Youth Competition Times RRB JE 2nd Stage (CBT-II) CAPSULE ELECTRICAL & ALLIED ENGINEERING Theory + MCQ's Study Material and Question Bank

Chief Editor A.K. Mahajan

Compiled & Written by Er. Anil Kumar, Er. Ajeet Kumar

> **Computer Graphics by** Balkrishna, Charan Singh

Editorial Office 12, Church Lane Prayagraj-211002 § 9415650134

Email : yctap12@gmail.com website : www.yctbooks.com/www.yctfastbook.com/www.yctbooksprime.com © All Rights Reserved with Publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and E:Book by APP Youth Prime BOOKS In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

Basic Concepts	
Circuit Law	
Magnetic Circuit	
AC Fundamental	
Measurement and Measuring Instruments	
Electrical Machines	
(a) D.C. Machines	
(b) 1-phase and 3-phase Transformers	
(c) Three-Phase Induction Motor and Single-Phase Induction Motor	
Synchronous Machine	
Generation, Transmission and Distribution	
Estimation and Costing	
Utilization of Electrical Energy	
Basic Electronics	

Syllabus for Electrical & Allied Engineering Exam Group-JE

Basic concepts:

Concepts of resistance, inductance, capacitance, and various factors affecting them. Concepts of current, voltage, power, energy and their units.

- <u>Circuit law</u>:
 - Kirchhoff's law, Simple Circuit solution using network theorems.
- Magnetic Circuit:

Concepts of flux, mmf, reluctance, Different kinds of magnetic materials, Magnetic calculations for conductors of different configuration e.g. straight, circular, solenoidal, etc. Electromagnetic induction, self and mutual induction.

AC Fundamentals:

Instantaneous, peak, R.M.S. and average values of alternating waves, Representation of sinusoidal wave form, simple series and parallel AC Circuits consisting of R.L. and C, Resonance, Tank Circuit. Poly Phase system – star and delta connection, 3 phase power, DC and sinusoidal response of R-Land R-C circuit.

Measurement and measuring instruments:

Measurement of power (1 phase and 3 phase, both active and reactive) and energy, 2 wattmeter method of 3 phase power measurement. Measurement of frequency and phase angle. Ammeter and voltmeter (both moving oil and moving iron type), extension of range wattmeter, Multimeters, Megger, Energy meter AC Bridges. Use of CRO, Signal Generator, CT, PT and their uses. Earth Fault detection.

Electrical Machines:

(a) D.C. Machine – Construction, Basic Principles of D.C. motors and generators, their characteristics, speed control and starting of D.C. Motors. Method of braking motor, Losses and efficiency of D.C. Machines.

(b) 1 phase and 3 phase transformers – Construction, Principles of operation, equivalent circuit, voltage regulation, O.C. and S.C. Tests, Losses and efficiency. Effect of voltage, frequency and wave form on losses. Parallel operation of 1 phase/3 phase transformers. Auto transformers. (c) 3 phase induction motors, rotating magnetic field, principle of operation, equivalent circuit, torque-speed characteristics, starting and speed control of 3 phase induction motors. Methods of braking, effect of voltage and frequency variation on torque speed characteristics, Fractional Kilowatt Motors and Single Phase Induction Motors: Characteristics and applications.

Synchronous Machines:

Generation of 3-phase e.m.f. armature reaction, voltage regulation, parallel operation of two alternators, synchronizing, control of active and reactive power. Starting and applications of synchronous motors.

Generation, Transmission and Distribution:

Different types of power stations, Load factor, diversity factor, demand factor, cost of generation, inter-connection of power stations. Power factor improvement, various types of tariffs, types of faults, short circuit current for symmetrical faults. Switchgears and Protection: Rating of circuit breakers, Principles of arc extinction by oil and air, H.R.C. Fuses, Protection against earth leakage / over current, etc. Buchholz relay, Merz-Price system of protection of generators & transformers, protection of feeders and bus bars. Lightning arresters, various transmission and distribution system, comparison of conductor materials, efficiency of different system. Cable – Different type of cables, cable rating and derating factor.

Estimation and costing:

Estimation of lighting scheme, electric installation of machines and relevant IE rules. Earthing practices and IE Rules. Utilization of Electrical Energy:

Illumination, Electric heating, Electric welding, Electroplating, Electric drives and motors.

Basic Electronics:

Working of various electronic devices e.g. P N Junction diodes, Transistors (NPN and PNP type), BJT and JFET. Simple circuits using these devices.

Content Detailed

Concepts of Resistance Inductance Capacitance, and various factors affecting them Concepts of Current Voltage Power Energy and their units.

Units and Dimensions				
Quantities	Unit	Dimension		
Resistance	Ohm	$\left[ML^2T^{-3}A^{-2}\right]$		
Resistivity	Ohm-meter	$\left[ML^{3}T^{-3}A^{-2}\right]$		
Conductivity	Mho/m or Siemens/m	$[M^{-1}L^{-3}T^{3}A^{2}]$		
Voltage	Volt	$[ML^2T^{-3}A^{-1}]$		
Current	Ampere	[A]		
Electric Power	Watt	$[ML^2 T^{-3}]$		
Electric Energy	kWh	$[ML^2T^{-2}]$		
Permittivity	Farad/meter	$[M^{-1}L^{-3}T^4A^2]$		
Electric field	V/m or N/C	$[MLT^{-3}A^{-1}]$		
intensity				
Capacitance	Farad	$[M^{-1}L^{-2}T^{4}A^{2}]$		
Inductance	Henry	$[ML^2T^{-2}A^{-2}]$		
Permeability	Henry/meter	$[\mathrm{MLT}^{-2}\mathrm{A}^{-2}]$		
Magnetic field Density	Wb/m ²	$[MT^{-2}A^{-1}]$		
mmf	AT or Gilbert	[A]		
Reluctance	AT/Wb or per Henry	$[M^{-1}L^{-2}T^2A^2]$		
Permeance	Wb/AT or Henry	$[\mathrm{ML}^{2}\mathrm{T}^{-2}\mathrm{A}^{-2}]$		
Luminous flux	Lumen	$[ML^2T^{-3}]$		
Illumination	Lux or Lumen/ m ²	$[MT^{-3}]$		

Resistance

It may be defined as the property of a substance due to which it opposes the flow of electricity through it. It is represented by R.

■ Ohm's Law-

Ohm's law states that current through a conductor between two points is directly proportional to the potential difference across its ends, provided all physical conditions and temperature, remain constant. I \propto V

Slop = resistance

Vector form of Ohm's law-

 $\vec{j} = \sigma \vec{E}$

where, j = current density E = electric field

 σ = Conductivity

Limitations

- It is not applicable to unilateral electrical components like diode and transistor etc.
- It is not applicable to non-linear, non-metallic, vacuum tubes, electrolytes, semi-conductor etc.

Applicable

- It is applicable to both AC and DC circuit and bilateral elements.
- It is also applicable to metallic conductor and linear elements such as resistor.

Symbol of resistance:

- Conductor Conductor (up to 1Ω) → Conductor
- **⊃** Medium value (1Ω to 0.1MΩ) → Resistor
- **⊃** High value (0.1MΩ above)→Insulator

The unit of Resistance

• The practical unit of Resistance is Ohm (Ω) .

>1 Mega ohm = 10^6 Ohm > 1 Kilo ohm = 10^3 Ohm.

1 Milli ohm =
$$10^{-5}$$
 Ohm. > 1 Micro ohm = 10^{-6} Ohm.

Law of Resistance

R

$$\propto \frac{\ell}{A} \text{ or } R = \rho \frac{\ell}{A}$$

Where, ρ is a constant depending on the nature of the material of the conductor and temperature it is known as specific resistance or resistivity.

...(i)

In case R_o is not given the relation between the known Resistance R1 at t1°C and the unknown resistance R_2 at t_2 °C can be found as follows. D (1) чD D (1) *د* ۲

$$R_2 = R_0(1 + \alpha_0 t_2)$$
 and $R_1 = R_0(1 + \alpha_0 t_1)$

Unit of temperature coefficient (α) of resistance per unit °C.

Colour Coding of Resistance

Colour	Value	Multiplier	Tolerance
Black	0	1	-
Brown	1	10	±1%
Red	2	10^{2}	± 2%
Orange	3	10^{3}	± 3%
Yellow	4	10^{4}	± 4%
Green	5	10 ⁵	± 0.5%
Blue	6	10^{6}	± 0.25%
Violet	7	10 ⁷	± 0.10%
Grey	8	10^{8}	± 0.05 %
White	9	10 ⁹	-
Gold		10^{-1}	± 5%
Silver		10^{-2}	± 10%
(None)	_		± 20%
Formula for 4 Band Resistor			

- $R = AB \times 10^{C} \pm Tolerance$
 - Where, $A \rightarrow I^{st}$ significant digit $B \rightarrow 2^{nd}$ Significant digit

 - $10^{\rm C} \rightarrow \text{multiplier}$

■ Different Combinations of Resistance

Type-II

Solution

According to the balance Wheatstone bridge rule, • the resistance between C and D will be negligible.

ŵ

ŵ

Solution-

Type-IV

Solution-

Type-V

 $R_{ab} = \frac{R}{4}$

Solution-

Solution-

Type-VI

The capacitance of a capacitor is defined as the charge stored per unit voltage (potential difference

Capacitor stored energy in the form of electrostatic

 $C = \frac{\varepsilon_0 \varepsilon_r A}{d}$

- Charge stored of capacitor in metal plate only.
- Dielectric is insulating material which increase the capacity of plate to store charge.
- Capacitor does not allow sudden change of voltage because sudden change of voltage required infinite value of current source.

■ Factor Affecting of Capacitance

When area of capacitor plate increases then capacitance of capacitor increases.

Distance between plates-

The capacitance of capacitor is inversely proportional to the distance between plates.

- **Relative permittivity of dielectric**
- When relative permittivity of dielectric increases then capacitance of capacitor increases.

Types of Capacitor

- Ceramic capacitor is used for generation of large
- Electrolyte capacitors are generally used for DC
- Electrolytic capacitor is high capacitance to size
- Ceramic capacitor is mostly used for coupling and
- 5 Variable capacitor is called trimmer.

