following is true while converting	(d) Paging
CFG to LL (I) grammar?	Ans. (a): Segmentation is a memory management
(a) Remove left recursion alone	technique in which each job is divided into several
(b) Factoring grammar alone	segments of different sizes, one for each module that
(c) Both of the above (d) Norma of the above	contains pieces that perform related function. Each
(d) None of the above	segment is loaded into a contiguous block of available
Ans. (c): LL (1) is top-down parser, for top down parser the grammar should be unambiguous,	memory.
deterministic and free from infinite loop. That means	External fragmentation exists when total free
grammar should be free from ambiguity, left factoring	memory is enough for the new process but it's not contiguous and cannot satisfy the request.
and left recursion. All the 3 condition must be satisfied	Segmentation suffers from external fragmentation and
for LL (1) parser.	paging suffers from internal fragmentation.
So option (c) is the right answer.	31. Basis path testing falls under
28. Identify the Risk factors which are associated	(a) system testing
with Electronic payment system.	(b) white box testing
(a) Fraudulent use of Credit Cards.(b) Sending Credit Card details over internet.	(c) black box testing
(c) Remote Storage of Credit Card details.	(d) unit testing
(d) All of the above	Ans. (b): White Box testing is technique that
Ans. (d) : All are given risk factors that which are	examines the program structure and derives test data
associated with electronic payment system.	from the program code.
 Fraudulent use of credit card 	Basic path testing or structural testing is white box
 Sending credit card details over internet 	method for designing test cases. The method analyzes
 Remote storage of credit card details 	the control flow graph of program to find a set of
So answer is (D)	linearly independent paths of execution.
	1 28 YCT
construction of the second boo work input in	

38. Match the fol	lowing IC	families with their	Ans. (d) Be	ecause	opera	tion							
basic circuits:			P	Р	P	Р	Р	Р	Р	Р	Р		
a. TTL	1	. NAND			0			0	0				
b. ECL	2	2. NOR	u	u		u	u			u	0		
c. CMOS	3	. Inverter	S	S	р	S	S	р	р	S	р		
Code :			h	h		h	h			h			
a b	c		(1)	(2)		(3)	(4)			(5)			
(a) 1 2	3						4						
(b) 3 2	1			2		3	3	3		5			
(c) 2 3	1		1	1	1	1	1	2	1	5	1		
(d) 2 1	3		1	-	-		-	-	1	1	1		
Ans. (a)			Push is the										
(a) TTL-Transistor-t	ransistor lo	gic is a logic family	the collect										
built from bipolar jur			Therefore,										
NAND.			element to	be pop	ped 19	s only	l on t	he sta	ack.	So ans	wer		
(b) ECL-Emitter co	ounled logi	c is a high speed	is (d)										
integrated circuit bip				eratio									
satisfies the NOR.				eclarin	-			S					
	Complement	tary metal oxide		orting a			-						
semiconductor is a				ssignin	g a	legal	valu	ies j	possi	ble fo	or a		
Integrated Circuits. It				ariable									
So answer is (a).	(d) S	equenc	ing a	list of	opera	tors							
	wing with	respect to C++ data	Ans. (c): A										
types :	wing with	respect to C++ uata	of the ent										
a. User defined	d type 1	. Qualifier	commonly used in mathematic and computer science										
b. Built in type	• •	. Union	to refer to a listing of all of the elements of a set.										
• •			Only certain pre-defined values are allowed.										
c. Derived typ		. Void	Each valid value is assigned a name, which is then										
d. Long double	8 4	. Pointer	normally used instead of integer when working with										
Code :			this data type.42. Which of the following mode declaration is										
a b		d					0			aratio	n is		
(a) $2 3$	4	1		n C++	-	ben a l		-					
(b) 3 1	4	2		os : : ap	•		· · ·	in : :					
(c) $4 1$	2	3	(c) ios::file (d) ios::in Ans (d) $ios::in$										
(d) 3 4	1	2	Ans. (d) : iOS :: in//open for input operations.										
Ans. (a)			43. Data Encryption Techniques are particularly used for ———.										
(a) User defined	• •	-				•							
grouping different va			· / -	rotectin	g d	ata i	n Da	ita (Com	munica	ation		
offers three technique				ystem.		~							
structures class, a unic			(b) reduce Storage Space Requirement.										
(b) Built in type-Th		store information of	(c) enhances Data Integrity.										
various data types. So				ecrease									
(c) Derived type–Der			Ans. (a) :										
data type, a subtype, a	a derived cla	ass, So it satisfies (4)	which infor										
pointer	authorized reader can read it and data encryption is particularly used for protecting data in data												
(d) Long double–It re	particularly communica				tectin	g d	ata	ın c	iata				
-	8 it satisfies qualifier.												
40. Given an empt		So answer i											
	· ·), push (4), Pop, Pop,		be a s									
	push (5), Pop, what is the value of the top of the					e finite automaton. The number of states in non- deterministic finite automaton is Q . The							
stack?			deter	ministi	e fir	nite a	utom	aton	is	$ \mathbf{Q} $.	The		
(a) 4) 3		num n				in eq	luiva	alent f	inite		
(c) 2	(d) 1	auton	naton t	hat a	ccepts	s L is						
			-										

(c) 4(d) 0Ans. (d): Given $(1\&2) + (3\&4)$ in decimal $=(010\& 010) + (011\& 100)$ in binary $=(000) + (000) = (000)$ $=0$ in decimal. Hence answer is (d).but not associative? (a) OR (B) NAND $=1$ NAND ₀ = 1 = 1 NAND ₀ = 1 = Cumulative $(O NAND_1)$ NAND ₁ = 1 NAND ₀ = 1 = 1 Cumulative $(O NAND_1)$ NAND ₁ = 1 NAND ₀ = 1 = 1 NAND ₀ = 1 = Cumulative $(O NAND_1)$ NAND ₁ = 1 NAND ₀ = 1 = NO associative46. Back propagating weight changes. (a) Forward from source to sink (b) Backward from sink to source (c) Forward from source to hidden nodes (d) Backward from since to hidden nodesAns. (b): Back propagation of error" is a learning technique that adjusts weights in neural network by propagation depropagation of error" is a learning technique that adjusts weights in neural network by propagation groups and propagation of error" is a learning technique that adjusts weights in neural network by propagating weight changes backward from the sink to the source nodes.47. Match the following: a TLL (c) I 3 2 1 (d) 3 1 2Ans. (a) (a) (a) T1L-Transistor-transistor logic is a digital logic design. TTL is characterized by high switching speed integrated circuit biploal transistor logic is a high power (b) ECL-E-mitter coupled logic is a high speed integrated circuit biploat transistor logic fails, posting-No (b) Select p. posting-No, p2. posting-No (c) Select p. posting-No, p2. posting-No No(b) ECL -E-mitter coupled logic is a high speed integrated circuit biploat transistor logic fails, posting-No (c) Select p. posting-No, p2. posting-No No(c) CMOS - Complementary metal oxide semiconductor is a technology for constructing ICS(c) CMOS - Complementary metal oxide semiconductor is a technolo	(a) $ Q $ (b) $2 Q $ (c) $2^{ Q }-1$ (d) $2^{ Q }$ Ans. (d): Because, conversion from NFA to DFA is done by subset construction. It a problem can be solved with state in NFA then in worst case number of states in the resulting DFA is 2^n Given number of states in NFA = $ Q $ Then maximum number of states in equivalent DFA = $2^{ Q }$ Hence, option (d) is correct choice. 45. What is the result of the following expression? (1 & 2) + (3 & 4) (a) 1 (b) 3	 48 is an "umbrella" activity that is applied throughout the software engineering process. (a) Debugging (b) Testing (c) Designing (d) Software quality assurance Ans. (d): Because, umbrella activities include: (1) Software Project Management (2) Formal Technical reviews (3) Software Quality assurance (4) Measurement (5) Risk Management (6) Reducibility Management Hence (d) is the answer. 49. Identify the operation which is commutative
 a. (d) : Because, O NAND₁ = 1 NAND₀ = 1 = Cumulative (O NAND₁) NAND₁ = 1 NAND₀ = 1 = NAND₀ 46. Back propagation is a learning technique that adjusts weight in the neural network by propagating weight changes. (a) Forward from source to sink (b) Backward from since to hidden nodes (c) Forward from source to hidden nodes (d) Backward propagation, an abbreviation for "backward propagation of error" is a learning technique that adjusts weights in neural network by propagating weight changes backward from the sink to the source nodes. 47. Match the following: a. TTL b. ECL c. CMOS d) 3 2 (c) 1 3 2 (d) 3 1 2 Ans. (a) Ans. (b) ECL-Emitter coupled logic is a digital logic design. TTL is characterized by high switching speed integrated circuit bipolar transistor logic family. In this phower dissipation. (b) ECL-Emitter coupled logic is a high speed integrated circuit bipolar transistor logic family. In this phower dissipation. (c) CMOS - Complementary metal oxide semiconductor is a technology for constructing IC's CMOS technology is used in microprocessors, static 	Ans. (d): Given (1&2) + (3&4) in decimal	(a) OR (b) NOR
 adjusts weight is in the neural network by propagating weight changes. (a) Forward from source to sink (b) Backward from source to hidden nodes (c) Forward from source to hidden nodes (d) Backward from since to hidden nodes (e) Forward from source to hidden nodes (f) Back propagation, an abbreviation for "backward propagation of error" is a learning technique that adjusts weights in neural network by propagating weight changes backward from the sink to the source nodes. 47. Match the following: a. TTL b. ECL c. CMOS c. High fan out b. ECL c. Low propagation delay. (c) 1 3 2 (d) 3 1 2 Ans. (a) (a) TTL-Transistor-transistor logic is a digital logic design. TTL is characterized by high switching speed. It has high power dissipation. (b) ECL-Emitter coupled logic is a high speed. It has high power dissipation. (b) ECL-Lemitter coupled logic is a high speed. It has high nower dissipation. (c) CMOS - Complementary metal oxide semiconductor is a technology is used in microprocessors, static 	= (001 & 010) + (011 & 100) in binary = (000) + (000) = (000) =0 in decimal. Hence answer is (d).	Ans. (d) : Because, O NAND ₁ = 1 NAND ₀ = 1 \Rightarrow Cumulative (O NAND ₁) NAND ₁ = 1 NAND ₁ = 0
 ¹backward propagation of error" is a learning technique that adjusts weights in neural network by propagating weight changes backward from the sink to the source nodes. 47. Match the following: a. TTL a. TTL b. ECL c. CMOS c. CMOS d) a b c (a) 3 2 1 (b) 1 2 3 (c) 1 3 2 2 Ans. (a) (a) TTL-Transistor-transistor logic is a digital logic design. TTL is characterized by high switching speed. It has high power dissipation. (b) ECL-Emitter coupled logic is a high speed integrated circuit bipolar transistor logic family. In ECL, transistor are never in saturation, the input/output voltage have a swing (0.8v), the input impedance is high and output resistance is low. So it has low propagation delay. (c) CMOS - Complementary metal oxide semiconductor is a technology for constructing IC's CMOS technology is used in microprocessors, static 	 adjusts weights in the neural network by propagating weight changes. (a) Forward from source to sink (b) Backward from sink to source (c) Forward from source to hidden nodes (d) Backward from since to hidden nodes 	 associative Every logic gate follows commutative law AND, OR, Ex–OR, Ex–NOR follows associative law, NOR does not follow associative law. AND, OR, follows distributive law. Ex-OR, Ex-NOR, NAND, NOR does not follow distributive law.
 b. ECL 2. Low propagation delay c. CMOS 3. High power dissipation Code: a b c (a) 3 2 1 (b) 1 2 3 (c) 1 3 2 (d) 3 1 2 Ans. (a) (a) TTL-Transistor-transistor logic is a digital logic design. TTL is characterized by high switching speed. It has high power dissipation. (b) ECL-Emitter coupled logic is a high speed integrated circuit bipolar transistor logic family. In ECL, transistor are never in saturation, the input/output voltage have a swing (0.8v), the input impedance is high and output resistance is low. So it has low propagation delay. (c) CMOS - Complementary metal oxide semiconductor is a technology for constructing IC's CMOS technology is used in microprocessors, static 	"backward propagation of error" is a learning technique that adjusts weights in neural network by propagating weight changes backward from the sink to the source nodes.47. Match the following:	 50. Given a Relation POSITION (Posting No, Skill), then query to retrieve all distinct pairs of posting-nos. requiring skill is (a) Select p.posting-No, p.posting-
 (c) 1 3 2 (d) 3 1 2 (a) TTL-Transistor-transistor logic is a digital logic design. TTL is characterized by high switching speed. It has high power dissipation. (b) ECL-Emitter coupled logic is a high speed integrated circuit bipolar transistor logic family. In ECL, transistor are never in saturation, the input/output voltage have a swing (0.8v), the input impedance is high and output resistance is low. So it has low propagation delay. (c) CMOS - Complementary metal oxide semiconductor is a technology for constructing IC's CMOS technology is used in microprocessors, static 	b. ECL 2. Low propagation delay c. CMOS 3. High power dissipation Code: a b c (a) 3 2 1	 where p.skill = p.skill and p.posting-No < p.posting-No (b) Select p₁.posting-No, p₂.posting-No No from position p₁, position p₂
 It has high power dissipation. (b) ECL-Emitter coupled logic is a high speed integrated circuit bipolar transistor logic family. In ECL, transistor are never in saturation, the input/output voltage have a swing (0.8v), the input impedance is high and output resistance is low. So it has low propagation delay. (c) CMOS – Complementary metal oxide semiconductor is a technology for constructing IC's CMOS technology is used in microprocessors, static 	(c) 1 3 2 (d) 3 1 2 Ans. (a) (a) TTL-Transistor-transistor logic is a digital logic	 (c) Select p₁.posting-No, p₂.posting-No No from position p₁, position p₂ where p₁.skill = p₂.skill
(c) CMOS – Complementary metal oxide semiconductor is a technology for constructing IC's CMOS technology is used in microprocessors, static	It has high power dissipation. (b) ECL-Emitter coupled logic is a high speed integrated circuit bipolar transistor logic family. In ECL, transistor are never in saturation, the input/output voltage have a swing (0.8v), the input impedance is high and output resistance is low. So it has low	No (d) Select p ₁ .posting-No, p ₂ .posting-No No from position p ₁ , position p ₂ where p ₁ .skill = p ₂ .skill and p ₁ .posting-No = p ₂ .posting-
UGC NET JRF Computer Science Dec. 2012 Paper-II 31 YC	(c) CMOS – Complementary metal oxide semiconductor is a technology for constructing IC's CMOS technology is used in microprocessors, static RAM & other digital logic circuit. It has high fan out.	Ans. (c) : Because, we need to join position with itself based on skill. Then it is given distinct pairs so we need to consider only P_1 Posting – no < p_2 . Posting – no.