Basic Concept

8

Mica capacitor is used as high accuracy capacitor. Capacitance of $C = \frac{\varepsilon_o \varepsilon_r A}{d}$ Farad Capacitor $C = \frac{\varepsilon_{o}A}{\frac{t_{1}}{\varepsilon_{r_{1}}} + \frac{t_{2}}{\varepsilon_{r_{2}}} + \frac{t_{3}}{\varepsilon_{r_{3}}}} Farad$ $C = \frac{\varepsilon_{o}A}{\left[d - \left(t - \frac{t}{\varepsilon_{r}}\right)\right]} Farad$ Capacitance of different Dielectric having different thickness and relative permittivities When some part of parallel plate capacitor have air medium and some part have another medium then capacitance When some part of $C = \frac{\varepsilon_{o}A}{d} \left[\frac{1 + \varepsilon_{r}}{2} \right]$ parallel plate capacitor have air medium in $= C_{air} \left[\frac{1 + \varepsilon_r}{2} \right]$ Farad horizontal direction and some part have another medium then capacitance Capacitance of $C = \frac{2\pi\epsilon_o \epsilon_r \ell}{\log_o b/a}$ Farad cylindrical capacitor $C = \frac{2\pi\epsilon_{o}\epsilon_{r}\ell}{2.303\log_{10}b/a} \text{ Farad}$ i_c $C = \frac{(n-1)\varepsilon_{o}\varepsilon_{r}A}{d}$ Farad Capacitance of variable capacitor Where n = no. of plates ■ Combination of Capacitors Series $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_n}$ $C_{aa} = C_1 + C_2 + C_3 + \dots + C_n$ Parallel ■ Conversion of Capacitors Delta to Star Star to Delta C_A = C_{AB} + C_{CA} + \frac{C_{AB} C_{CA}}{C_{BC}}C_{AB} = $\frac{C_A C_B}{C_A + C_B + C_C}$ $C_B = C_{AC} + C_{BC} + \frac{C_{AC} C_{BC}}{C_{AB}}$ $C_{BC} = \frac{C_B C_C}{C_A + C_B + C_C}$ $C_C = C_{BC} + C_{AB} + \frac{C_{BC} C_{AB}}{C_{AC}}$ $C_{CA} = \frac{C_C C_A}{C_A + C_B + C_C}$ For same value of capacitance- $|C_{\Delta} = \frac{1}{3C_{V}}$

th accuracy capacitor. Charging and Discharging of Capacitor

= =		
Charging	Discharging	Time constant for capacitor
Current equation $I_{c}(t) = I_{0}e^{-t/\tau}$	Current equation $I_{C}(t) = -I_{0}e^{-t/\tau}$	$\tau = R_{th}C_{eq}$
Voltage equation $V_{C}(t) = V_{0}(1 - e^{-t/\tau})$	Voltage equation $V_{C}(t) = V_{0} e^{-t/\tau}$	
Charge equation $q_{c}(t) = Q_{0}(1 - e^{-t/\tau})$	Charge equation $q_{c(T)} = Q_0 e^{-t/\tau}$	

- Transient Equation for Capacitor $\begin{bmatrix}
 V_{c}(t) = V_{c}(\infty) + \left[V_{c}(0^{+}) - V_{c}(\infty)\right]e^{-t/\tau}t > 0
 \end{bmatrix}$
- Concept of Short Circuit and Open Circuit of Capacitor with Respect to Time

$$= \frac{\mathrm{C}\mathrm{d}\mathrm{V}}{\mathrm{d}\mathrm{t}}; \qquad \mathrm{V}_{\mathrm{c}}(\mathrm{t}) = \frac{1}{\mathrm{C}}\int_{0}^{\mathrm{t}}\mathrm{i}_{\mathrm{c}}(\mathrm{t})\mathrm{d}\mathrm{t} + \mathrm{V}(0^{-})$$

Behaviour of Capacitor

With initial condition	at $t = 0^+ \rightarrow$ act as a voltage source at $t = \infty \rightarrow$ act as open circuit
without initial	at $t = 0 \rightarrow$ act as short circuit
condition	at $t = \infty \rightarrow$ act as open circuit

- Some Important Points Regarding to Capacitor
 - Capacitor opposes rate of change of voltage.
 V_C (0⁻) =V_C (0⁺)
 - Capacitor Stores the energy in electrostatic field.
 - ⇒ While charging, $I_{C}(t) = \frac{CdV_{C}(t)}{dt}$ decreased and $I_{C}(t)$ must be positive.
 - While discharge, $I_{c}(t) = \frac{CdV_{c}(t)}{dt}$ decreased

but $I_C(t)$ must be negative.

While a capacitor charge and discharge polarity of dc voltage of capacitor never change.

Energy Stored in Capacitor

$$E = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C}$$
 Joules

- The general unit of power is Joule/second.
- The industrial unit of electrical power is H.P.(Horse power)
- 1 kW= 1000W
- 1 H.P. (metric) = 735.5 Watt or Joule/second
- 1H.P. (British) = 746 Watt or Joule/second.
- Brightness of different wattages bulbs connected in series or parallel-If we have bulbs of different wattages; W₁ and W₂ (if W₁>W₂) connected in a circuit the brighter bulb will be W₁ (the higher wattage).
- □ In series- The W₂ bulb will be brighter because it have more power (resistance increases). P \uparrow = I²R \uparrow
- **In parallel-** The W_1 bulb will be brighter because it V^2

has more power (resistance decreases). P $\uparrow = \frac{V^2}{R \downarrow}$

Electrical Energy

• It is defined as the work done by the source of electricity to maintain the rate of flow of charge in an electrical circuit.

- The movement of electrons from one point to another point generates the energy.
- The Joule or Watt second is the fundamental unit of electrical energy.
- The SI unit of electrical energy is kWh.
- It is represented by 'E'.

$$E = VIt = I^2Rt = \frac{V^2}{R}$$

- 1 kWh = 3.6×10^6 Joule
- 1 kWh = 860 kilo calories
- The electron volt (eV) is a smallest unit of energy.

■ Joule's law of Heating

According to this law, when a current 'I' passes through a conductor of resistance 'R' for time 't' then the heat developed in the conductor is equal to the product of the square of the current, resistance and time.

 $H \propto I^2$, $H \propto R$, $H \propto t$, $H \propto I^2 Rt$ $H = I^2 Rt$ Joule = $\frac{I^2 Rt}{4.18}$ Calories

Exam 🗉	Pointer 🔤 🧱
• The most important properties of insulating material	♦ The potential difference is –
used electrically is	It is the difference of potential between
High resistivity and high dielectric strength	two points in an electric circuit
• $[LT^{-2}]$ is the dimension of which quantities -	◆ The unit of electrical energy is- kWh
Acceleration	◆ Formula of energy is- Power × time
• One angstrom is- $1 \text{ Å} = 0.1 \text{ nm}$	 I he ability of a material to absorb a large amount of anorgy is defined as its
• 5400 Kilojoule is- 1.5 kWh	An atom of hydrogen has in its first orbit
• The dimensional formula $[ML^2T^{-2}]$ may correspond	An atom of nydrogen has
to - Torque, Energy, Work	• The resistance of an ideal conductor is - Zero
• The SI unit of which quantity is 'Newton'- Force	• The dimension of electrical conductivity is -
• $1 \text{ kWh} = 860 \text{ kCal} = \dots$	$[M^{-1}L^{-3}T^{3}A^{2}]$
3600 kJ (3.6 × 10° Joule)	• The electrical resistivity of very pure silver near $\hat{0}$
• 10 $\frac{\text{joule}}{\text{joule}}$ is equal to-	Kelvin temperature is - Very low but measurable
coulomb	• The change in the resistance of a conductor per unit
♦ 1 Volt is equal to - 1 Joule/Coulomb	original resistance per degree rise in temperature is
• Which electrical quantities is represented by σ	called– Temperature coefficient of resistance
(Sigma) - Conductivity	• The hot resistance of an incandescent lamp is about
 Components which obey ohm's law known as- 	The regultant abarge in a body is whenever the
Ohmic components	number of protons equals the number of electron in
The speed of electricity is- 2,97,842 km/s	it- Zero charge
• Specific resistance is the resistance offered between	• If one of the parallel resistors in any parallel circuit
the two ends of material having-	is removed from the circuit, then the total
Area of 1 cm ² and length 1 cm	resistance– Increases
• The SI unit of electric charge is - Coulomb	• Ais an fundamental quantity which flows
• The average resistance of a human body is- 1000Ω	through the material when electrical energy is
 The unit of conductivity is- 	The law governing the force between electric aborge
Siemens/m or mho/meter	is known as - Coulomb's law
• The value of temperature coefficient of resistance of	• The condition for the application of Ohm's law is-
a given conductor-	Constant Temperature
Different at different given temperatures	• If 12.25×10^{16} electrons pass through a conductor in
• The unit of specific resistance is- Ohm-meter	1 s, then how much current (in mA) will– 19.6
• The unit of electric current– Ampere	♦ Static electricity is produced by
♦ 1 coulomb is equivalent to – 1 ampere second	Both friction and induction
Basic Concept 1	1 YCT

• The correct Law of ohm's is $V \propto I$ and $V = IR$	♦ A Charged particle of charged q moving with a
• Electric charge measured in Coulombs has the charge	velocity v along the axis of a current carrying
of how many electron– 6.25×10^{18}	solenoid, The magnetic force on the particle is– 0
♦ If the resistor obeys Ohm's law, it is called a-	♦ Whenever a charged particle moves in a Electric
Linear resistor	Potential– Particle gets kinetic energy
• The ability of a charged particle to do work is	♦ The maximum number of electrons which the
known as– Electric potential energy	valence shell of an atom can have is – 8
 No current flows through two charged bodies if they 	♦ A hollow sphere of charge does not produce an
have equal_	electric field at– Interior point
▲ A group of passive devices only is_	Electron are held in atom due to – Coulombs force
Transformer Desister Constitut Inductor	 The thermal noise is due to random
A What is more the series initial and the form	Motion of free electrons
• what is meant by zero initial condition for a	• Ohm's Law is appliable to
system - System is at rest and no energy is	 Omits Law is applicable to – Desisting Cinemits & Desisting Cinemits
stored in any of its components	Resistive Circuits & Reactive Circuits
• Reciprocal of resistivity – Conductivity	• The force of attraction between two charge particles
• Analogous to conductivity is – Permeability	18- Directly proportional to the amount of charge
• The value of temperature coefficient of resistance	• The value of relative permittivity of vacuum is -1
(α) depends upon –	• Electric field is defined as the electric force per
Nature of material and temperature	unit Charge
♦ Ohm's law is valid for – All conductors	• The total energy of a revolving electron in an atom-
• The specific resistance of a copper conductor	Can never be positive
is More than the specific resistance of silver	• The resistivity of lead is- $20.8 \times 10^{-8} \Omega m$
• The force between two charges is true–	♦ Current always flow in direction –
A force of repulsion exists between	Opposite to that of Electron
two like Charges	• Conduction of electricity through conductor takes
• The electrons revolve around the nucleus with high	place by– Free electrons
velocity Which type of force acts against centrifugal	 Conduction will not occur when bodies are –
forceElectrostatic force of attraction	At same temperature
The difference between an atom and an ion is_	• The excessive neutral current is caused by –
Inc unreferee between an atom and an ion is-	Flactronic ballasts
the stome are posted as a whole	Two wires A and B of the same material but of
A charge switte on a conductor. The best way to	different lengths I and 21 have the radius r and 2r
▼ A charge exists on a conductor. The best way to	respectively. The ratio of specific resistance will
A Midway between two equal and similar changes	be 1.1
▼ Mildway between two equal and similar charges, a third areal and similar charges is placed. Then this	Specific resistance of a conductor depends upon
third shares will	Composition of conductor metavial
	Composition of conductor material
Remain in stable equilibrium	and temperature
• The electrical conductivity of metals typically of the and $f(in a hm^{-1}m^{-1})$	• particle act as a current carrier in a metanic
order of (in onm m)	Conductor- Only free electrons
• If an atom losses one or more electrons, it	• When alternating current pass through a conductor-
becomes Electrically positive	Portion of conductor near the surface
• The lines of force due to charged particles are	carries more current as compared to the core
Always curved	• The charge q_1 exerts a slight force on the charge q_2 ,
• The charge of a stable atom is – Uncharged	if the charge q_3 is brought near them, then the force
♦ Electric charge of a body is a condition due to –	of q_1 exerted on q_2 - Will be constant
Deficiency or excess of electrons	◆ The potential inside a charged hollow sphere is –
♦ In any electric circuit the flow of electron	Same as that on the surface
constitutes– An electric current	• For a hollow charged thin metallic sphere with
♦ An electric current can be classified as –	center O and a point on the surface of sphere as, R,
Conduction, Convection and	the magnitude of Electric Field and Potential from O
Displacement current	to R is respectively– Zero, Constant
• The effect on electric potential energy of charges	♦ Mobility is highest- Electron
when the separation between two charge increases	♦ Ampere-second could be the unit of – Charge
is- It decreases	♦ An electric current is- The movement of free
• One commercial unit of electrical energy converted	electrons predominantly in one direction
to Joule is equal to- $3.6 \times 10^6 \text{ J}$	♦ An electric current is the flow of-
♦ The three fundamental quantities are—	Both positive and negative charges
Mass Length Time	• The material which offers very low resistance to the
One kWh of electrical energy equals _ 860 bool	flow of electron is known as–
• One k whi of electrical chergy equals – OUV Ktal	

• • • • • • • • • • • • • • • • • • •	The resistance of a conductor, when its temperature is increased – Increases When an electric current flows through a conductor, its temperature rises. This is because of– Collisions between conduction electrons and atoms Which V-I curve is a straight line according to ohm's law – Conductors A free electron means– Valence electrons which are loosely attached to the nucleus Electrically charged atom is generally termed as– Ion The quality of a good conductor is– Low specific resistance On application of heat on electrolyte it exhibit– Negative temperature Coefficient A source of emf is required in order to– Get the electrons into motion For a two terminal device, resistance decreases when the temperature increases, the device is– A semiconductor In the case of direct current– Magnitude and direction of current remains constant In a parallel bank with unequal branch resistances– The current is highest in the lowest R A tolerance of 20% in the value of carbon resistor is represented by– Without any band With the rise in temperature, the resistance of carbon– A substance whose molecules consist of dissimilar atoms is called– Compound Boltzman constant represents the variation of voltage with– Temperature The dimensions of force are – (MLT ⁻²] Which have same dimensional formula – Work and Energy & Impulse and Momentum The device which does not have frequency dependent properties on its own is– n small droplets of same size are charged to the same potential V. If they coalesce to form one drop, then the potential of the drop will be– n ^{2/3} V Insulation of	* * * * * * * * * * * * * * * * * * *	In a copper atom, first orbit contains– Two electrons A thermistor has– Negative temperature co–efficient The colour bands on a fixed carbon resistor are red, red, gold, Its value is– 2.2 Ω Current velocity through a copper conductor is– Of the order of a few µm/s Ohm's law is not applicable to– Semi–conductors If the number of valence electrons of an atom is less than 4, the substance is usually– A conductor If the number of valence electrons of an atom is more than 4, the substance is usually– An insulator If the number of valence electrons of an atom is 4, then the substance is usually– Semiconductor Electric current is a– Scalar quantity The electric current in a discharge tube containing a gas is due to– Electrons, negative and positive ions The quantity of charge that will be transferred by a current flow of 10A over 1 hour period is– 3.6×10^4 C The drift velocity of free electrons is of the order of– 10^6 ms ⁻¹ Rate of flow of electric charge through a given point is known as– Current A piece of aluminium (Al) and germanium (Ge) are cooled fromT ₁ K to T ₂ K. The resistance of– Aluminium decreases and that of <u>germanium increases</u> The induction heat produced in a charge is given by $\frac{V^x}{R}$ where V is voltage induced in the charge and R is the charge resistance. The value of 'X' is - 2 Find the resistance, if the colour code on a resistor reads Brown, Black, Red, Gold- 1000 $\Omega \pm 5\%$ Convert 372°C into Kelvin Scale- Mar ² Rt Two resistors are said to be connected in series when – Same current passes in turn through both
٠	n small droplets of same size are charged to the	•	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
٠	same potential V. If they coalesce to form one drop, then the potential of the drop will be- $n^{2/3}V$ Insulating materials have the function of- Preventing a short circuit between	♦	Two resistors are said to be connected in series when – Same current passes in turn through both Two unequal resistance are connected in parallel,
♦	conducting wires The minimum charge on an ion is– Equal to the charge of an electron 	٠	then – Large current flows through smaller resistance Which is true for the parallel connection of resistors- Total power is equal to sum of individual branch power
* * *	Silver Resistance of a material always decreases if– Number of free electrons available becomes more are the materials having electrical conductivity much less than most of the metals but much greater than that of typical insulators– Semi-conductor All good conductors have high– Conductance International ohm is defined in terms of the resistance of– A column of mercury Pure metals generally have– High conductivity and	* * *	If two or more components are connected in they have the same potential difference (voltage) across their ends how is connected— Parallel In which circuits is the total voltage drop equal to the sum of the voltage drops in various element of the circuits - Series electric circuit The tolerance band of a colour-coded resistor having ±10% tolerance will be of colour- Silver One international ohm is equal to –
•	large temperature coefficient The lightest particle is- Electron	٠	1.00049 absolute ohm The SI unit of conductance is – Siemens
♦ Basi	The heaviest particle is- Proton & Neutron	♦ 3	The charge on one electron is – 1.602×10^{-19} C VCT
Das	it Concept 16		ICI

♦ 1	Joule of electrical energy equals – 1 Watt.sec	•	One mega ohm equals to $-$ 10 ⁶ Ohm
♦ A	n active element in a circuit is one which-	•	If the energy is supplied from a source, whose
	Supplies energy		resistance is 1 Ohm, to a load of 100 Ohms the
♦ D	ue to the properties of a conductor, does it pass		source will be- A voltage source
ci	urrent– Conductance	•	Two long parallel conductors carrying currents in
♦ T	he filament of an electric bulb is made up of		opposite directionseach other – Repel
tu	Ingsten because- Its melting point is high	•	When a voltage is applied, the direction of electric
♦ T	he fuse operate due to theeffect of current-		field is always fromtoPositive, Negative
	Heating	•	In parallel combination of resistance, the voltage –
♦ Т	he type of resistance has highest value of		Same across each resistance
te	emperature coefficient is- Carbon Composition	•	Electrical conductor opposes the flow of current
♦ Ic	leal voltage source should have -		through it – Resistance
• •	Zero internal resistance	•	Potential difference is measured in – Volts
•	was based upon the idea that the conduction	•	In series combination of resistance, the current
•	f electric and thermal current in metals is by		through each resistance is – Same
el	ectrons - Drude theory	•	The internal resistance of an ideal current source is –
▲ T	he symbol of current density is		Infinite
▲ If	the material has negative temperature coefficient	•	The relationship between Electrical Power and
▼ 11 th	with increase in temperature		current is- Non-linear
U.	Dagragaa	•	When the current flows through the heater coil, it
<u>۸</u>	practical current source is equivalent to an ideal		will illuminate, but the power supply line will not
	represent the parallel with Low conductance		illuminate because– Resistance of heater coil is
	defining the unit of electric current		more than supply wire
▼ 15	Conforme (and one electric current.	•	As the temperature of pure metal increases, the
	Coulomb/sec, ampere and voit/22		product of its resistivity and its conductivity-
▼ C	onsider an element represent by the relationship		Remains constant
D	etween current $I(t)$ and voltage $V(t)$ as follows $V(t)$	•	In series-parallel combination of resistance, the
-	1 (t) this device is classified as -		minimum number of resistance required is- I nree
Δ Γ	Non-linear time invariant	•	If two equal resistances connected in series across a
	or a given conductor, if the cross-sectional area		the same supply the newer produced will be
1r	icreases, then-		that of series connection.
А т(Resistance of the conductor decreases		Pertains to resistor only
♥ 11	the voltage source has a very high internal	•	They can dissing a desirable amount of nower
1r	npedance when compared to the external load		Determines total power in a series circuit –
11	npedance, then it can be considered as:	•	Multiplier of source voltage and current
А т	Constant Current Source		A current mirror can be used as an active load
♥ U	sually resistance used in electronic circuitly use -	•	because – It has high AC resistance
Δ τ(Onmic and wattage rating		In a parallel circuit the potential difference across
▼ 11	n identical resistance, each of resistance K are	·	the resistance– Is always constant
co	onnected in parallel, the equivalent resistance is.		An electromotive force is–
	R -equivalent = $\frac{\mathbf{R}}{\mathbf{R}}$	•	The voltage produced by voltage source
	n		A current is said to be direct current when its-
♦ Ir	n which circuits the transient currents may not	·	Magnitude remains constant with time
0	ccur- Pure resistive circuits		For a voltage source –
♦ If	the voltage across an element in a circuit is	•	Terminal voltage cannot exceed the source emf
li	nearly proportional to the current through it, then it		Whenever current is supplied by a source its
is	a– Resistor	•	terminal voltage-
♦ T	he ratio of voltage and current in a closed circuit–		A conductors provides a path for flow of current in
	Remains constant	•	circuit due to property of– Conductance
♦ T	he precision resistors are – Wire-wound resistors		A circuit contains two unequal resistance in parallel
♦ T	he slope of the graphical representation of Ohm's	•	then– Potential difference across each is same
la	w represents components- Resistance	•	The resistance R offered by a conductor varies-
♦ E	lectric field intensity at any point is equal to-		Directly as the resistivity and length of the
	Potential gradient at that point		material and inversely as its cross sectional area
♦ Ir	side a conducting sphere,remains	•	Reciprocal of resistance is called – Conductance
С	onstant– Potential	•	A practical voltage source consists of an ideal
♦ If	a voltage changes instantly the current through a		voltage source in- Series with internal resistance
re	esistor connected across it– Changes instantly	•	To determine the polarity of the voltage drop across
♦ U	nder thermal and electrical system analogy.		a resistor, it is necessary to know-
te	emperature is considered analogous to- Voltage		Direction of current through the resistor