U.G.C. NET Exam. December, 2012 **COMPUTER SCIENCE** (Solved with Explanation Paper–III) 1. Eco system is a Frame work for (a) Bit stuffing (b) Piggy backing (a) Building a Computer System (c) Pipelining (d) Broadcasting (b) Building Internet Market Ans. (b) : The technique of temporarily delaying (c) Building Offline Market outgoing acknowledgments, so that they can be hooked (d) Building Market onto the next outgoing data frame is known as piggy Ans. (b) : Eco system is a Frame work for building backing. internet market means once you built content, it needs is process of extracting previously non 5. to be shared across the web so it will done by building known valid and actionable information from internet market. large data to make crucial business and strategic decisions. The efficiency (E) and speed up (sp) for 2. (a) Data Management (b) Data base Multiprocessor with p processors satisfies (a) $E \le p$ and $s_p \le p$ (c) Data Mining (d) Meta Data (b) $E \leq 1$ and $s_p \leq p$ Ans. (c) : Data mining is defined as extracting (c) $E \le p$ and $s_p \le 1$ information from huge sets of data, we can say that mining is the procedure of mining knowledge of data. (d) $E \leq 1$ and $s_p \leq 1$ **Ans. (b) :** Efficiency (E) can be 0 to 1 or not more than The aspect ratio of an image is defined as 0 to 100%. even 1 is just theoretical speed up for (a) The ratio of width to its height measured in multiprocessor. Speed of multiprocessor S_p can never unit length. exceed (p) number of processors. (b) The ratio of height to width measured in So answer is (b). number of pixels. Match the following : 3. (c)The ratio of depth to width measured in unit length List-I List-II (d) The ratio of width to depth measured in A. Critical region 1. Hoares Monitor number of pixels. B. Wait/signal 2. Mutual exclusion Ans. (a) : Because the aspect ratio of an image C. Working set 3. Principal of locality describes the proportional relationship between its D. Dead lock 4. Circular wait width and height. It is commonly expressed as two Codes : number separated by a color, as in 16:9. B С D Α 7. Which of the following features will 2 3 4 1 (a) characterize an OS as multi-programmed OS? 1 2 4 3 (b) (A) More than one program may be loaded into 3 (c) 2 1 4 main memory at the same time. 3 4 (d) 1 2 (B) If a program waits for certain event another Ans. (a) : program is immediately scheduled. (a) Critical region-Critical region is the region of (C) If the execution of a program terminates, values that corresponds to the rejection of the null another program is immediately scheduled. hypothesis at some chosen probability level. So it (a) (A) only satisfies, (ii) Mutual exclusion (b) (A) and (B) only (b) Wait/Signal holds Hoares Monitor (c) (A) and (C) only (c) Working Set–It directly address thrashing problem (d) (A), (B) and (C) only in which is the set of pages referenced by the process Ans. (d) : A Multiprogramming system permits during the most recent w page reference is the multiple programs to be loaded into memory and principle of locality. execute the programs concurrently. Concurrent (d) Dead lock-It hold circular wait because circular execution of programs results into improved system wait is a condition of dead lock. throughput and resource, utilization. This potential is technique of temporarily realized by a class of operating system among a 4 The delaving outgoing acknowledgements so that they can be multiple of active programs. Such operating systems usually have the prefix multi in their names, such as hooked onto the next outgoing data frame is multitasking or multiprogramming. known as UGC NET JRF Computer Science Dec. 2012 Paper-III 32 YCT

8. Using RSA algorithm, what is the value of r_{1} is the text C if the plain text $M = 5$ and $r = 2$	Protocol (HTTP) to interact with the Network. HTTP
cipher text C, if the plain text $M = 5$ and $p = 3$, q = 11 & d = 7 ?	
(a) 33 (b) 5	(b) Transport layer–It offers peer to peer & end to end connection between two processes on remote
$\begin{array}{c} (a) & 55 \\ (b) & 5 \\ (c) & 25 \\ (d) & 26 \end{array}$	hosts. It have TCP (Transmission Control Protocol) &
	UDP (User Datagram Protocol).
Ans. (d) :	(c) Network layer–It takes the responsibility for
Given P = 3, Q = 11, n = $(p \times q) = 3 \times 11 = 33$	routing packets from source to destination within or
$m = (P-1) \times (Q-1) = (2 \times 10) = 20$	outside a subnet. So it refers BGP (Border Gateway
find a small odd integer, that is relatively prime to M.	Protocol)
If $e = 3$, than GCD $(3, 20) = 1.e$ should be small &	(d) Data link layer–It hides the details of underlying
prime & So we let $e = 3$, d is given, $d = 7$	H/W and represents itself to upper layer as the medium
public key = (e, n). (values of e and n are known) To encrypt a message we apply the public key to the	to communicate. So it refers HDLC (High Level Data
function $E(s) = S^{e}(mod n)$	Link Control).
Where S is the given message and e and n represents	11. The time complexities of some standard graph
the public key integer pair. In the above question, the	algorithms are given. Match each algorithm
plain text $M = 5$ plain text needs to be encrypted using	with its time complexity? (n and m are no. of
above formula	nodes and edges respectively)
$=5^{3} \pmod{33}$	a. Bellman Ford 1. O (m log n)
$= 125 \pmod{33}$	algorithm
= 26	b. Kruskals algorithm 2. $O(n^3)$
9. You are given an OR problem and a XOR	c. Floyd Wrashall 3. O (mn)
problem to solve. Then, which one of the	algorithm
following statements is true?	d. Topological sorting 4. $O(n + m)$
(a) Both OR and XOR problems can be solved	Codes :
using single layer perception.	a b c d
(b) OR problem can be solved using single layer	(a) 3 1 2 4
perception and XOR problem can be solved	(b) 2 4 3 1
using self organizing maps.	(c) 3 4 1 2
(c) OR problem can be solved using radial basis function and XOR problem can be solved	(d) 2 1 3 4
using single layer perception.	Ans. (a) :
(d) OR problem can be solved using single layer	(a) Bellman Ford algorithm time complexity is O (mn)
perception and XOR problem can be solved	(b) Kruskals algorithm time complexity is O (m log n)
using radial basis function.	(c) Floyd Wrashall algorithm time complexity is $O(n^3)$
Ans. (d) : OR problem can be solved using single	(d) Topological sorting time complexity is $O(n + m)$
layer perception and XOR problem can be solved	Where n & m are number of nodes and edges
using radial basis function.	respectively.
10. Match the following :	12. Let $V_1 = 2I - J + K$ and $V_2 = I + J - K$, then the
List–I List–II	angle between V_1 & V_2 and a vector
a. Application layer 1. TCP	perpendicular to both V1 & V2 shall be :
b. Transport layer 2. HDLC	(a) 90° and $(-2I + J - 3K)$
c. Network layer 3. HTTP	(b) 60° and $(2I + J + 3K)$
d. Data layer 4. BGP	(c) 90° and $(2I + J - 3K)$
Codes :	(d) 90° and $(-2I - J + 3K)$
	Ans. (d) : $V_1 V_2 = (2I - J + K) (I + J - K)$
a b c d (a) 2 1 4 3	=2-1-1=0
(a) 2 1 4 5 (b) 3 4 1 2	Hence angle between V1 and V2 is 900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I K J
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$V1 \times V2 = 2 - 1 - 1$
	$V1 \times V2 = 2 -1 1 1 1 1 -1$
Ans. (c):	= I(-1-1) - J(-2-10) + K(2+1)
(a) Application layer–It is the top most layer in OSI & TCP/IP layered model & when we use a web	= -2I - J + 3K
browser, which is actually using Hyper Text Transfer	So answer will be (b).
	3 YCT
o so me i ora computer strence bet, 2012 i apei-ill s	

13. Consider a fuzzy set A defined on the interval X = [0, 10] of integers by the membership Junction

$$\mu_{\rm A}({\rm x}) = \frac{{\rm x}}{{\rm x}+2}$$

Then the α cut corresponding to $\alpha = 0.5$ will be

- (a) $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- (b) $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- (c) $\{2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- (d) { }

Ans. (c) : Because, putting value of X from 0 to 10 in membership function $\mu_A(x) = x / x + 2$ we get 0/2, 1/3, 2/4, 3/5, 4/6, 5/7, 6/8, 7/9, 8/10, 9/11, 10/12means they are belonging with degree 0, 0.33, 0.5, 0.6 ------0.83. here α -cut = 0.5 so first two elements will not be included in the result as their degree of belongingness 0.5. So answer will be (c). 14. Let T(n) be the function defined by T(n) = 1

and T(n) = 2T (n/2) + \sqrt{n} , which of the following is TRUE?