- Two resistors are said to be connected in series uniquely if-
- Same current passes in turn through both To determine the value of the net resistance (R) for three parallel resistor R₁, R₂, R₃, we can use the
- $1/R = 1/R_1 + 1/R_2 + 1/R_3$ equation-The sum of currents entering a junction is 9A. If the current leaves the junction from 3 different paths having the same resistance, the current leaving from any one of the path will be-3 A
- For doubling the current in a circuit of constant resistance the applied voltage must be -Doubled
- The combined resistance of two equal resistors connected in parallel is equal to-

1/2 the resistance of one resistors

- In a four-branch parallel circuit, there are 50 mA of current in each branch. If one of the branches is open, the current in each of the other three branches is -Uneffected
- If two or more components are connected in..... then they have the same potential difference (voltage) across their ends -Parallel
- An open inductive coil has-Infinite resistance
- For a human body the ear to ear resistance is about 100 ohmohm-
- A resistance having rating 10 ohms, 10 W is likely Wire wound resistor to be-
- Resistance above.....is called high resistance-0.1 Mega ohm
- Heat in a conductor is produced on the passes of electric current due to-Resistance
- The thickness of insulation provided on the conductor depends on-

The magnitude of voltage on the conductor

- Resistance of a tungsten lamp.....as applied voltage increase-Increases
- Which one among Aluminium, Constantan, Mercury, Carbon have highest resistivity-Carbon
- Keeping the length constant, the diameter of a wires is reduced to one half. The new resistance will be-

4 times of the original

- For carbon resistance, The colour for 4 is- Yellow
- The length of a conductor is doubled and its area of cross section is also doubled. Then its resistance will be-**Remain unchanged**
- Whether circuit may be AC or DC which is most effective in reducing the magnitude of the current-Resistor
- When a low resistance is connected in parallel with a high resistance, the combined resistance is-Always less than the low resistance
- In a lamp load when more than one lamp are switched on the total resistance of the load-

Decreases

- When electric current passes through a bucket full of water, lot of bubbling is observed. This suggests that the type of supply is-D.C.
- Resistance of carbon filament lamp.....as the applied voltage increases-Decreases

- represented by-Green colour In.....resistance increases with increase
- Metals temperature-
- The resistance of perfect insulator is-Infinite
- The P.T.C. resistor is called-Sensistors
- Constantan wire is used for making rheostat because-No change in resistance when temperature varies
- When a voltage source is connected to a load, its terminal voltage falls due to-

High source impedance

In a series circuit with unequal resistances-

The highest resistance has the

- highest voltage drop
- Electric shock is-Sometimes fatal
- Voltage dependent resistors are usually made from-Silicon carbide
- Voltage dependent resistors are used-

To supress surges

- When a voltage of one volt is applied, a circuit allows one microampere current to flow through it. The conductance of the circuit is-1 μ-Ծ
- The minimum requirements for causing flow of current are-A voltage source and a conductor In absence of 150 Ω resistor it can build with-

Two 50 Ω in series and two 100 Ω parallel

- With the rise in temperature the insulating property of an insulator-Weakness
- If the voltage across a load is to be dropped, a resistor should be placed in-Series
- For a dc voltage an inductor-

Is virtually a short circuit

In a parallel combination of three resistances, the total resistance of a circuit is-

$\frac{R_1 R_2 R_3}{R_1 R_2 + R_2 R_3 + R_1 R_3}$

- If the diameter of a metal wire of a given length is Be 1/4th time doubled, its resistance will-
- If a number of resistors are connected in parallel, the reciprocal of the combined resistance is equal to the-Sum of the reciprocal of the

individual resistances

1 Mega ohm, 1 Watt resistance is likely to be a-

Carbon resistor

- In an electric circuit electrons flows from a point of-Lower potential to higher potential
- When n numbers resistances of each value r are connected in parallel, then the resultant resistance is x. When these n resistances are connected in series. total resistance is $n^2 x$
- Four resistance R₁, R₂, R₃ & R₄ are connected in series across a 220 V supply. The resistances are such that, $R_1 > R_2 > R_3 > R_4$. The least power consumption will be in- R_4 ٠ EMF in a circuit-Maintains potential difference

• A resistance of 5 ohms is further drawn so that its	♦ Electron volt is the unit of – Energy
length becomes double. Its resistance will now be-	• Essential condition for the transfer of heat from
20Ω	body to another by means of conduction-
• For a fixed supply voltage the current flowing	Both the bodies must be at different
through a conductor will increase when it-	temperatures
Length is reduced	◆ The C.G.S. unit of heat is- Calorie
✓ The substances which have a large number of free electrons, and offer a low resistance are called	• I newton is the same as $-$ 10° dynes
Conductors	• One B.O.1. unit is $-$ I kwh
• happenes to the resistance of a conductor if	• SI symbol given by SI system for thermodynamic
its length is increased three times and diameter is	anaray doos a 100 watt hulh consume in
halved– Resistance is increased 12 times	day 2400 Wh
♦ For current to flow, a circuit must be- Complete	■ Electric current passing through the circuit
• Temperature coefficient of resistance is defined as-	▼ Electric current passing through the circuit produces_
Increase in resistance per ohm per ⁰ C	Magnetic effect I uminous effect Thermal effect
♦ For a series as well as a parallel circuit–	• If the efficiency of a machine is to be high what
Powers are additive	should be low-
• A resistor R_1 dissipates the power P when connected	• A heater with short circuited heating element is
to a certain generator. If resistance R_2 is put in series	tested with a series test lamp, the test lamp will-
with R_1 , the power dissipated by R_1 - Decreases	Glow normally
• Two resistances R_1 and R_2 are connected in series	♦ An electron having mass 'm' kg and charge 'e'
across the voltage source where $K_2 > K_1$. The largest drop will be across	coulomb travels from rest through a potential
	difference of 'V' volts. It has a kinetic energy of-
than its cold resistance because the temperature co-	eV Joules
efficient of the filament is-	♦ One newton meter is same as – One joule
♦ Varistors are— Non-linear resistors	♦ The S.I. unit of electrical energy is – Joule
♦ Insulating materials have the function of—	♦ 'Erg' is a unit of measurement for – Energy
Preventing a short circuit between conducting	• Sparking occurs when a load is switched off because
wires and leakage current	the circuit has high– Inductance
♦ In a conductor, current density is the–	• When resistance element of a heater fuses and then
Current flowing per unit area	we reconnect it after removing a portion of it, the
• Formula of specific resistance is $\mathbf{o} = \frac{\mathbf{R} \cdot \mathbf{a}}{\mathbf{\Omega} - \mathbf{m}}$	bower of the neater will− Increase
ℓ	▼ II I, K and t are the current, resistance and time respectively, then according to joule's law best
• The resistivity of insulators at room temperature is-	produced will be proportional to- I^2Rt
Between 10' to 10 ^{ro} ohm cm	 If w is energy t is time and a is charge in an element
• Which expression is electric field strength- $\mathbf{E} = \mathbf{D}/\mathbf{\epsilon}$	dw
♦ In M.K.S. system one K110 watt is equal to-	then the voltage across the element is $\frac{dw}{da}$
■ Which material has 05% electrical conductivity	
Silver	• One unit of electrical energy equals – I Kwn
• The element which is canable of delivering energy	 Insulation resistance is expressed by – Mega onm Can dust the electricity against
by its own is known as– Active element	Conduct the electricity easily – Sea water
 Potential Difference is- Scalar Quantity 	Production of heat due to current is related by which
♦ In power control circuit the resistor used are-	The registers are normally specified by
Wire wound resistor	Nominal value of the resistor tolerance limit for
• A rheostat differs from potentiometer in the respect	the resistance value loading canacity in watts
that it- Has higher wattage rating	• For testing appliances the wattage of test lamp
♦ Find unit of power is – Watt	should be-
◆ The rate of doing work is called – Power	• For determining of sign for emf a rise in potential
• One calorie heat energy is equal to the electrical	should be considered— Both positive and negative
10 ⁻³ ,	♦ The heating element of an electric heater should be
$\frac{1}{860}$ kwh	made with a material which should have-
• Neutral is a circuit conductor that normally carries	High specific resistance and high melting point
back to the source- Current	♦ Ampere-hour is the unit of- Energy

Important Objective Questions asked in various Exams.

Energy =	$= P \times t$	Ans. (b) : Dielectric constant will not affect the
=	$=\frac{10\times100\times600}{10\times100\times600}$	selection of an inductor.
	1000	(i) Power loss
Energy =	= 600 kWh	(i) Fower loss (ii) Current rating
14. If the dist	tance between the plates of a parallel	(ii) Current rating
plate capa	acitor is increased 10 times and the	2mfl
area is	reduced to one-fourth, then its	Quality factor (Q) = $\frac{2\pi i L}{R}$
capacitan	ce	K (7)
(a) becom	$\operatorname{mes}\frac{1}{40}$ times	17. In heating effect, if 'I' is the current flowing through the conductor in 't' seconds having
(b) becom	es one half	a resistance 'D' then the electrical energy
(c) increa	ses 2 5 times	supplied is
(d) becom	hes 40 times	(a) IR^2 t joules (b) I^2Rt joules
(u) 00001	SSC JE-07.06.2024. Shift-III	(a) Π t joues (b) Π R joues (c) $\Pi^2 R$ /t joues
Ans (a) · Parall	el nlates canacitance.	SSC IF-07 06 2024 Shift-III
	ter plates capacitance-	Ans (b): According to Joules law, the amount of work
$C_1 = \frac{\varepsilon_0 \varepsilon_r A_1}{1} \dots$	(i)	required to maintain a current of L amperes through a
¹ d ₁		resistance 'R' ohm for t second then the electrical
If, $d_2 = 10d_1$		energy sumplied is \rightarrow
$A - \frac{A_1}{A_1}$		Electrical energy = $I^2 Rt$ joules
4		18 The value of inductance needed to store 4kWh
T1	$\epsilon_0 \epsilon_r A_2$	of energy in a coil carrying a 2000A current is:
I hen, capacitanc	$\operatorname{ce}(C_2) = \frac{d_2}{d_2}$	(a) 7.2×10^{6} H (b) 7.2 H
• / 4	-2	(a) 720 H (d) 72 H
$C_2 = \frac{\varepsilon_0 \varepsilon_r A_1 / 4}{1 - 1}$		SSC JE-07.06.2024. Shift-III
2 10d ₁		Ans (b) · Given that
$= 1 \left(\varepsilon_0 \varepsilon_1 A_1 \right)$		Stored energy in a inductor = $4 \times 10^3 \times 3600$ watt-sec
$ C_2 = \frac{1}{40} \frac{-0}{d} ^2$	-	Current (I) = 2000 A
)	
$C_2 = \frac{1}{40}C_1$		Stored energy = $\frac{-L1^2}{2}$
15 Which of	the following factors will NOT affect	$4 \times 10^{3} \times 3600 = \frac{1}{2} \times L \times 2000 \times 2000$
the selecti	on of a resistor?	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(a) Frequ	ency range	L = 7.2 H
(b) Tolera	ance	19. A 4Ω resistor has a specified maximum power
(c) Therm	nal resistivity	dissipation of 784 W. Calculate its maximum
(d) Power	rating (in watts)	current level.
	SSC JE-07.06.2024, Shift-III	(a) 16 A (b) 14 A
Ans. (a) : Frequ	ency range will not affect the selection	(c) 196 A (d) 10 A
of a resistor.		SSC JE-07.06.2024, Shift-III
Following fact	or will affect the selection of a	Ans. (b) : Given that,
resistance-		Resistance (R) = 4Ω
• Tolerance		Maximum power dissipation (P) = 784 W
• Thermal resis	tivity	I P
• Power rating	(in Watt)	$I = \sqrt{\frac{R}{R}}$
• Voltage rating	g	794
• Long-term sta	ability	$=\sqrt{\frac{784}{4}}$
• High tempera	ture performance.	V 4
16. Which of	the following factors will NOT affect	$=\sqrt{196}$
the selecti	on of an inductor?	= 14A
(a) Power	r loss	20. In case of electrical energy, the joule is also
(b) Dielec	etric constant	expressed as the
(c) Curren	nt rating	(a) newton-second (b) meter-second
(d) Qualit	ty factor	(c) watt-second (d) joule-second
	SSC JE-07.06.2024, Shift-III	SSC JE-11.10.2023, Shift-III
Basic Concept	1	l9 YCT

Ans. (c) : The joule is the SI unit of energy a measure 24. A constant voltage source is applied between the two ends of a wire. If the length of the wire of the capacity to do work or generate heat. is doubled and the radius remains the same, 1 Joule = One watt - second then the rate of heat developed in the wire If 15A current is flowing through a solenoid of 21. inductance 4H, find the magnetic energy stored (a) will be 4 times (b) will be zero in the solenoid. (c) will be halved (d) will remain the same (b) 540 J (a) 450 J SSC JE-11.10.2023, Shift-III (d) 1000 J (c) 100 J Ans. (c) : We know that SSC JE-11.10.2023, Shift-III $H \propto \frac{1}{R}$ $\left\{ H = \frac{V^2}{R} t \right\}$ Ans. (a) : Given, I=15 A, L=4H Then, From question Energy stored in the solenoid- $R_1 = \frac{\rho \ell}{A}$ $E = \frac{1}{2}LI^2$ Again $R_2 = \frac{2\rho\ell}{\Lambda}$ $= \frac{1}{2} \times 4 \times (15)^2 = \frac{1}{2} \times 4 \times 225$ then $H_1 \propto \frac{1}{R_1}$(i) E = 450 Joule A coil consists of 1000 turns having a cross-22. & $H_2 \propto \frac{1}{R_2}$(ii) sectional area of 0.4 mm². The mean length per turn is 40 cm and the resistivity of the wire is dividing (i) & (ii) 0.02µΩ–m. The resistance of the coil is _____. (a) 400Ω $\frac{\mathrm{H}_1}{\mathrm{H}_2} = \frac{\mathrm{R}_2}{\mathrm{R}_1}$ (b) 20μΩ (c) 200Ω (d) 20Ω SSC JE-11.10.2023, Shift-III $\frac{H_1}{H_2} = \frac{2\rho\ell}{A} \times \frac{A}{\rho\ell}$ Ans. (d) : Given. Total length $\ell = 1000 \times 40 \text{ cm} = 1000 \times 0.4 \text{m} = 400 \text{ m}$ $A = 0.4 \text{ mm}^2 = 0.4 \times (10^{-3})^2 = 0.4 \times 10^{-6} \text{m}^2$ $\therefore \qquad \frac{\mathrm{H}_1}{\mathrm{H}_2} = \frac{2}{1}$ $\rho = 0.02 \mu \Omega - m = 0.02 \times 10^{-6} \Omega - m$ then, \therefore $H_2 = \frac{1}{2}H_1$ $R = \frac{\rho \ell}{\Delta}$ So heat developed will be halved. $=\frac{0.02\times10^{-6}\times400}{0.4\times10^{-6}}=20\Omega$ A heater of resistance 300Ω is connected to the 25. main supply for 10 minutes. If the heat The capacitance of a parallel plate capacitor 23. produced in the heater during this time is 18 J, having two plates of area $A = 200 \text{ cm}^2$ and then find the current through it. separated by distance d = 10 cm is given by (a) 10A (b) 100A if the permittivity of medium is 8.854 (c) 0.10A (d) 0.01A $\overline{\times 10^{-12}}$ F/m SSC JE-10.10.2023, Shift-II (b) $17.7 \times 10^{-7} \ \mu F$ (a) 17.7 μF Ans. (d) : Given: (d) 17.7 PF (c) 17.7 F $R = 300\Omega$, t = 10 minutes = 600 second SSC JE-11.10.2023, Shift-III Heat (H) = 18 joule, I =? Ans. (b) : Given, We know that, $A = 200 \text{ cm}^2 = 200 \times 10^{-4} \text{m}^2$ $H = I^2 Rt$ d= 10 cm = $10 \times 10^{-2} = 10^{-1}$ m $18 = I^2 \times 300 \times 600$ $\epsilon_0 = 8.854 \times 10^{-12} \, \text{F} / \text{m}$ $I^2 = 1 \times 10^{-4}$ $\therefore C = \frac{\varepsilon_0 A}{d}$ I = 0.01A26. A wire of resistance 88 Ω is stretched to twice $=\frac{8.854\times10^{-12}\times200\times10^{-4}}{10^{-1}}$ $=1.7708\times10^{-12}F$ its original length. The resistance of a stretched wire would be (a) 176Ω (b) 352Ω $= 1.77 \times 10^{-12} \times 10^{6} \mu F$ (c) 88Ω (d) 22Ω $= 17.7 \times 10^{-7} \mu F$ SSC JE-10.10.2023, Shift-II

Basic Concept

Ans. (b) : Given that, $R = 88\Omega$ and length is twice its original length	3. Natures of the insulating material The ability of a capacitor to store charge does not
$R = \frac{\rho \ell}{a}$	29. A capacitor is allowed to accumulate the
	will it require to accumulate a charge of 70µC charge?
$\mathbf{a}_{2} = \frac{\mathbf{a}_{1}\ell}{2\ell}$	(a) 20 sec (b) 20μ sec (c) 200 μ sec (d) 2μ sec
$a_2 = a_1 / 2$	SSC JE-15.11.2022, Shift-II
$\mathbf{R}_1 = \frac{\rho \times 2\ell}{\rho / 2}$	$i = 3.5A, Q = 70\mu C$
$\mathbf{R} = \frac{4\rho\ell}{2} = 4\mathbf{R}$	$Q = 1t$ $Q = 70 \times 10^{-6}$
$\mathbf{R}_1 = -\mathbf{T}\mathbf{R}_1$ $\mathbf{R}_2 = 4 \times 88$	$\begin{array}{c} \mathbf{t} = \underline{\mathbf{-}} = \underline{\mathbf{-}} \\ \mathbf{i} = \underline{\mathbf{-}} \\ 3.5 \\ \hline 5.5 \\ \hline 5.$
$\frac{R_1 - 1000}{R_1 - 352\Omega}$	$t = 20 \mu \text{sec.}$
27. Calculate the resistance per metre length of a wire of diameter 40 mm and specific resistance	B.
of $3.14 \times 10^{-4} \Omega$ -m:	
(a) 4Ω (b) $\frac{1}{4} \Omega$	$C_i = 1\mu F$
(c) 40Ω (d) 400Ω SSC JE-10.10.2023, Shift-II	(a) $\frac{19}{7}$ F (b) $\frac{7}{10}$ µF
Ans. (b) : Given that, D = 40 mm	(c) $\frac{7}{-}$ uF (d) $\frac{19}{-}$ uF
$r = D/2 = \frac{40}{2} = 20mm$	7^{μ} SSC JE-15.11.2022. Shift-II
Specific resistance $(\rho) = 3.14 \times 10^{-4} \Omega - m$ We know that	Ans. (d) $C_1 = 3\mu F$
$R = \frac{\rho \ell}{r}, A = \pi r^2$	$C_i = 1\mu F$
\mathbf{A}^{A} $\mathbf{P} = \mathbf{P}^{\ell}$	$C_{AB} = C_2 + C_2 \parallel C_1$
$R = \frac{A}{A}$ $R = \frac{2.14 \times 10^{-4}}{2.14 \times 10^{-4}}$	$=1+\frac{3\times 4}{-1}$
$\frac{R}{\ell} = \frac{5.14 \times 10}{3.14 \times (20 \times 10^{-3})^2} = \frac{5.14 \times 10}{3.14 \times 400 \times 10^{-6}}$	7
$\frac{R}{R} = \frac{100}{100} = \frac{1}{100}$	$\frac{C_{AB} = -\mu\Gamma}{21}$
ℓ 400 4 From the given option taking ℓ = unity	current source, inductor and capacitor.
Then,	(a) Current source, voltage source, capacitor and resistor
$R = \frac{1}{4}\Omega$	(b) Voltage source, current source, capacitor and inductor
28. The ability of a capacitor to store charge does NOT depend on the	(c) Current source, voltage source, capacitor and inductor
(a) Amount of charge(b) Distance between the plates	(d) Current source, voltage source, resistor and inductor
(c) Areas of the plates(d) Nature of the insulating material	SSC JE-15.11.2022, Shift-II
SSC JE-09.11.2023, Shift-III	Voltage source - Current source
Ans. (a) : Capacitance $(C) = \frac{\varepsilon_0 \varepsilon_r A}{d}$	Current sourceVoltage sourceInductor-Capacitor
Capacitance depends - 1 Distance between the plates	Capacitor - Inductor Mesh - Node
2. Area of the plates	Charge - Flux Linkage