- (a) $T(n) = O(\sqrt{n})$
- (b) $T(n) = O(\log_2 n)$
- (c) T(n) = O(n)
- (d) $T(n) = O(n^2)$

Ans. (c): $T(n) = O(n^2)$ Because, when you apply master theorem on the function T(n) then you get T(n) = O(n) so answer will be (c).

15. In classful addressing, an IP address 123. 23.
156.4 belongs to class format.
(a) A
(b) B

(d) D

(c) C

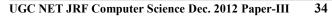
Ans. (a) : Because,

ause,	0 - 126 = Class A
	128 - 191 = Class B

192 - 223 = Class C

- 224 239 = Class D
- 240 255 = Class E

There, given address 123.23.256.4 belongs to class A So answer will be (a).


16. The Mandelbrot set used for the construction of beautiful images is based on the following transformation:

$$\mathbf{x}_{\mathbf{n}+1} = \mathbf{x}_{\mathbf{n}}^2 + \mathbf{z}$$

Here,

- (a) Both x & z are real numbers.
- (b) Both x & z are complex numbers.
- (c) x is real & z is complex.
- (d) x is complex & z is real. **Ans. (b) :** Both x & z are complex numbers

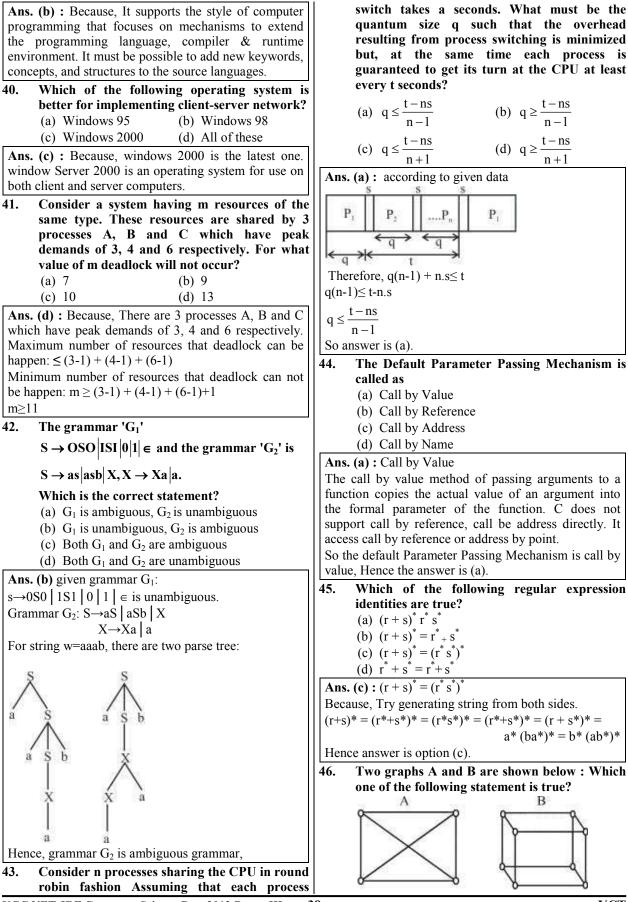
The Mandelbrot set is the set of values of c in the complex plane for which the orbit of 0 under iteration

of the complex quadratic polynomial $z_n+1 = z_n^2 + c$ remains bounded.

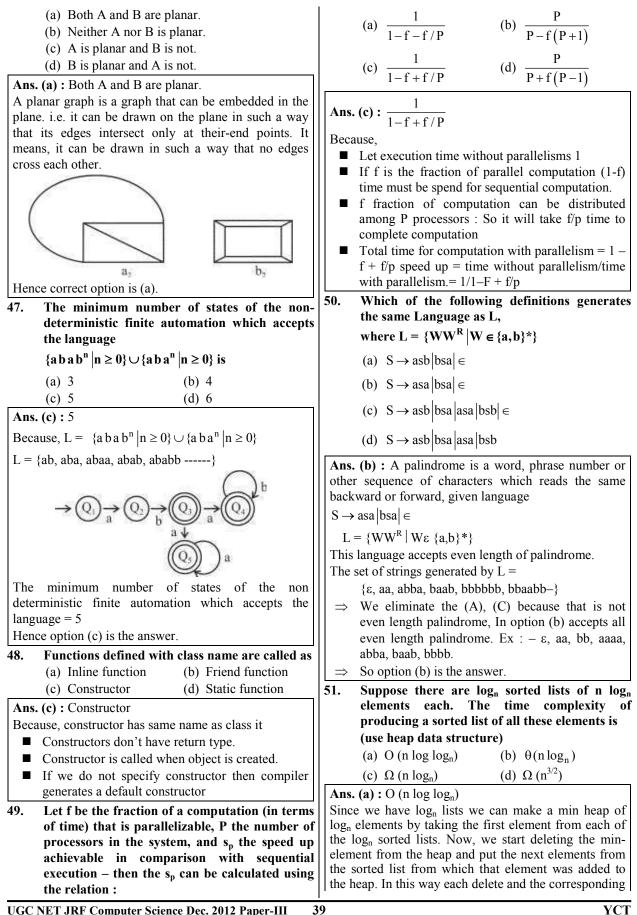
That is, a complex number c is part of the Mandelbrot set if, when starting with $z_0 = 0$ and applying the iteration repeatedly, the absolute value of z_n remains bounded however large n gets. So answer will be (b)

17. Which of the following permutations can be obtained in the output using a stack of size 3 elements assuming that input, sequence is 1, 2, 3, 4, 5 ?

(a) 3, 2, 1, 5, 4 (b) 5, 4, 3, 2, 1 (c) 3, 4, 5, 2, 1 (d) 3, 4, 5, 1, 2


	(0)	5,4	, 3, 2	, I		()	u) 5	, 4, 3	, 1, 2			
,	Ans. (c)											
2	Operation	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	
6		u s	u s	u s	0	u s	0	u s	0	0	0	
		s h	s h	s h	р	h	р	s h	р	р	р	
e		(1)	(2)	(3)		(4)		(5)				
s			2	3 2	2	4 2	2	5 2	2			
		1	1	1	1	1	1	1	1	1		
1	Output				3	3	34	34	345	352		
ne										3	4521	
	So option (c) is correct.											
	18. In a Linear Programming Problem, suppose											
	there are 3 basic variables and 2 non-basic											
	var	iable	es, th	ien 1	he	possi	ble	nun	ıber	of b	asic	
	solu	ıtion	s are									
	(a)	6				(b) 8					
		10				`	d) 1	2				
_	Ans. (c)		21166	Tot	alm	`	/		- soli	ition	are	
e 1	given by				arm	unioc	1 01	Uasi	5010	mon	are	
1			-									
	n ! / n					• 1	1	0	2		~	
3.	where m				SIC Y	variat	oles	& n	= 3	+ 2 =	= 5	
	total no.											
	hence total solution = $5 \mid 3 \mid 2 \mid = 5 \times 4/2 = 10$											
	So answer is (c).											
	19. Ide	ntify	the	follo	wing	g acti	vati	on fu	inctio	on :		
				_		1						
		φ(V	() = 2	$\frac{1}{1}$	+ ev	1 p(-x	* V	$+ \mathbf{V}$,			
	()	C .				e par			c			
			o funo						func			
		-							ian fi			
	Ans. (c)											
n	function											
	sigmoid											
ıg	function	that i	s def	ined	for a	all rea	ıl inp	out v	alues	and	has	
	a positive	eve	rywh	ere.								
	20. The	e no.	of w	avs	to d	istril	oute	n d	isting	uish	able	
									ies, s			
									1, 2, .			
						ollow			-, - , •			
	- 44			nl								
	(a)		$+n_{2}!$									
		$n_1!$	$+n_{2}!$	+	+r	n _k !						

(b) $\frac{n_1 !+ n_2 !+ \dots + n_k !}{n_1 !+ n_2 ! n_3 !\dots + n_k !}$


(a) n!	Ans. (d) :					
(c) $\frac{n!}{n_1!n_2!n_3!\dots n_k!}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$n_1!n_2!\dots+n_k!$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
(d) $\frac{n_1!n_2!\dots+n_k!}{n_1!-n_2!-n_3!\dots-n_k!}$	1 Qn 1 1 1 1					
Ans. (c) : Because, the number of ways to distribute n						
distinguishable objects into K distinct boxes so that n_i						
objects are placed in box i, $i = 1,, k \& n_1 +, + n_i$						
$= n \text{ is } n_1!/n_1, n_2, n_3 \dots n_k.$						
21. How many solutions do the following equations	Therefore, $Q_1 Q_0$ sequence is:					
have?	$00_{initial} \rightarrow 11_{1st} \rightarrow 10_{2nd} \rightarrow 01_{3rd} \rightarrow 004_{th}$					
$x_1 + x_2 + x_3 = 11$	24. If dual has an unbounded solution, then its					
where $x_1 \ge 1, x_2 \ge 2, x_3 \ge 3$	corresponding primal has					
(a) C(7, 11) (b) C(11,3)	(a) no feasible solution(b) unbounded solution					
(c) C(14, 11) (d) C(7, 5)	(c) feasible solution					
Ans. (d) : Given, equation is: $x_1+x_2+x_3=11$	(d) none of these					
where $x_1 \ge 1, x_2 \ge 2, x_3 \ge 3$	Ans. (a) : no feasible solution					
when we satisfied given conditions, then	Because, few property of primal & dual					
$x_1+x_2+x_3=11-(1+2+3)=5$	(1) The dual of dual linear programming problem is					
$x_1 + x_2 + x_3 = 5$	again the primal solution. (2) If either the primal or dual problem has					
hence, number of possible solutions are:	unbounded solution the other problem has no					
$^{(n-1)+k}C_k = {}^{(3-1)+5}C_5 = {}^7C_5 = {}^7C_2$	feasible solution.					
22. Which provides an interface to the TCP/IP suit	(3) If either the primal has a finite optimal solution					
protocols in Windows 95 and Windows NT?	the other one also possesses the same & the optimal value of the objective function of 2					
(a) FTP Active-X Control	problems are same.					
(b) TCP/IP Active-X Control	So answer is (a).					
(c) Calinsock Active-X Control	25. The number of distinct bracelets of five beads					
(d) HTML Active-X Control	made up of red, blue, and green beads (two					
Ans. (c) : Calinsock Active-X Control	bracelets are indistinguishable if the rotation of one yield another) is,					
Because, the window Sockets API (WSA), which was	(a) 243 (b) 81					
later shortened to winsock, is a technical specification	(c) 51 (d) 47					
that defines how windows network software should	Ans. (c) Verify that any necklace may be characterized					
access network services. It defines a standard interface	via one of the patterns below.					
between a windows TCP/IP client application and the	Recall that there are $\frac{3!}{(3-n)!}$ ways to put 3 things into					
underlying TCP/IP protocol stack. The nomenclature is based on the Berkeley Sockets API model used in BSD	(3-n)!					
for communication between programs.	n ordered slots.					
23. What are the final values of Q_1 and Q_0 after 4	$xxxxx : 3 = \frac{3!}{(3-1)!}$					
clock cycles, if initial values are 00 in the	(3-1)!					
sequential circuit shown below :	$xxxxy : 6 = \frac{3!}{3!}$					
	xxxxy: $6 = \frac{3!}{(3-2)!}$					
	3!					
	xxxyy: $6 = \frac{3!}{(3-2)!}$					
	3!					
	xxxyz: $6 = \frac{3!}{(3-3)!}$					
Q_0 Q_1						
(a) 11 (b) 10	xxyyz: $6 = \frac{3!}{(3-3)!}$					
(c) 01 (d) 00	(3-3)!					