32. A circuit has an inductance of 20H. If the current in the circuit changes at the rate of 50mA/sec, then self-induced EMF is	35. Which of the following expressions gives the Joule's law of heating? (a) H α IRt (b) H α IR ² t
(a) 100 V (b) 1 V	(c) $H \alpha I^2 Rt$ (d) $H \alpha I^2 R/t$
(c) 1000 V (d) 1 mV	RRB JE 19.09.2019 Shift-II
SSC JE-16.11.2022, Shift-III Ans. (b) Given that, L = 20H	Ans. (c) : Joule's law of heating states that when a current (I) passes through a conductor of resistance (R) for time (t) then the heat developed in the conductor is equal to the product of the square of the current the
$\frac{\mathrm{di}}{\mathrm{dt}} = 50 \times 10^{-3} \mathrm{A/sec}$	resistance and time. or $H = I^2 Rt$
Self EMF $(E) = ?$	Then $H \propto I^2 Rt$
$E = L \frac{di}{dt}$	36. The SI unit of conductivity is- (a) Ohm-m (b) Ohm/m
$E = 20 \times 50 \times 10^{-3}$	(c) Mho-m (d) Mho/m
E = 1V	DSSSB JE 14.03.2021, Shift-I NPCIL ST 2019 (Kakrapar) MPMKVVCL (Rhopal) IF 2018
33. The resistivity of a wire depends on:	UPPCL JE 2018, Shift-II
(a) Only the radius of the wire	Vizag steel JET 25.10.2018, Shift-II
(b) both the length and area of the cross-section	UPPCL JE 27.08.2018, Shift-I
of the wire	SSC JE 22.01.2018, SMIT-1 HPSSR JE 2017 (Post code-579)
(c) only the length of the wire	KPTCL JE 2015
(d) the nature of the material of the wire SSC IF 1(11,2022, Shift III)	SSC JE 2014, Shift-I
SSC JE-10.11.2022, Sniit-111	PGCIL Diploma Trainee 14.11.2011
Ans. (d) $R = \rho \frac{\ell}{l}$	Ans. (u): The ST unit of conductivity is who/m.
A	\therefore R = $\frac{\ell}{}$
Where, $R \rightarrow \text{Resistance}$	σΑ
$\rho \rightarrow \text{Resistivity}$	ℓ meter
$\ell \rightarrow \text{Length}$	So, $\sigma = \frac{1}{RA} = \frac{1}{O(1)} \frac$
$A \rightarrow Area$	= (ohm meter) ⁻¹
Resistivity is numerically equal to the resistance of a	$=$ mho/meter $\therefore \Omega^{-1} =$ mho
substance having unit length and unit cross section area.	37. Which of the following conductors has the
The resistivity of a wire depends on the nature of the material of the wire because it is the intrinsic property	lowest resistivity?
of the substance thus it is independent of shape and size	(a) Aluminium (b) Copper
of the body i.e. length and area.	UPPCL JE 07.09.2021. Shift-L
34. In the figure shown below, if the current I	NPCIL ST 2019 (Kakrapar)
decreases at a rate of β , then V_p - V_Q is	Ans. (d) : Descending order of conductivity is given as follows
μ <u>μ</u>	Ag > Cu > Au > Al
(a) 0 V (b) $L \times \frac{di}{dt} \times \beta$	\therefore Conductivity $(\sigma) \propto \frac{1}{\text{Resistivity}(\rho)}$
(c) $-L\beta$ (d) $+L\beta$ SSC JE-16.11.2022, Shift-III	So, Ascending order of resistivity Ag < Cu < Au < Al
Ans. (c) Given that:	38. Conventional flow of electric current is from:
Current decreasing rate $-\frac{di}{d}$	(a) +ve to $-ve$ (b) $-ve$ to $+ve$
Current decreasing rate $-\frac{1}{dt} - \frac{1}{p}$	(c) Phase to neutral (d) Neutral to phase Korala PSC Asst: Cr. II Electrical Inspectorate 2015
P Q	Ans. (a) : Electric current always flow from positive terminal to negative terminal or it always flow from
From the above figure.	higher potential to lower potential.
$V_{PQ} = V_P - V_Q$	39. A 100-watt light bulb turned on for 8 hours
di	used:
$V_{PQ} = -L\frac{dt}{dt}$	(a) 80 Wh (b) 0.8 kWh
	(c) 8 kWh (d) None of the above
$v_{PQ} = -Lp$	DGVCL JE 2016

The flow of charge in a definite direction is called	75. A dependent source
electric current. It is measured by the time rate of flow	(a) May be a current source or a voltage source
of charge through the conductor.	(b) Is always a voltage source
Electric current $I = \frac{q}{2}$	(c) Is always a current source
t	(d) Neither a current source nor a voltage source
71. According to Joule's law of electrical heating	55C JE 04.03.2017, Shift-I
(a) $H = IR^2 t/4.18$ Calories	Ans : (a) Dependent source are classified as –
(b) $H = I^2 R^2 t^2 / 4$ 18 Calories	(1) Voltage dependent voltage source.
(c) $H = I^2 R^2 t/4$ 18 Calories	(11) Voltage dependent current source.
(d) $H = I^2 Rt/4$ 18 Calories	(iii) Current dependent voltage source.
HPSSSC IF 2018 Code -387	(iv) Current dependent current source.
Ang (d) + Joula's law states that the quantity of heat	
Ans. (u): Joure's law states that the quality of heat	AV. A BV. A CL A DL A
generated in a conductor is-	Y Y Y Y Y
$H \propto 1^2 Rt$	
The relation between calorie and joule is	1 1 1 1
4.18 joule = 1 calorie.	76. The element which is capable of delivering
Hence,	energy by its own is known as:
$\mathbf{u} = \mathbf{i}^2 \mathbf{R} \mathbf{t}$	(a) Non-liner element
$H = \frac{1}{418} \text{ cal.}$	(b) Unilateral element
	(c) Active element
72. A resistor of resistance R is connected to an	(d) Passive element
ideal battery. What will be the impact on	NMRC JE 2017
dissipated power if the value of R is decreased?	Ans : (c) The element which is capable of delivering
(a) decrease	energy by its own is known as active element.
(b) follows a sine curve	The elements which supply energy to the network are
(c) remain uncharged	known as active elements for example -DC generator,
(d) increase	AC generator, voltage sources like batteries, current
KPTCL JE 2017	source like photoelectric cells.
Ans. (d) : The relation between power dissipation and	77. Two bulbs are rated 100 W, each. If these
Ans. (d) : The relation between power dissipation and resistance is given by	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains
Ans. (d): The relation between power dissipation and resistance is given by E^2 i.e. Power dissipation is indirectly propertional	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be-
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased,	 77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase.	 77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be— (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes.	 77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be— (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is:	 77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be— (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P₁ & P₂ connected in series
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A	 77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P₁ & P₂ connected in series combination across the same supply then,
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A	 77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P₁ & P₂ connected in series combination across the same supply then, Total power P₂ = P₁×P₂
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Bajasthan JE (PHED) 2015	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ 100 × 100
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (a) = 360 C	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = 2	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ?	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as:
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ? \therefore q = it	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as: (a) current (b) net charge storage
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ? \therefore q = it $i = q = \frac{360}{230} = 30$	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as: (a) current (b) net charge storage (c) charge density (d) voltage
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ? \therefore q = it $i = \frac{q}{t} = \frac{360}{120} = 3A$	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as: (a) current (b) net charge storage (c) charge density (d) voltage <u>PGCIL Diploma Trainee 13.09.2018</u>
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ? \therefore q = it $i = \frac{q}{t} = \frac{360}{120} = 3A$ 74. The flow of electric current in a conductor is	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as: (a) current (b) net charge storage (c) charge density (d) voltage PGCIL Diploma Trainee 13.09.2018 Ans : (a) Electric current is the rate of charge flow past
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ? \therefore q = it $i = \frac{q}{t} = \frac{360}{120} = 3A$ 74. The flow of electric current in a conductor is due to flow of second	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as: (a) current (b) net charge storage (c) charge density (d) voltage PGCIL Diploma Trainee 13.09.2018 Ans : (a) Electric current is the rate of charge flow past a given point in an electric circuit. Its unit is ampere and powerbalance.
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ? \therefore q = it $i = \frac{q}{t} = \frac{360}{120} = 3A$ 74. The flow of electric current in a conductor is due to flow of	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be— (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are $P_1 \& P_2$ connected in series combination across the same supply then, Total power $P_T = \frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as: (a) current (b) net charge storage (c) charge density (d) voltage PGCIL Diploma Trainee 13.09.2018 Ans : (a) Electric current is the rate of charge flow past a given point in an electric circuit. Its unit is ampere and coulomb/second.
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ? \therefore q = it $i = \frac{q}{t} = \frac{360}{120} = 3A$ 74. The flow of electric current in a conductor is due to flow of (a) Electrons (b) Protons (c) Electrons and ions (d) Charged particles	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as: (a) current (b) net charge storage (c) charge density (d) voltage PGCIL Diploma Trainee 13.09.2018 Ans : (a) Electric current is the rate of charge flow past a given point in an electric circuit. Its unit is ampere and coulomb/second. $i_1 - \frac{dq}{d}$
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ? \therefore q = it $i = \frac{q}{t} = \frac{360}{120} = 3A$ 74. The flow of electric current in a conductor is due to flow of (a) Electrons (b) Protons (c) Electrons and ions (d) Charged particles SSC IE 04 03 2017 Shiff-I	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are $P_1 \& P_2$ connected in series combination across the same supply then, Total power $P_T = \frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as: (a) current (b) net charge storage (c) charge density (d) voltage PGCIL Diploma Trainee 13.09.2018 Ans : (a) Electric current is the rate of charge flow past a given point in an electric circuit. Its unit is ampere and coulomb/second. $\boxed{i = \frac{dq}{dt}}$
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ? \therefore q = it $i = \frac{q}{t} = \frac{360}{120} = 3A$ 74. The flow of electric current in a conductor is due to flow of (a) Electrons (b) Protons (c) Electrons and ions (d) Charged particles SSC JE 04.03.2017, Shift-I Ans. (a) The flow of electric current in conductor is	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as: (a) current (b) net charge storage (c) charge density (d) voltage PGCIL Diploma Trainee 13.09.2018 Ans : (a) Electric current is the rate of charge flow past a given point in an electric circuit. Its unit is ampere and coulomb/second. $i = \frac{dq}{dt}$
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ? \therefore q = it $i = \frac{q}{t} = \frac{360}{120} = 3A$ 74. The flow of electric current in a conductor is due to flow of (a) Electrons (b) Protons (c) Electrons and ions (d) Charged particles SSC JE 04.03.2017, Shift-I Ans : (a) The flow of electric current in conductor is only due to flow of alectrons. The direction of flow of	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ P _T = $\frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as: (a) current (b) net charge storage (c) charge density (d) voltage PGCIL Diploma Trainee 13.09.2018 Ans : (a) Electric current is the rate of charge flow past a given point in an electric circuit. Its unit is ampere and coulomb/second. $\boxed{i = \frac{dq}{dt}}$ ∴ i = electric current in Amp. a = charge in coulomb
Ans. (d) : The relation between power dissipation and resistance is given by $P = \frac{E^2}{R}$ i.e. Power dissipation is indirectly proportional to the resistance. Hence if the value of R is decreased, the power dissipation in the circuit will increase. 73. A charge of 360 C is transferred in 2 minutes. The current flowing is: (a) 180A (b) 60A (c) 2A (d) 3A Rajasthan JE (PHED) 2015 Ans. (d) : Given data, Charge (q) = 360 C time (t) = 2 minutes = 120 second current (i) = ? \therefore q = it $i = \frac{q}{t} = \frac{360}{120} = 3A$ 74. The flow of electric current in a conductor is due to flow of (a) Electrons (b) Protons (c) Electrons and ions (d) Charged particles SSC JE 04.03.2017, Shift-I Ans : (a) The flow of electric current in conductor is only due to flow of electrons. The direction of flow of current is opnosite to direction of flow of alectron	77. Two bulbs are rated 100 W, each. If these bulbs are connected in series to the mains supply, 220V, the total power consumed by both the bulbs would be- (a) 25 Watts (b) 50 Watts (c) 100 Watts (d) 200 Watts RRB SSE Secunderabad Green paper, 21.12.2014 Ans : (b) If two bulbs are P ₁ & P ₂ connected in series combination across the same supply then, Total power P _T = $\frac{P_1 \times P_2}{P_1 + P_2}$ $P_T = \frac{100 \times 100}{100 + 100} = 50$ Watt 78. The time rate of flow of electric charge past a given point is known as: (a) current (b) net charge storage (c) charge density (d) voltage PGCIL Diploma Trainee 13.09.2018 Ans : (a) Electric current is the rate of charge flow past a given point in an electric circuit. Its unit is ampere and coulomb/second. $i = \frac{dq}{dt}$ ∴ i = electric current in Amp. q = charge in coulomb t = time per sec