3!	(b) $x_{11} = 20, x_{12} = 20, x_{13} = 10, x_{22} = 20, x_{23} = 20, x_{24} = 10,$					
xxyxy: $6 = \frac{3!}{(3-2)!}$						
(5 2).	Total $cost = 180$					
$xxyxz \cdot 6 = \frac{3!}{3!}$	(c) $x_{11} = 20, x_{13} = 10, x_{22} = 20, x_{23} = 20, x_{24} = 10, x_{32} = 10, Total cost = 180$					
xxyxz: $6 = \frac{3!}{(3-3)!}$						
xxyzy: $6 = \frac{3!}{(3-3)!}$	(d) None of the above					
(3-3)!						
31	Ans. (c)	:				
xyzyz: $6 = \frac{3!}{(3-2)!}$		D	D	D	D	C
		D ₁	D ₂	D_3	D_4	Supply
3+6+6+6+6+6+6+6=51	S_1	1(20)	2(10)	1	4	30
26. Which are the classifications of data used in	S ₂	3	3(10)	2(30)	1(10)	50
Mobile Applications?		4	2(20)	5	9	20
(a) Private data, User data, Shared data.	S ₃				-	20
(b) Public data, User data, Virtual data.	Demai	nd 20	40	30	10	
(c) Private data, Public data, Shared data.						
(d) Public data, Virtual data, User data.	The minimum total transportation cost is=					
Ans. (c) : private data are those data that are not		×10+3×10	-			
made available to the general public such as password	So answ					
and accounts. Public data are those data that are for			o to bo or	nnooto	to a si	ngle electri
the public good. Shared data are those data that are a						rd each o
set amount of data for all smart phones user on a		•	0			of extensio
specific plan. Shared data plans include both text		ards need				
message & calling.) 29		(b)	-	11 15
27. In an enhancement of a CPU design, the speed) 29		(d)		
of a floating point unit has been increased by		/		()		/T T T
20% and the speed of a fixed point unit has	Ans. (u) · Decause, connect first $+$ famps (L_1 , L_2 , L_3 ,					
been increased by 10%. What is the overall	L4) to extension 1 & take power nom extension 2. In					
speed achieved if the ratio of the number of	extension 2 we can connect only 5 lamps because out					
floating point operations to the number of fixed	of 4 one port is busy to supply power to extension 1					
point operations is 2 : 3 and the floating point	Similarly, for other extension we can connect only 3					
operation used to take twice the time taken by	famos because one port is busy to supply power to					
the fixed point operation in original design?	We can connect 4 lamps to first extension.					
(a) 1.2 (b) 1.55			-			~ 51 1
(c) 1.85 (d) 1.285	number of extension required for remaining 54 lamps					
Ans. (b) : Because, speed up = original time taken/new	= 18 extension. Total extension required to connect all 58 lamps = 18 +					
time taken		tension red	juirea to	connect	ali 58 la	mps = 18 +
Let x be the time for a fixed point operation original	1 = 19					
time taken = $(3x + 2*2x) / 5 = 7x / 5$			0		spect to	the Mobil
New time taken = $((3x / 1.1) + 4x / 1.2) / 5 = 8x / 1.32*$	Co	omputing		ture.		
$\frac{1}{5}$		L	ist—I		Li	st–II
So speed up = $7 * 1.32 / 8 = 1.155$	a.	Downlin	k control	1	I. 100 N	Abps
	b.	Radio co	ommunic	ation 2	2. Resid	lency
28. The initial basic feasible solution to the following transportation problem using Vagel's		data rate	-			cy (RL)
following transportation problem using Vogel's approximation method is	с	The ave	rage dur	ation	3. Send	5 ()
	5.		stay in ce			a BS to
D ₁ D ₂ D ₃ D ₄ Supply		4501 5	, in o		MD	
S_1 1 2 1 4 30	Ь	FDDI ba	ndwidth	/	4. 2-Mb	ins
S_2 3 3 2 1 50			114 10 1411	-	·. 2-1v1U	. Р.3
S_3 4 2 5 9 20	Co	odes :				
Demand 20 40 30 10			b c	d		
	(a	,	1 4	3		
(a) $x_{11} = 20, x_{13} = 10, x_{21} = 20,$ = 20, = 10, = 10	(b	·	4 2	1		
$x_{23} = 20, x_{24} = 10, x_{32} = 10,$	(c)		1 2	1		
Total cost = 180	(d)) 4	3 1	2		
UGC NET JRF Computer Science Dec. 2012 Paper-III 3	6					YC

$\mathbf{A}_{\mathrm{max}}$ (b) + D ₂₂₂₂₂₂₂	34. The power set of AUB, where
Ans. (b) : Because, (1)	A = $\{2, 3, 5, 7\}$ and B = $\{2, 5, 8, 9\}$ is
(1) Downlink control is sending a data from BS to	(a) 256 (b) 64
MD. Use of Downlink Control in Mobile	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
computing Architecture: The base station subsystem (BSS) is the section of a traditional	
cellular telephones network which is	Ans. (b) : Because, $A = \{2, 3, 5, 7\}$ and $B = \{2, 5, 8, 9\}$
responsible for handling traffic & signaling	$AUB = \{2, 3, 5, 7, 8, 9\}$
between a Mobile Device & the network	Power set going to have 2^6 elements which is 64
switching subsystem.	So the answer is (b)
	35. In Win 32, which function is used to create
	Windows Applications?
(c) User are highly mobile and randomly enter nad exit from cells. There is a parameter called	(a) Win APP (b) Win API
Residence Latency (RL), which characterizes	(c) Win Main (d) Win Void
the average duration of a user's stag in the cell.	Ans. (c) : Win main is the function which is provided
(d) FDDI (Fiber Distributed Data Interfere)	to create windows application. The user provided entry
specifies 100 mbps token passing, dual-ring	point for a graphical windows based application.
LAN using fiber-optic cable.	36. Suppose a processor does not have any stack
	pointer registers, which of the following
21 Which of the following flags are set when	statements is true?
31. Which of the following flags are set when 'JMP' instruction is executed?	
	(b) It cannot have nested subroutine calls.
(a) SF and CF (b) AF and CF	(c) Interrupts are not possible.
(c) All flags (d) No flag is set	(d) All subroutine calls and interrupts are
Ans. (d) : The JMP is instruction transfers extension to	possible.
the address generated by adding the 8-bits value in the	Ans. (d) : It cannot have subroutine call instruction
accumulator to the 16-bits value in the DPTR register.	because in nested subroutine calls we used to push old
Neither the accumulator nor the DPTR register are	subroutines into stack and pointing most recent call with stack pointer.
altered. No flags are affected by this instruction.	
32. A thread is a light weight process. In the above	· · · · · · · · · · · · · · · · · · ·
	shave the physical hardware is known as
statement, weight refers to	above the physical hardware is known as
statement, weight refers to (a) time	above the physical hardware is known as(a) Kernel(b) Bus
statement, weight refers to(a) time(b) number of resources	above the physical hardware is known as(a) Kernel(b) Bus(c) Shell(d) Stub
 statement, weight refers to (a) time (b) number of resources (c) speed 	above the physical hardware is known as(a) Kernel(b) Bus(c) Shell(d) StubAns. (a) : The kernel: consists of everything below the
statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above 	above the physical hardware is known as(a) Kernel(b) Bus(c) Shell(d) Stub
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light 	above the physical hardware is known as(a) Kernel(b) Bus(c) Shell(d) StubAns. (a) : The kernel: consists of everything below the system call interface and above the physical hardware.
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can 	above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. 	above the physical hardware is known as(a) Kernel(b) Bus(c) Shell(d) StubAns. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms.
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under inverse homomorphisms.
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under inverse homomorphisms. (c) The class of regular sets is closed under
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under inverse homomorphisms. (c) The class of regular sets is closed under quotient.
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under inverse homomorphisms. (c) The class of regular sets is closed under quotient. (d) The class of regular sets is closed under
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is closed under inverse homomorphisms. (c) The class of regular sets is closed under quotient. (d) The class of regular sets is closed under substitution.
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects (c) Depend on the memory availability (d) Depend on the processor 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is closed under quotient. (c) The class of regular sets is closed under substitution. Ans. (b) : Because, The class of regular set is not
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects (c) Depend on the memory availability (d) Depend on the processor Ans. (b) : In z-buffer-algorithm at each pixel we keep 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under quotient. (d) The class of regular sets is closed under substitution. Ans. (b) : Because, The class of regular set is not enclosed under inverse homomorphism but actually
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects (c) Depend on the memory availability (d) Depend on the processor Ans. (b) : In z-buffer-algorithm at each pixel we keep track of the distance to the closest surface that has been 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under inverse homomorphisms. (c) The class of regular sets is closed under guotient. (d) The class of regular sets is closed under substitution. Ans. (b) : Because, The class of regular set is not enclosed under inverse homomorphism but actually regular sets is closed under inverse homomorphism.
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects (c) Depend on the memory availability (d) Depend on the processor Ans. (b) : In z-buffer-algorithm at each pixel we keep track of the distance to the closest surface that has been drawn so for; and we throw away fragments that are 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under inverse homomorphisms. (c) The class of regular sets is closed under guotient. (d) The class of regular sets is closed under substitution. Ans. (b) : Because, The class of regular set is not enclosed under inverse homomorphism but actually regular sets is closed under inverse homomorphism.
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects (c) Depend on the memory availability (d) Depend on the processor Ans. (b) : In z-buffer-algorithm at each pixel we keep track of the distance to the closest surface that has been drawn so for; and we throw away fragments that are farther away than that distance. The closest distance is 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under inverse homomorphisms. (c) The class of regular sets is closed under guotient. (d) The class of regular sets is closed under substitution. Ans. (b) : Because, The class of regular set is not enclosed under inverse homomorphism but actually regular sets is closed under inverse homomorphism. 39. When a programming Language has the capacity to produce new data type, it is called
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects (c) Depend on the memory availability (d) Depend on the processor Ans. (b) : In z-buffer-algorithm at each pixel we keep track of the distance to the closest surface that has been drawn so for; and we throw away fragments that are farther away than that distance. The closest distance is stored by allocating an extra value for each pixel, in 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under inverse homomorphisms. (c) The class of regular sets is closed under quotient. (d) The class of regular sets is closed under substitution. Ans. (b) : Because, The class of regular set is not enclosed under inverse homomorphism but actually regular sets is closed under inverse homomorphism. 39. When a programming Language has the capacity to produce new data type, it is called as
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects (c) Depend on the memory availability (d) Depend on the processor Ans. (b) : In z-buffer-algorithm at each pixel we keep track of the distance to the closest surface that has been drawn so for; and we throw away fragments that are farther away than that distance. The closest distance is stored by allocating an extra value for each pixel, in addition to the red, green and blue cooler values, 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under inverse homomorphisms. (c) The class of regular sets is closed under quotient. (d) The class of regular sets is closed under substitution. Ans. (b) : Because, The class of regular set is not enclosed under inverse homomorphism but actually regular sets is closed under inverse homomorphism. 39. When a programming Language has the capacity to produce new data type, it is called as (a) Overloaded Language
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects (c) Depend on the memory availability (d) Depend on the processor Ans. (b) : In z-buffer-algorithm at each pixel we keep track of the distance to the closest surface that has been drawn so for; and we throw away fragments that are farther away than that distance. The closest distance is stored by allocating an extra value for each pixel, in addition to the red, green and blue cooler values, which is known as the depth or value. The maximum 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under quotient. (c) The class of regular sets is closed under substitution. Ans. (b) : Because, The class of regular set is not enclosed under inverse homomorphism but actually regular sets is closed under inverse homomorphism. 39. When a programming Language has the capacity to produce new data type, it is called as (a) Overloaded Language (b) Extensible Language
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects (c) Depend on the memory availability (d) Depend on the processor Ans. (b) : In z-buffer-algorithm at each pixel we keep track of the distance to the closest surface that has been drawn so for; and we throw away fragments that are farther away than that distance. The closest distance is stored by allocating an extra value for each pixel, in addition to the red, green and blue cooler values, which is known as the depth or value. The maximum number of objects that can be handled by this 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is closed under quotient. (c) The class of regular sets is closed under substitution. Ans. (b) : Because, The class of regular set is not enclosed under inverse homomorphism but actually regular sets is closed under inverse homomorphism. 39. When a programming Language has the capacity to produce new data type, it is called as (a) Overloaded Language (b) Extensible Language (c) Encapsulated Language
 statement, weight refers to (a) time (b) number of resources (c) speed (d) All the above Ans. (b) : A thread is a light weight process, light weight process means same-resources like memory can be shared between threads. So answer is (b). 33. The Z-buffer algorithm is used for Hidden surface removal of objects. The maximum number of objects that can be handled by this algorithm shall (a) Depend on the application (b) be arbitrary no of objects (c) Depend on the memory availability (d) Depend on the processor Ans. (b) : In z-buffer-algorithm at each pixel we keep track of the distance to the closest surface that has been drawn so for; and we throw away fragments that are farther away than that distance. The closest distance is stored by allocating an extra value for each pixel, in addition to the red, green and blue cooler values, which is known as the depth or value. The maximum number of objects that can be handled by this algorithm shall be arbitrary number of objects. 	 above the physical hardware is known as (a) Kernel (b) Bus (c) Shell (d) Stub Ans. (a) : The kernel: consists of everything below the system call interface and above the physical hardware. Provides the file system, CPU-scheduling, memory management and other operating system functions; a large number of functions for one level. 38. Which is not the correct statement? (a) The class of regular sets is closed under homomorphisms. (b) The class of regular sets is not closed under quotient. (c) The class of regular sets is closed under substitution. Ans. (b) : Because, The class of regular set is not enclosed under inverse homomorphism but actually regular sets is closed under inverse homomorphism. 39. When a programming Language has the capacity to produce new data type, it is called as (a) Overloaded Language (b) Extensible Language

UGC NET JRF Computer Science Dec. 2012 Paper-III 38

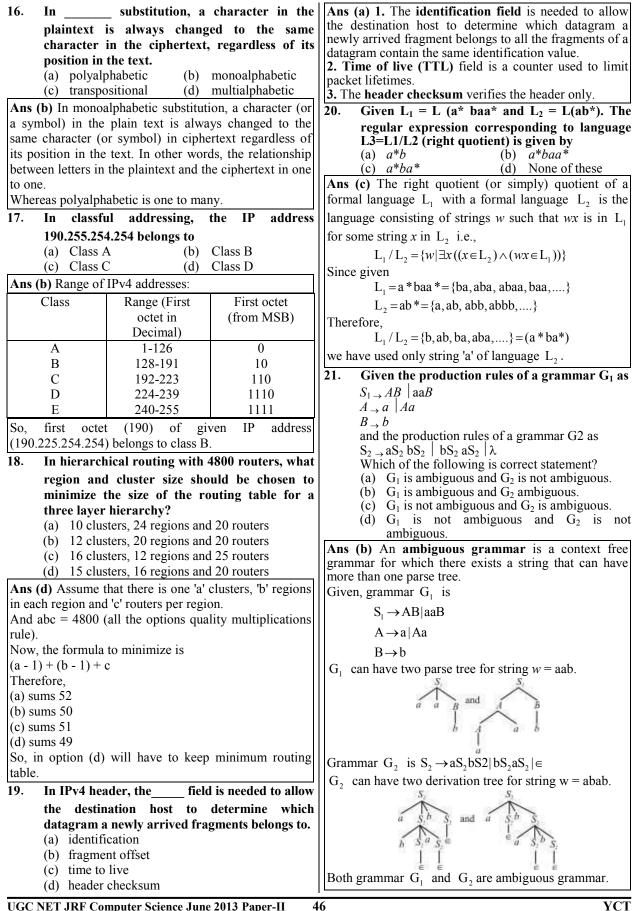
UGC NET JRF Computer Science Dec. 2012 Paper-III

insert will take $O(\log \log_n)$ time as delete in heap size n 54. The Object Modeling Technique (OMT) uses is $O(\log_n)$ & inserting an element on a heap of size n is the following three kinds of model to describe a also O(log_n). Now, we have a total of log_n x $\frac{n}{\log_n} = n$ system (a) Class Model, Object Model and Analysis Model. elements. (b) Object Model, Dynamic Model, and So total time will be $O(n \log \log_n)$ Functional Model. 52. Consider the program below in a hypothetical (c) Class Model, Dynamic Model and Functional programming language which allows global Model. variables and a choice of static or dynamic scoping int i; (d) Object Model, Analysis Model and Dynamic program Main() Model. { Ans. (b) : Object Modeling technique (OMT) has i = 10;types of models. call f(); (i) Object Model – It represents the static modeled domain. Main concepts are classes procedure f() are association with attributes & operations. Aggregation & generalization are predefined int i = 20;relationships. call g (); (ii) Dynamic Model – It represents view on the model main concepts are states, transitions procedure g() between states, and events to trigger ł transitions. Action can be modeled as print i; occurring within states generalization and Let x be the value printed under static scoping aggregation are predefined relationship. and y be the value printed under dynamic (iii) Functional model – It handles the process scoping. Then x and y are persecuting of the model, corresponding (a) x = 10, y = 20(b) x = 20, y = 10roughly to data flow diagrams. Main concepts (c) x = 20, y = 20(d) x = 10, y = 10are process, data store, and data flow. OMT is Ans. (a) : In static scoping, the scope of an identifier a predecessor of the unified modeling language is determined by its location in the code, and since that (UML) doesn't change, the scope doesn't either. 55. The factors that determine the quality of a In dynamic scoping, the scope is determined by software system are sequence of calls that has held to the use of an (a) Correctness, reliability identifier and since that can be different each time that use is reached, is dynamic. (b) efficiency, usability, maintainability x = 10, y = 20(c) testability, portability, accuracy, error Since the value of x is based on static scoping in tolerances, expandability, access control, the procedure g() print i will directly look into the audit. global scope & find i = 10 which was previously set by (d) All of the above main() Ans. (d) : All of the above Since the value of y is based on dynamic point, The ISO 9126 – 1 Software Quality procedure g() will first look into the function which Model identifies 6 main qualities called its i.e. procedure f() which has a local i = 20, Characteristics namely: Functionality, Reliability, which will be taken & 20 will be printed. Usability, Efficiency, Maintainability, Portability 53. If the parse tree of a word w generated by a Chomsky normal form grammar has no path 56. If a relation with a Schema R is decomposed of length greater than i, then the word w is of into two relations R₁ and R₂ such that length $(\mathbf{R}_1 \cup \mathbf{R}_2) = \mathbf{R}_1$ then which one of the following (a) no greater than 2^{i+1} (b) no greater than 2^{i} is to be satisfied for a lossless joint (c) no greater than 2^{i-1} (d) no greater than i decomposition (→indicates functional **Ans.** (c) : no greater than 2^{i-1} dependency) It a parse tree for a word string w is generated by a (a) $(R_1 \cap R_2) \rightarrow R_1$ or $R_1 \cap R_2 \rightarrow R_2$ MF & the parse tree (b) $R_1 \cap R_2 \rightarrow R_1$ ■ has a path length of at most i, • then the length of w is at most $2^{(i-1)}$ (c) $R_1 \cap R_2 \rightarrow R_2$ So answer is (c). (d) $R_1 \cap R_2 \rightarrow R_1$ and $R_1 \cap R_2 \rightarrow R_2$

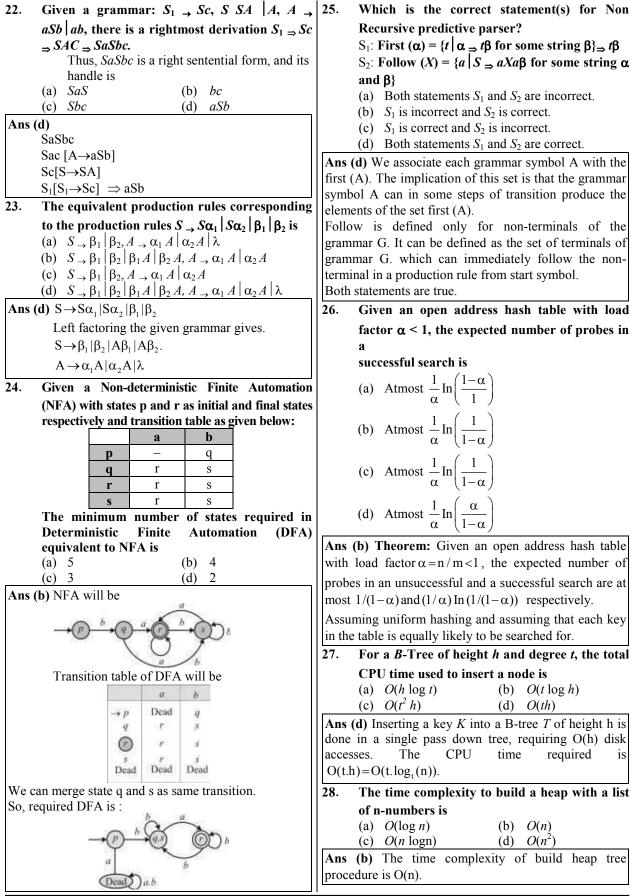
UGC NET JRF Computer Science Dec. 2012 Paper-III 40