99.	A circuit component the	at opposes the change in	■ A circuit component which can deliver power in an
	circuit voltage is	(h) Conseitence	electric circuit for long duration of time is known
(a) Resistance (b) Capacitance		(d) All of the above	as active element.
(c) Inductance (d) All of the above			• A circuit element which only absorbs the power
chang	(U) : A clicuit comp de in circuit voltage is can	acitance	and convert it in heat or stores in electric field or
Chang		acitance.	magnetic field is known as passive element
	$i = C\left(\frac{dv}{dt}\right)$		102. In a delta connected network, when resistor is
	(dt)		open, the power will be (a) Zara (b) Deduced to $1/2$
	i i		(a) Zero (b) Reduced to $1/5$
	$dv = \frac{1}{C}dt$		(c) increased by 1/3 (d) Onenanged
Take	n the integration at both si	de	Ans. (b): In a delta connected network, when resistor is open the power consumption will be reduced to 1/3
$\int d\mathbf{v} = \int \frac{\mathbf{i}}{C} d\mathbf{t}$			
			R R R R R
	$v = \frac{1}{\alpha} \int i dt$	Volt	
	C J		
■ A c	circuit component that opp	oose the rate of change of	
curre	nt is known as inductance.		In a delta connected network, when one resistor is discomposed the network consumption is reduced by
	a - I di	1+	disconnected, the power consumption is reduced by
	$e = L \frac{dt}{dt}$	IL	The star connected network when one register is
100	Power loss in an elec	strical circuit can take	In a star connected network, when one resistor is disconnected the network consumption is reduced by helf.
100.	place in	tincal circuit call take	alsonnected the power consumption is reduced by hair.
	(a) Inductance only		105. Conventional current flow in simple electrical
	(b) Capacitance only		(a) From negative terminal to positive terminal
	(c) Inductance and resis	tance only	(a) From negative terminal to positive terminal (b) Determined by the load
	(d) Resistance only		(c) Not definable
Ans.	(d) : Power loss in an	electrical circuit due to	(d) From positive terminal to negative terminal
only	resistance.		Ans (d) : Conventional current flow in simple electrical
Powe	er loss element \rightarrow only res	istance	connection is from positive terminal to negative
Powe	er loss in resistance $(P) = I$	² R watt	terminal.
• Energy loss in resistance = I^2 Rt Joules		² Rt Joules	104. In a material, application of voltage will cause
= vit Joules		t Joules	a net motion of free charges from one point to
Energy storing element in an electrical circuit is		an electrical circuit is	another, such movement is called as :
Inductance and capacitance			(a) Electric power (b) Electric current
■ Ma	agnetic energy stored in in	ductance –	(c) Electric energy (d) Electric field
	$= 1$ \mathbf{I} \mathbf{I}	N^2	Ans. (b) : In a material, application of voltage will cause
$= \frac{1}{2} Ll^2 \because L = \frac{1}{8} $		- S	a net motion of free charge from one point to another,
 Electrical energy stored in capacitance 		anacitance –	such movement is called as electric current.
Electrical energy stored in capacitatice –		~P ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	105. Which is correct equivalent of delta if the star
$\frac{1}{2} cv^2 = \frac{1}{2} q.v = \frac{1}{2} \frac{q^2}{q}$			connected resistance are make the relation
2 2 2 2 c			$\mathbf{R}_{a} = \mathbf{R}_{b} = \mathbf{R}_{star}?$
101.	Passive element in a cire	cuit is one which	(a) $K_{star}/3$ (b) $(2/3)^*K_{star}$
	(a) Receives energy		(c) $5 n_{\text{star}}$ (u) $(3/2)^2 n_{\text{star}}$
(b) supplies energy (c) Both receives and supplies energy		mulias anaror-	Ans. (c): If all branches resistances of the star network
(c) Boin receives and supplies energy (d) Neither receives nor supplies energy		supplies energy	network is equal to 3R
(u) Include receives not supplies energy		n a circuit is one which	$\mathbf{p} = 2\mathbf{p}$
Ans. (a) : Passive element in a circuit is one which receives energy		in a circuit is one willen	$\kappa_{\text{Delta}} = 3\kappa_{\text{star}}$
■ There are two type of element		ent.	If $R_a = R_b = R_c$
Passive element Active element		Active element	■ It all the branch resistance of the delta network are
(i)	Resistor	Voltage source	equal to R then each branch in its equivalent star
(ii)	Inductor	Current source	network is equal to R/3.
(iii)	Canacitor	Transistor hattery	$R_{\text{Star}} = R_{\text{Delta}}/3$
	Cupucitor	generator	If $\mathbf{R}_{\mathbf{r}} = \mathbf{R}_{\mathbf{h}} = \mathbf{R}_{\mathbf{r}}$
·			
Basic	Concept		33 <u>YCT</u>

106. The unit of capacitance is	■ The SI unit of power is watt (w) which is joules per	
(a) Volts/Coulombs (b) Coulombs/Volt	second (j/s).	
(c) Ohm-meter (d) None of these	(D) W Work	
Ans. (b) : The unit of capacitance is Coulombs per volt	(Power)P = - = t = time	
	$= 1kWh=1kW\times1 hours$	
$C = \frac{1}{V}$ Coulombs/volt	$= 1000 \text{ watt} \times 3600 \text{ second}$	
The write of maintimity is alway mater	-36.00,000	
I he unit of resistivity is onm-meter.	- 30,00,000	
$a = P^A$ ohm meter	$1 \mathrm{kWh} = 3.6 \times 10^6 \mathrm{J}$	
$\beta = R \frac{l}{l}$ omm-meter	110 The employed of surrout flowing through a	
107 The canacitance of a canacitor is not affected	110. The amount of current flowing through a	
hv	(a) Applied sultage only	
(a) Thickness of the plates	(a) Applied voltage only	
(b) Distance between plates	(b) Ohmic value of resistance	
(c) Area of plates	(c) Applied voltage and ohmic value of the resistance	
(d) None of these	(d) None of above	
Ans. (a) : The capacitance of a capacitor is not affected	Ans. (c) : The amount of current flowing through a	
by thickness of the plates.	resistance depends on applied voltage and ohmic value	
Capacitance affected by-	of the resistance.	
$\epsilon_0 \epsilon_A$	According to Ohm's law - It states that the voltage V	
$C = \frac{d}{d}$	across a resistor is directly proportional to the current 'I'	
where, $C = Capacitance$	flowing through the resistor.	
$\varepsilon_0 = \text{permittivity of free space}$	V	
$\epsilon_r = relative permittivity$	= constant	
A = Area of plate	V	
d = Distance between plates	$\frac{v}{r} = R$	
108. The capacitance of the capacitor is directly		
proportional to the		
(a) Material of the plate	111. Which device stores electrical energy?	
(b) Area of the plate	(a) Inductor (b) Capacitor	
(c) Voltage across the plate	(c) Thermistor (d) Resistor	
(d) Polarity of the plates	Ans. (b) : The device which stores electrical energy is	
Ans. (b) : The capacitance of the capacitor is directly	capacitor.	
proportional to area of the plate.	■ Inductor stores magnetic energy in the form of	
$\sum_{\alpha} \sum_{\nu} \varepsilon_{\nu} \varepsilon_{\Gamma} A$	magnetic field.	
$C = K \frac{d}{d}$	 Resistor dissipates electrical energy. 	
Canacitance is inversely proportional to the distance	■ Thermistor is a resistor whose resistance is	
between plates.	dependent on voltage.	
	112. The condition of Ohm's law is :	
$C = \frac{Q}{M}$	(a) The temperature should be remaining constant	
	(b) Ratio V/I should be constant	
■ The property of a capacitor to 'store electricity' may	(c) Current should be proportional of voltage	
be called its capacitance.	(d) Temperature should vary	
109. Power is defined as	(a) · The condition of ohm's law is that the	
(a) The rate at which current flows in a circuit (b) The product of violation and projectories in a	temperature should be remained constant	
(b) The product of voltage and resistance in a	According to ohm's law the ratio of potential difference	
(c) The rate at which energy is radiated or	(V) between any two points on a conductor to the	
dissipated	(v) between any two points on a conductor to the current (I) flowing between them is constant	
(d) The accumulation of energy over time	V V	
Ans. (c) : The rate at which energy is dissinated is	i.e. $\frac{\mathbf{v}}{\mathbf{r}} = \text{constant}$ or $\frac{\mathbf{v}}{\mathbf{r}} = \mathbf{R}$	
known as power.		
■ Power is the rate of doing work.	This linear relationship is only valid for metallic	
or it is the work done in unit time.	conductors.	
Basic Concept	4 VCT	

If ratio of voltage to current at any point on characteristic curve is negative then the element is active otherwise it is passive.

□ Kirchhoff's First law (Current Law) (KCL)

Principle • Law of conservation of charge.

Formula

• Outgoing current Incoming = current. $I_3 = I_1 + I_2 + I_4$ $\Sigma I = 0$

$$\frac{I_1 + I_2}{I_1 + I_2 + I_4}$$

When we analy

ze a given circuit, we are not sure of the direction of current through a particular element within the circuit. In such cases, we assume a reference direction and perform all the calculations on this assumption. If our assumption is incorrect, calculations will show that the current has a negative sign. The negative sign simply indicates that the current is in fact opposite to the direction selected as the reference.

 $I_3 = 0$

□ Kirchhoff's Second Law (Voltage Law) (KVL) Principle

• It is always defined in a loop or mesh i.e., in a closed circuit.

Formula

$$V_{s} = V_{1} + V_{2} + V_{3}$$
$$V_{1} + V_{2} + V_{3} - V_{s} = 0$$

 $\Sigma v = 0$

- Kirchhoff's law is applicable for active and passive network.
- Kirchhoff's law is applicable in A.C and D.C circuit.
- Kirchhoff's law is applicable in lumped network and time variant network, time invariant network.
- Kirchhoff's law is not applicable to distributed network.
- Number of KCL equation = (n-1)
- Number of KVL equation = $b_{-}(n-1)$
- Where, b = branch in a circuit
 - n = node in a circuit

□ Sources

Sources are classified as voltage sources and current sources. Further it may be classified as independent sources and dependent sources.