Ans. (a) : Let $R(A, B, C)$ and B is the key	61. Which one is a collection of templates and
Let $R_1 = (A, B)$ and $R_2 = (B)$ So $R_1 UR_2 = R_1$	rules?
Definition of lossless D : says that if the intersection of	(a) XML (b) CSS
two relation has a common attribute and that is a key	(c) DHTML (d) XSL
in any of the relation then it is lossless	Ans. (d) : XSL stands for extensible style sheet
Now $R_1 \cap R_2 = B \dots$ AND $B \to R_1$	language and is a style sheet language for XML
So lossless and it can also be stated that	documents. An XSL style sheet is like with CSS, a file
$R_1 \cap R_2 = B \dots AND B \to R_2 \dots \dots$	that describes how to display an XML document of a given type
So lossless therefore if we have any one of the above	given type.
then it is lossless	62. A program P calls two subprograms P_1 and P_2 . P_1 can fail 50% times and P_2 40% times. Then
57. Given the following statements :	D con foil
(i) Recursive enumerable sets are closed under	(a) 50% (b) 60%
complementation.	(a) 10% (d) 70%
(ii) Recursive sets are closed under	Ans. (d) : Program P fails when either P_1 fails or P_2
complementation.	fails i.e. failure of P_1 failure of P_2 .
Which is/are the correct statements?	But this will also contain the case when both $P_1 \& P_2$
(a) only (i) (b) only (ii) (c) $(a + b) = b = (a + b) =$	fails at same time i.e. failure of P_1 failure of P_2 , since
(c) both (i) and (ii) (d) neither (i) nor (ii)	this case will be already be counted on $(P_1 + P_2)$
Ans. (b) : only (ii)	Therefore, our final answer will be failure of P_1 +
Recursive enumerable sets are not closed under	failure of P_2 – (failure of $P_1 \cap$ failure of P_2)
complementation.	
Recursive languages are closed under complement.	$\Rightarrow \left(\frac{50}{100}\right) + \left(\frac{40}{100}\right) - \left(\frac{50}{100} \times \frac{40}{100}\right)$
So the answer is (b).	(100) (100) $(100$ $100)$
58. Skolmization is the process of	(90) (2000)
(a) bringing all the quantifiers in the beginning of	$\Rightarrow \left(\frac{90}{100}\right) - \left(\frac{2000}{10000}\right)$
a formula in FDL.	
(b) removing all the universal quantifiers.	$=\left(\frac{20}{100}\right)-\left(\frac{200}{1000}\right)=\left(\frac{70}{100}\right)=70\%$
(c) removing all the existential quantifiers.	(100) (1000) (100)
(d) all of the above	
Ans. (c) : Because, Skolemization is the process of	63. Third normal form is based on the concept of –
removing all the existential quantifiers. It is one of the	·
steps in conversion of first order logic sentences into its equivalent CNF (conjunctive normal form)	(a) Closure Dependency
	(b) Transitive Dependency
59. Which level of Abstraction describes how data are stored in the data base?	(c) Normal Dependency
	(d) Functional Dependency
(a) Physical level(b) View level(c) Abstraction level(d) Logical level	Ans. (b) : Transitive Dependency
	Third normal form (3NF) is a normal used in data base
Ans. (a) : Physical level is the lowest level of data abstraction. This level describes how data is actually	normalization.
stored in the physical memory or database.	■ The relation R (table) is in second normal form
	2MF
60. The transform which possesses the "multi- resolution" property is	■ Every non-prime attribute of R is not-transitively
(a) Fourier transform	dependent on every key of R.
(b) Short-time-Fourier transform	A non-prime attribute of R is an attribute that does not
(b) Short-time-Fourier transform(c) Wavelet transform	belong to any candidate key of R.
	A transitive dependency is a functional dependency in
(d) Karhunen-Loere transform	which $X \rightarrow Z$ indirectly, by virtue of
Ans. (c) : A multi resolution analysis (MRA) or multi scale approximation (MSA) is the design method of	$X \rightarrow Y \& Y \rightarrow Z$ (where it is not the case that $Y \rightarrow X$)
scale approximation (MSA) is the design method of	So the option is (b).
most of the practically relevant discrete wavelet transform (DWT) & the justification for the algorithm	64. If the Fourier transform of the function $f(x, y)$
of the fast wavelet transform (FWT)	is F(m, n), then the Fourier transform of the
Wavelet transforms are broadly divided into three	function f(2x, 2y) is :
classes continuous, discrete and multi-resolution	$(1, 1, (m, n))$ $(1, 1, \dots, n)$
based.	(a) $\frac{1}{4}F\left(\frac{m}{2},\frac{n}{2}\right)$ (b) $\frac{1}{4}F(2m,2n)$
	· (2 2 / · · ·
	·

UGC NET JRF Computer Science Dec. 2012 Paper-III 41


1 1 (m n)	Codes :
(c) $\frac{1}{4}F(m,n)$ (d) $\frac{1}{4}F\left(\frac{m}{4},\frac{n}{4}\right)$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ans. (a) : To determine the factor by which the frequency change, recalls	(b) 2 3 1 4
	(c) 4 2 3 1
$f(\omega) = \int_{-\infty}^{\infty} f(x) e^{2\pi/\omega} dx$	
-∞-	Ans. (a) :
Replace x with 2x. Then	(a) CITE – defines the title of a work.
$f(\omega) = \int_{-\infty}^{\infty} f(2x) e^{4\pi/x\omega} dx$	(b) EM – defines emphasized text.(c) VAR – defines the variable
	(d) SAMP – defines the sample output from a
Let, $2x = u$,	computer system.
Then, $\frac{du}{dx} = 2 \text{ or } dx = \frac{du}{2}$	So answer is (a).
ux 2	67. An expert system shell is an expert system
Substituting gives :	without
$f(\omega) = \frac{1}{2} \int_{0}^{\infty} f(u) e^{2\pi/\omega} du$	(a) domain knowledge
$2 \int_{-\infty}^{\infty} 2 \int_{-\infty}^{\infty} dx$	(b) explanation facility
But this integral is the same as the defining integral for	(c) reasoning with knowledge
the Fourier transform for $f(x)$ with x' replaced with u's.	(d) all of the above
Therefore,	Ans. (a) : domain knowledge: A shell is an expert
$f(\omega) = \frac{1}{2}F(\omega')$	system without a knowledge base. A shell furnishes the expert system developer with the inference engine,
But we know $\omega' = m/2$	user interface, and the explanation and knowledge
	acquisition facilities.
so F(ω) for f(2x) is $\frac{1}{2}$ F $\left(\frac{m}{2}\right)$	68. An example of a dictionary-based coding
By similar argument,	technique is
	(a) Run-length coding (b) Huffman coding
for f(3y), F(ω) = $\frac{1}{2}$ F $\left(\frac{m}{2}\right)$	(c) Predictive coding (d) LZW coding
Combining the functions gives the Fourier transform,	Ans. (d) : LZW coding
	Option A, B, C all are statistical based coding techniques. In statistical based coding techniques we
for f(2x, 2y) as $\frac{1}{2}$ F $\left(\frac{m}{2}, \frac{n}{2}\right)$	will encode text according to the frequent occurrence
65. establishes information about when, why and	of the alphabets.
by whom changes are made in a software.	Hence option (d) : LZW Coding is universal lossless
(a) Software Configuration Management.	data compression algorithms is the algorithm the
(b) Change Control.	widely used in the GIF image format. It's an example
(c) Version Control.	for dictionary based compression algorithm. It uses a dictionary to code the input text
(d) An Audit Trail.	
Ans. (d) : An Audit Trail. A record showing who has accessed a computer	69. Which is the method used to retrieve the current state of a check box?
system and what operations he or she has performed	(a) get State () (b) put State ()
during a given period of time. Audit trails are useful	(d) get State () (d) write State ()
both for maintaining security and for recovering lost	Ans. (a) : get State ()
transactions.	Get state method returns the current state. Java lan
66. Match the following with respect to HTML tags and usage.	Thread. get state () method returns the state of this
List-I List-II	thread. It is designed for use in monitoring of the
a. CITE 1. Italic representation	system state, not for synchronization control.
b. EM 2. Represents output from	So get state () can retrieve the current state of check box.
programmes	
c. VAR 3. Represents to other source	70. Referential integrity is directly related to (a) Relation key (b) Foreign key
d. SAMP 4. Argument to a programme	(a) Relation Rey (b) Foleign Rey (c) Primary key (d) Candidate key
UCC NET IDE Computer Seignes Des 2012 Daver HI	42 YCT
UGC NET JRF Computer Science Dec. 2012 Paper-III	ICI

Ans. (b) : Foreign key: is a field is one table that	Codes :
uniquely identifies a row of another table or the same	a b c d
table. This is sometimes called a referencing to any other data.	(a) 1 2 3 4
	(a) $1 2 3 4$ (b) $2 3 1 4$
71. You are given four images represented as	(c) 3 2 4 1
$\mathbf{I}_1 \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \ \mathbf{I}_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$	(d) 3 2 1 4
$[1] \begin{bmatrix} 0 & 0 \end{bmatrix}, [2] \begin{bmatrix} 0 & 0 \end{bmatrix}, [2] \begin{bmatrix} 0 & 0 \end{bmatrix}, [2]$	Ans. (d) : Reinforcement learning is an area of
	machine learning inspired by behaviorist psychology
$\mathbf{I}_{3}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \mathbf{I}_{4} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix},$	concerned with how software agent ought to take
	actions in an environment so as to maximize some
The value of entropy is maximum for image	notion of cumulative reward C-1
(a) I_1 (b) I_2	Inductive learning uses lean by example system.
(c) I_3 (d) I_4	Supervised learning is the machine learning task of
Ans. (c) : I ₃	inferring a function from labeled training data. There
Entropy of image represents the randomness in pixels.	may manual labels of inputs are used.
In I_2 all pixels are same entropy is 0 : in I_3 2 pixels are	Unsupervised learning is a type of machine learning
same other 2 different in i_2 , i_4 , 3 are same	algorithm used to draw inferences from data sets
So most random is in I ₃	consisting of input data without labeled responses.
72. A cyptarithmetic problem of the type	Hence answer is (d)
SEND	74. A algorithm is guaranteed to find an optimal
<u>+ MORE</u>	solution if
MONEY	(a) h' is always 0.
Can be solved efficiently using	(b) g is always 1.
(a) depth first technique	(c) h' never overestimates h.
(b) breadth first technique	(d) h' never underestimates h.
(c) constraint satisfaction technique	Ans. (c) : h' never overestimates h
(d) bidirectional technique	A* is a computer algorithm that is widely used in path
Ans. (c) : Constraint satisfaction technique is a genre	finding & graph traversal.
of mathematical puzzles in which the digits are	A* is an informed search algorithm, or a best-first
replaced by letters of the alphabet or other symbols. It	search, meaning that it solves problems by searching
has one to one correspondence.	among all possible paths to the solution for the one that
In this cyptarithmetic problem there are some	incurs the smallest cost.
constraints like.	A* algorithm is guaranteed to find an optimal solution
(1) no two alphabets can have same number	it h' never overestimates h.
(2) every number can have values in the range $0 - \frac{1}{2}$	
9	75. Let θ (x, y, z) be the statement "x + y = z" and let there be two quantifications given as
By considering these constraints we will solve the	let there be two quantifications given as (i) $\forall x \forall y \exists Z \theta(x, y, z)$
above problem which satisfy these constraints like M will be 1as it is carry & so on.	
	(ii) $\exists Z \forall x \forall y \theta(x,y,z)$
73. Match the following :	Where x, y, z are real numbers. Then which
List–I List–II	one of the following is correct?
a. Supervised learning 1. The decision	(a) (i) is true and (ii) is true.
system receives	(b) (i) is true and (ii) is false.
rewards for its action at the end	(c) (i) is false and (ii) is true.
of a sequence of	(d) (i) is false and (ii) is false.
steps.	Ans. (b) : (i) is true and (ii) is true.
b. Unsupervised 2. Manual labels of	x + y = z for all x for all y there exist some z which
learning learning learning learning learning	will satisfy this equation as e.g. $x = 4351$ y = 1111
used.	then some $z = 5462$ is there and so on
c. Re-inforcement 3. Manual labels of	for some z say $z = 100$ there do not exist all x and all 4
learning inputs are used.	(there exist only some x , 4) which satisfies this
d. Inductive learning 4. System learns by	equation hence II is false.
a. Inductive learning 4. System learns by example	So answer is (b).
-	
UGC NET JRF Computer Science Dec. 2012 Paper-III 4	3 YCT


U.G.C. NET Exam. June, 2013 **COMPUTER SCIENCE** (Solved with Explanation Paper-II)

Note: This paper contains <i>fifty</i> (50) objective	Ans (b) Lines of Code (LOC) is a software metric used
	to measure the size of a computer program by counting
type questions of two (2) marks each. All	the number of lines in the text of the program's source
questions are compulsory. The candidates are	code.
required to select the most appropriate answer	A function point is a "unit of measurement" to express
of each question.	the amount of business functionally an information
1. COCOMO stands for	system (as a product) provides to a user. Function points
(a) Composite Cost Model	are used to compute a functional size measurement of
(b) Constructive Cost Model	software. The cost (in dollars or hours) of a single unit
(c) Constructive Composite Model	is calculated from past projects.
(d) Comprehensive Construction Model	4. A good software design must have
Ans (b) The constructive cost model (COCOMO) is a	(a) High module of coupling, High module
procedural software cost estimation model developed by	cohesion
W. Boehm. The model uses a basic regression formula	(b) High module coupling, Low module cohesion
with parameters that are derived from historical project	(c) Low module coupling, High module cohesion
data and current as well as future project characteristics.	(d) Low module coupling, Low module cohesion
2. Match the following :	Ans (c) Cohesion is a measure that defines the degree of intra-dependability within elements of a module.
List-I	Coupling is a measure that defines the lines of inter-
(a) Good quality	dependability among modules of a program. It tells at
(b) Correctness	what lines the modules interface and interact with each
(c) Predictable	other.
(d) Reliable	All good software have low coupling and high
List-II	cohesion.
1. Program does not fail for a specified time in a	5. Cyclometric complexity of a flow graph G with
given environment	n vertices and e edges is
(2) Meets the functional requirements	(a) $V(G) = e + n - 2$
(3) Meets both functional and non-functional	(b) $V(G) = e - n + 2$
requirements	(c) $V(G) = e + n + 2$
(4) Process is under statistical control	(d) V(G) = e - n - 2
Codes:	Ans (b) The cyclomatic complexity of a structured
$\begin{array}{cccc} \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{array}$	program is defined with reference to the control flow graph of the program, a directed graph containing the
(a) $3 2 4 1$	basic blocks of the program, with an edge between two
(b) $2 3 4 1$ (c) $1 2 4 3$	basic blocks of the program, with an edge between two basic blocks if control may pass from the first to the
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	second. The complexity M is then defined as
	M = E - N + 2P
Ans (a) Correctness meets the functional requirements.	where, E is the number of edges, N is the number of
Good quality more than just correctness meets both	vertices and P is the number of connected components.
functional and non-functions requirements. Reliability is a characteristic which states that program	For a single program (or subroutine or method), P is
does not fail for a specific time in given environment.	always equal to 1. So, a simpler formula for a single
Predictable means process in under statistical control	subroutine is:
and so is predictable.	M = E - N + 2
3. While estimating the cost of software, Lines Of	6. When the following code is executed what will
0	be the value of x and y ? int $x = 1$, $y = 0$
Code (LOC) and Function Points (FP) are used to measure which one of the following?	
(a) Length of code	y = x + +; (a) 2, 1 (b) 2, 2
(b) Size of software	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(c) Functionality of software	Ans (a) $y = x^{++}$; returns y then increases x. Initially given
(d) None of the above	x is 1. So, y is set to 1 and then x is incremented to 2.
	λ is 1. SO, y is set to 1 and then λ is incremented to 2.
UGC NET JRF Computer Science June 2013 Paper-II 4	

7. How many values can be held by an array A(-1,There are three form of schema, physical conceptual and external. m; 1, m)?External data hiding is tailored to the needs of a (b) m^2 (a) *m* particular category of users. Portions of stored data (c) m(m+1)(d) m(m+2)should not be seen by some users and begins to Ans (d) A[-1, m] [1, m] is two dimensional array implement a level of security and simplifies the view where for these users. Total number of rows = m - (-1) + 1 = (m + 2)12. A Network Schema Total number of columns = m - 1 + 1 = m(a) restricts to one to many relationship Therefore, size of the array is = m * (m + 2)(b) permits many to many relationship What is the result of the expression (1 & 2) +8. (c) stores Data in a Database 3/4)? (d) stores Data in a Relation (a) 1 (b) 2 Ans (b) 1. Network model permits the modeling of (c) 3 (d) 4 many to many relationships in data. A set consists of an owner record type, a set name, and member a member Ans (d) 01 record type. AND 10 2. The network data structure looks like a tree structure, (1 & 2) is a bitwise AND operation, i.e., 00 except that a dependent node called a child node may (3/4) give 4 as integer result. have more than one parent or owner node. So, one or Therefore, (1 & 2) + (3/4) = 0 + 4 = 4more nodes may have multi-parents. Therefore a How many times the word 'print' shall be 9. network model allows a more natural modeling of printed by the following program segment? relationship between entities. There is no superior or for $(i = 1, i \le 2, i + +)$ subordinate relationship in network model as exists in for $(j = 1, j \le 2, j + +)$ hierarchical models. Which normal form is considered as adequate for $(k = 1, k \le 2, k + +)$ 13. Printf ("print / n") for usual database design? (a) 1 (b) 3 (b) 3 NF (a) 2 NF (c) 4 NF (c) 6 (d) 8 (d) 5 NF **Ans (d)** For i = 1, j = 1Ans (b) BCNF does not guarantee dependency preserving, but 3 NF satisfied both dependency 2 times the word will be printed. preserving and lossless join. These are goal of database for i = 1, j = 2design. 2 times the word will be printed. So, 3 NF is considered as adequate normal form. for i = 2, j = 114. If D_1 , D_2 ... D_n are domains in a relational 2 times the word will be printed. for i = 2, j = 2model, then the relation is a table, which is a 2 times the word will be printed. subset of (a) $D_1 + D_2 + ... + D_n$ Which of the following is not a type of 10. (b) $D_1 \times D_2 \times ... \times D_n$ **Database Management System?** (c) $D_1 \cup D_2 \cup ... \cup D_n$ (b) Network (a) Hierarchical (d) $D_1 - D_2 - ... - D_n$ (c) Relational (d) Sequential Ans (b) The (x) Cartesian product operator is a binary Ans (d) There are four structural types of database operator to combines the tuples of the relation with all management systems. the tuples of the other relation. 1. Hierachical database. The value of relation is a subset of the cartesian product 2. Network database. (x) of D_1, D_2, \dots, D_n . 3. Relational database. 15. Which of the following addresses is used to 4. Object oriented database. deliver a message to the correct application But sequential is not a database model. program running on a host? Manager's salary details are to be hidden from 11. (b) IP (a) Port Employee Table. This Technique is called as (c) Logical (d) Physical (a) Conceptual level Datahiding Ans (a) A port number is a way to identity a specific (b) Physical level Datahiding process to which an Internet or other network message (c) External level Datahiding is to be forwarded when it arrives at a server. For the (d) Logical level Datahiding TCP (transmission control protocol) and UDP (user Ans (c) Data hiding is a software development datagram protocol), a port number is a 16 bit integer technique used in OOP. It is mainly used to hide that is put in the header appended to a message unit. Specific port numbers are often used to identity specific internal object details, i.e., the design decisions in a services. program that are most likely to change. UGC NET JRF Computer Science June 2013 Paper-II 45 YCT

UGC NET JRF Computer Science June 2013 Paper-II

47

UGC NET JRF Computer Science June 2013 Paper-II

29. The value of postfix expression:	32. The task of correcting and pre processing data
$834 + -382 / + \times 2$ \$ 3 + is	is called as
(a) 17 (b) 131	(a) Data streaming (b) Data cleaning
(c) 64 (d) 52	(c) Data mining (d) Data storming
Ans (d) Given, postfix expression is	Ans (b) Data scubbing, also called data cleansing is the
8 3 4 + - 3 8 2 / + * 2 \$ 3 +	process of amending or removing data in a database that
Evaluation of postfix expression using operand stack is	is incorrect, incomplete, improperly formatted, or
2	duplicated. 22 Using data $n = 2$, $n = 11$, $n = nn$, $d = 7$ in DSA
4 8 4	33. Using data $p = 3$, $q = 11$, $n = pq$, $d = 7$ in RSA
3 7 3 3	algorithm find the cipher text of the given plain
	text SUZANNE: (a) BUTAEEZ (b) SUZANNE
	(c) XYZABCD (d) ABCDXYZ
C 11 (E 11 11 11 11 1	Ans (a) Given, $P = 3$, $q = 11$, $d = 7$, $n = 33$.
	Therefore, using RSA algorithm
	$\phi(n) = (P-1)(q-1) = 2 \times 10 = 20$
7 2 3	
1 7 7 49 49 52	and $ed=1 \mod \phi(n)$
30. Consider the following statements for priority	$G(1)(e,\phi(n))=1$
	so, $e = 3, d = 7$
queue : S · It is data structure in which the intrinsie	Now, $a = 1, b = 2, c = 3, \dots, z = 26$
S ₁ : It is data structure in which the intrinsic ordering of the elements does determine	Given SUZANNE = 19, 21, 26, 1, 14, 14, 5
the result of the elements does determine	Since, $m' = m^e \mod N$.
the result of its basic operations.	So,
S_2 : The elements of a priority queue may be	$\Rightarrow 19^3 \mod 33 = 28 (i.e., 28 - 26 = 2)$
complex structures that are ordered on one	$=2 \Rightarrow B$
or several fields.	$\Rightarrow 21^3 \mod 33 = 21 \Rightarrow U$
Which of the following is correct?	$\Rightarrow 26^3 \mod 33 = 20 \Rightarrow T$
(a) Both S_1 and S_2 are correct.	
(b) S_1 is correct and S_2 is incorrect.	$\Rightarrow 1^3 \mod 33 = 1 \Rightarrow A$
(c) S_1 is incorrect and S_2 is correct.	$\Rightarrow 14^3 \mod 33 = 5 \Rightarrow E$
(d) Both S_1 and S_2 are correct.	\Rightarrow 5 ³ mod 33=26 \Rightarrow Z
Ans (d) 1. A priority queue is a data structure in which	Therefore ciphertext is BUTAEEZ.
the intrinsic ordering of the elements determines the	34. The relation "divides" on a set of positive
results of its basic operations.	integers is .
2. There are two types of priority queues: ascending order and descending order priority	(a) Symmetric and transitive
queues. The elements of a priority queue need not be	(b) Anti symmetric and transitive
numbers or characters that can be compared directly.	(c) Symmetric only
They may be complex structures that are ordered on one	(d) Transitive only
or several fields.	Ans (b) 1. A relation R on a set A is called
31. Repository of information gathered from	antisymmetric if and only if for any a and b in A,
multiple sources, storing under unified scheme	whenever $(a,b) \in R$ and $(b,a) \in R$ then $a = b$ must
at a single site is called as.	hold.
(a) Data mining (b) Meta data	2. Since, a/b and b/a is true if and only if $a = b$ then the
(c) Data warehousing (d) Database	relation satisfies the property of being antisymmetric.
Ans (c) 1. A data warehouse is constructed by	3. A relation <i>R</i> on a set <i>A</i> is called transitive if $(a,b) \in$
integrating data from multiple heterogeneous sources. It	$R \text{ and } (b,c) \in R \text{ the } (a,c) \in R \text{ must hold.}$
supports analytical reporting, structured and/or adhoc	4. If a/b and b/c hold then a/c also hold so, given
queries and decision making.	relation is antisymmetric and transitive.
2. Collections of database that work together are called	35. Give as good a big-O estimate as possible for
data warehouses. This makes in possible to integrate	the following functions:
data from multiple database.	$(n \log n + n^2) (n^3 + 2)$ and
3. Data mining is used to help individuals and	$(n! + 2^n) (n^3 + \log (n^2 + 1))$
organizations make better decisions. Meta data is data	(a) $O(n^5 + 2n^2)$ and $O(n^3 \times n!)$
that describes other data.	(b) $O(n^5)$ and $O(n^3 \times 2^n)$
UGC NET JRF Computer Science June 2013 Paper-II 4	8 YCT

(c) $O(n^5)$ and $O(n^3 \times n!)$	40. The truth value of the statements:
(d) $O(n^5 + 2n^2)$ and $O(n^3 \times 2^n)$	$\exists ! x P(x) \rightarrow \exists x P(x) \text{ and } \exists ! x \neg P(x) \rightarrow \neg \forall x P(x)$
Ans (c) Let f and g be two functions defined on some	(Where the notation $\exists ! x P(x)$ denotes the
subset of the real numbers one writes $f(x) = O(g(x))$ as $x \rightarrow 0$. If and only if there is a positive constant <i>m</i> such	proposition "There exists a unique x such that
	P(x) is true") are:
that for all sufficiently large value of x. In other words	(a) True and False (b) False and True
$\Rightarrow f(x) \le m g(x) \forall x \ge x_0$	(c) False and False (d) True and True
$\Rightarrow f(x) = O(g(x))$	Ans : (d) (i) If there exists a unique x with $p(x)$ true,
$\rightarrow \lim_{x \to 0} f(x) = 0$	then there exist and x with $p(x)$ true. This is true as
$\Rightarrow \lim_{n \to \infty} \frac{f(x)}{g(n)} = 0$	exactly one is a subset of at least one.
36. A test contains 100 true/false questions. How	(ii) If there exists a unique x with $p(x)$ false, then there
many different ways can a student answer the	exist an x with $p(x)$ false. This is also true since exactly
questions on the test, if the answer may be left	one is a subset of atleast one and $\neg \forall x p(x) = \exists x \neg p(x)$.
blank also.	41. How many different Boolean functions of
(a) ${}^{100}P_2$ (b) ${}^{100}C_2$	degree 4 are there?
$(c) 2^{100} (d) 3^{100}$	(a) 2^4 (b) 2^8
Ans (d) There is three options of each question, i.e.,	(c) 2^{12} (d) 2^{16}
either answer true or answer false or leave it blank. So,	Ans : (d) Total number of boolean functions with total
total number of answering the test.	2^n
$= 3 \times 3 \times 3 \times \dots \times (100 \text{ times}) = 3^{100}$	Combinations = 2^{2^n} .
37. Which of the following connected simple graph	Given, $n = 4$, therefore,
has exactly one spanning tree? (a) Complete graph (b) Lord Harvey	Number of boolean functions = $2^{2^4} = 2^{16}$.
(a) Complete graph(b) Lord Harvey(c) Thomas Shadwell(d) Joseph Addison	
Ans (d) A connected simple graph has unique spanning	42. A Boolean operator θ is defined as follows:
tree only if graph edges have distinct edge weights.	101=1, 100=0, 001=0 and 000=1
38. How many edges must be removed to produce	What will be the truth value of the expression
the spanning forest of a graph with N vertices,	$(x \theta y) \theta z = x \theta (y \theta z)?$
M edges and C connected components?	(a) Always false
(a) $M + N - C$ (b) $M - N - C$	(b) Always true
$(c) M - N + C \qquad (d) M + N + C$	(c) Sometimes true
Ans : (c) $[M - N + C]$ edges must be remove to produce	(d) True when <i>x</i> , <i>y</i> , <i>z</i> are all true
to spanning fastest of a graph with 'N' vertices.	Ans : (b) $\overline{(xy+\overline{x}\overline{y})} = x\theta y$ always true.
39. Which of the following shall be a compound	43. Which one of the following is decimal value of
proposition involving the propositions p, q and p, that is true when sweeth two of the p, q and p	a signed binary number 1101010, if it is in 2's
r, that is true when exactly two of the p, q and r are true and is false otherwise?	complement form?
(a) $(p \lor q \land \neg r) \lor (p \land q \lor r) \land (\neg p \land q \lor r)$	(a) -42 (b) -22
(b) $(p \land q \land r) \land (p \land q \land r) \land (p \land q \land r)$	(c) -21 (d) -106
	Ans : (b) If MSB (most significant bit) of 2's
(c) $(p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land q \land r)$	complement representation is 1 then number is negative
(d) $(p \lor r \land q) \lor (p \land q \land r) \lor (\neg p \land q \land r)$	(magnitude is 2's complement) else number is positive
Ans : (c) Draw the truth table of boolean function that	itself.
involves p, q and r that is true when exactly two of the	Since MSB of given 2's complement representation is 1,
p, q and r are true and is false otherwise.	so, given number is negative and its magnitude is:
p q r f	\Rightarrow 2's complement of 1101010
	$\Rightarrow 0010101 + 1 = (0010110)_2$
	\Rightarrow (22) ₁₀
	So, number is - 22.
	44. A set of processors P_1, P_2, \dots, P_k can execute in
1 1 1 0	parallel if Bernstein's conditions are satisfied
Therefore,	on a pairwise basis; that is $P_1 \parallel P_2 \parallel P_3 \dots \parallel P_k$
$f = (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land \neg r)$	if and only if:

UGC NET JRF Computer Science June 2013 Paper-II 49

(a) $P_i \parallel P_j$ for all $i \neq j$	48. Let the page fault service time be 10
(b) $P_i \mapsto P_j$ for all $i = j + 1$	millisecond (ms) in a computer with average
(c) $P_i \Vdash P_j$ for all $i \le j$	memory access time being 20 nanosecond (ns).
(d) $P_i \Vdash P_j$ for all $i \ge j$	If one page fault is generated for every 10^6
Ans : (a) A set of processes can execute in parallel if	memory accesses, what is the effective access
Bernstein's conditions are satisfied on a pair wise basis;	time for memory?
that is $P_1 \sqcup P_2 \ldots P_k$ if and only if $P_1 \sqcup P_j$ for all $i \neq j$.	(a) 21 ns (b) 23 ns
45. When a mobile telephone physically moves	(c) 30 ns (d) 35 ns
from one of the another cell, the base station	Ans : (c) Given, page fault service time (c) = 10 msec
transfers ownership to the cell getting strongest	$=10\times10^6$ n sec
signal. This process is known as	Memory access time $(m) = 20$ nsec
(a) handoff (b) mobile switching	Pagefault rate = $1/10^6$
(c) mobile routing (d) cell switching	Therefore,
Ans : (a) In a cellular telephone network, handoff is the	
transition for any given user of signal transmission from	EMAT = $\frac{1}{10^6} \times 10 \times 10^6 + \left(1 - \frac{1}{10^6}\right) \times 20$
one base station to a geographically adjacent base	
station as the user moves around.	$=10+20-\frac{20}{10^6} \Rightarrow 30 \text{ n sec}$
46. A virtual memory based memory management	10°
algorithm partially swaps out a process. This is	49. Consider the following UNIX command:
an example of	sort <in> temp; head - 30 <temp; rm="" temp<="" th=""></temp;></in>
(a) short term scheduling	Which of the following functions shall be
(b) long term scheduling	performed by this command?
(c) medium term scheduling	(a) Sort, taking the input from "temp", prints 30
(d) mutual exclusion	lines from temp and delete the file temp
Ans : (c) Medium term scheduling is a part of	(b) Sort the file "temp", removes 30 lines from
swapping. It removes the processes from the memory. It	temp and delete the file temp
reduces the degree of multiprogramming. The medium	(c) Sort, taking the input from "in" and writing
term scheduler is in charge of handling the swapped-out	the output to "temp" then prints 30 lines from
A long term schedules determines which program are	temp on terminal. Finally "temp" is removed.
admitted to the system for processing. It select	(d) Sort, taking the input from "temp" and then
processes from the queue and load them into memory	prints 30 lines from "temp" on terminal.
for execution.	Finally "temp" is removed.
The short-term scheduler decides which of the ready,	Ans : (c) Sort, taking the input from "in" and writing
in-memory processes is to be executed after a clock	the output to "temp" then prints 30 lines from temp on
interrupt, an I/O interrupt, an operating system call, or	terminal. Finally "temp" is removed.
another form of signal.	50. The mv command changes
47. Assuming that the disk head is located initially	(a) the inode(b) the inode-number
at 32, find the number of disk moves required	(b) the inode-number(c) the directory entry
with FCFS if the disk queue of I/O block	(d) both the directory entry and the inode
requests are 98, 37, 14, 124, 65, 67:	Ans : (c) mv (short for move) is a Unix command that
(a) 310 (b) 324	moves one or more files or directories from one places
(c) 320 (d) 321	to another. If both filenames are on the same file
Ans : (d) Given request is: 98, 37, 14, 124, 65, 67	system, this results in a simple file rename, otherwise
Using FCFS (first come first serve) disk	the file content is copied to the new location and the old
scheduling. 14 32 37 65 67 98 124	file is removed.
	Using my requires the user to have write permission for
	directories the file will move between. This is because
· · · ·	my changes the content of both directories (i.e., the
So, total number of disk moves:	source and the target) involved in the move. The files
= 66 + 84 + 110 + 59 + 2 = 321	' <i>i</i> '-number (short for " <i>i</i> -node number") does not change.

50

UGC NET JRF Computer Science June 2013 Paper-II