Independent Voltage Source

An independent voltage source is characterized by a terminal voltage which is completely independent of the current through it.

Ideal independe nt voltage source

r = 0, where r is internal resistance $V_{AB} = V_S$

Note: Internal resistance of ideal voltage source is zero.

Practical independe nt voltage source

Note: The internal resistance of practical voltage source is not zero

Voltage

Independent voltage source connection

connection with opposite

reference polarity.

source

Voltage source connection with same reference polarity.

$$v_1 \bigoplus v_2 \approx v_1 = v_2$$

(

Voltage source parallel connection of identical voltage source.

Voltage source connection with parallel load.

In parallel, voltage source is dominant.

Independent Current Source

In the independent current source the current through the element is completely independent of the voltage across it.

Ideal Independ 16 ent Current Source I=I R,=∞ The internal resistance of an ideal current source is infinite.

Circuit Law

Dependent source Dependent sources are the sources whose output

depend on some other voltage or current in a circuit. Both voltage and current types of sources may be dependent, and either may be controlled by a voltage or a current. Thus, there are four types of dependent sources:

Source	Parameter to control
	Current controlled voltage source
$\bigvee v(t)=kv_{s}$	Voltage controlled voltage source

Circuit Law

 $\mathbf{V}_1 = \frac{\mathbf{R}_1}{\mathbf{R}_1 + \mathbf{R}_2} \times \mathbf{V}$

 $\mathbf{V}_2 = \frac{\mathbf{R}_2}{\mathbf{R}_1 + \mathbf{R}_2} \times \mathbf{V}$

 $V_1 = V_s \frac{L_1}{L_1 + L_2}, V_2 = V_s \frac{L_2}{L_1 + L_2}$

 $V_1 = V_s \frac{C_2}{C_1 + C_2}, V_2 = V_s \frac{C_1}{C_1 + C_2}$

R.

Ŧ.

000

V. .

L

000

->+<

Current Division Rule

Two or more circuit element are said to be in parallel if the same voltage appear across each of the element.

Nodal Analysis

Nodal analysis provides a general procedure for analyzing circuits using node voltages as the circuit variables. Choosing node voltages instead of element voltages as circuit variables is convenient and reduces the number of equation one must solve simultaneous node equations. In nodal analysis, we are interested in finding the node voltages.

Node	Node is a point in a circuit where two or more circuit element are connected together.	
Branch	Branch is that part of a network which lies between two nodes.	
Mesh	It is a loop that contain no other loop within it.	
Loop	It is a closed path in a circuit in which no element or node is encountered more than once.	
	V_s R_2 A I_2 R_3 V_2	

- At node A- $\frac{V_b - V_1}{R_1} + \frac{V_b - V_2}{R_2} + \frac{V_b}{R_3} = 0 , \quad I_1 + I_2 + I_3 = 0$
- Nodal analysis is an application of Kirchhoff's current law.
- Nodal \rightarrow KCL + Ohm's law
- Number of equation in nodal analysis = n-1 n = Number of nodes

■ Supernode

NOTE

1

The two non-reference nodes form supernode if the voltage source (dependent or independent) is connected between two non-reference nodes.

- The voltage source inside the supernode provides a constraint equation needed to solve for the node voltages.
- A supernode has no voltage of its own.
- A supernode requires the application of both KCL and KVL.
- Supernode \rightarrow KVL + KCL + Ohm's law

Mesh Analysis

Mesh analysis provides another general procedure for analyzing circuits, using mesh currents as the circuit variables. Recall that a loop is a closed path with no node passed more than once. A mesh is a loop that does not contain any other loop within it.

$$V_1 - I_1 R_1 - (I_1 + I_2) R_2 = 0$$
, $V_2 - I_2 R_3 - (I_1 + I_2) R_2 = 0$

- Mesh analysis is used only for planer network.
- Number of equations in mesh analysis = b (n-1)
- Mesh \rightarrow KVL+ ohm's law

Supermesh

A supermesh forms when two mesh have a common current source (dependent or independent)

Circuit Law

v

■ Comparison between Nodal analysis and □ Limitation of Superposition Theorem Mesh analysis Power cannot be calculated. It is only applicable to circuits with several sources. First we compare the number of equations required for each method. If the circuit has fewer nodes than • Circuit with imbalanced bridges cannot use this meshes, we should use the node voltage method. If theorem. the circuit has fewer meshes than nodes, it will be The theorem is not applicable to the easier to use the mesh current method. network containing non linear element, If the number of equation for either method is same, unilateral element such as diode, BJT. then it becomes important that what information (voltage or current) is required. If branch or mesh **Thevenin's Theorem** currents are required, it may be better to use mesh Principle It states that a linear bilateral analysis. If node voltages are required, then we twoterminal circuit can be replaced by an should use nodal analysis. equivalent circuit consisting of a Network Theorems voltage source V_{th} in series with a **Types of Network Theorems** resistor R_{th}. Super position Theorem Circuit 0 a Thevenin's Theorem R., N Norton's Theorem Tellegen's Theorem Applicable Linear network that is network with Millman's Theorem R,L,C and linear control sources of Reciprocity Theorem element. Maximum Power Transfer Theorem Both active as well as passive network The circuit to be analyzed may be simple or quite Use It is used for calculation of electronic complex. In case of complex networks the solution procedure may be too tedious and time consuming. circuit. Certain techniques for solution of such networks It is also used in vacuum tube circuit. have been developed which reduces the networks to For If the terminals a-b are made opensimpler form for quick solution. Thevenin's circuited, no current flows, so that the Voltage open-circuit voltage across NOTE Network theorem can solve problems quicker terminals a-b must be equal to the (V_{th}) than Kirchhoff's law when calculating voltage source V_{th}. currents in a specific branch is required. With the load disconnected and terminals a-b open-circuited, we turnand For Superposition Theorem Thevenin's Principle The voltage across (or current through) off all independent sources (voltage Resistance an element in a linear circuit is the source replaced by short-circuits and (R_{th}) algebraic sum of the voltages across (or current source replaced by opencurrents through) that element due to circuits). The input resistance (or each independent source acting alone. equivalent resistance) of the circuit at ➡ It is applicable for linear and Applicable the terminals a-b must be equal R_{th} . bilateral network. $\mathbf{R}_{\text{th}} = \mathbf{R}_{\text{in}}$ 0 It follows the condition of The homogeneity homogeneity. Limitation of Thevenin's Theorem property requires that if the input is The theorem is not applicable to the network multiplied by a constant, then the containing non linear element, unilateral element output (response) gets multiplied by such as diode, BJT. the same constant. NOTE When R_{th} takes a negative value. In this case It is used for voltage and current Use the negative resistance implies that the circuit calculation. 11 is supplying power. □ Procedure of applying superposition theorem 0 Basic components of a Thevenin's equivalent circuit AC are- The equivalent voltage source and the Consider independent Step-I one source (either voltage or current) at a time. > Other voltage source replaced by equivalent series impedance. 0 Source transformation of Thevenin's short-circuits and current source theorem is known as Norton theorem. replaced by open-circuit. Calculate the current or voltage due to Step-II ■ Norton's Theorem the single source using any method Principle It states that a linear bilateral two (KCL, KVL, nodal or mesh analysis) terminal circuit can be replaced by an

Step-III

Step-IV

Repeat the above steps for each source.

Algebraically add the results obtained

by each source to get the total response.

equivalent circuit consisting of a

current source I_N in parallel with a

resistor R_N,

the

Applicable bilateral and RLC Linear active network. Use For circuit analysis simplification and to study circuit's initial condition and steady-state response. To find the Norton current $(I_N = I_{sc})$

connect a short circuit between terminal

a and b. Do not set independent sources

zero in this method because we have to

are replaced their internal resistance.

For Norton current (I_N)

find short circuit current. Now obtain the I_{sc} through terminal a and b. For Norton resistance is the input or Norton equivalent resistance seen at the load terminals when all independent source resistance

 (\mathbf{R}_{N})

Limitations of Norton's Theorem

- Norton's theorem cannot be applied, if there is a magnetic coupling in load and circuit elements.
- . If the load is in series or in parallel combination with dependent sources, then Norton's theorem cannot be applied.

If a circuit contains dependent sources only, i.e. there is no independent source present in the network then its short-circuit current or Norton current will simply be zero

0 If in a circuit $R_{th} = \infty$ then its thevenin equivalent is not possible we can only find its Norton equivalent. 0 If in a circuit $R_{th} = 0$ then its Norton

equivalent is not possible we can only find its thevenin equivalent.

Tellegen's Theorem

Principle	It states that the summation of instantaneous power delivered is zero for each branch of any electrical network at any instant of time.	
Formula	$\sum_{k=1}^{b} P_k = v_k i_k = 0$	
	b= number of branches	
Valid	Linear, non-linear, unidirectional,	
	bidirectional active, passive, time	
	variant and time invariant circuit.	
Use	Used to examine difficult network systems like electrical circuits, metabolic and biological networks, chemical processes and pipeline transport networks.	
Remember	➡ For the verification of Tellegen's theorem KVL & KCL equation are used	
	 Tellegen's theorem is based on the law of conservation of energy. 	
	of conservation of energy.	

Millman's Theorem

Principle

It states that if there are "n" number of voltage sources having magnitude $E_1, E_2, E_3 \dots E_n$ having internal impedance Z₁, Z₂.....Z_n respectively then these sources may be replaced by a single voltage source V_m having equivalent series internal impedance Zm

Figure

Equation

Used

Use

$$V_{m} = \frac{V_{1}Y_{1} + V_{2}Y_{2} + V_{3}Y_{3} + \dots + V_{n}Y_{n}}{Y_{1} + Y_{2} + \dots + Y_{n}}$$
$$Z_{m} = \frac{1}{Y_{1} + Y_{2} + Y_{3} + \dots + Y_{n}}$$

It is used to compute the voltage at the ends of a circuit made up of only branches in parallel.

Limitation of Millman's Theorem

- Millman's theorem does not cover circuits with impedances among independent sources.
- . Millman's theorem does not apply to circuits, where dependent sources complement independent sources.

Reciprocity Theorem

Principle In a linear, passive and bilateral network, the ratio of response to excitation is constant even though the source is interchanged from input terminals to output terminals.

Figure Excitation Response Response Excitation Equation Reciprocity Theorem Not Used Used. Linear Element Dependent Source Bilateral Element Passive Elements

Limitations of reciprocity theorem-

- Not applicable to circuits with any type of timevarying component.
- . Not relevant to circuits with dependent sources, even if they are linear.
- Not applicable to circuits made up of nonlinear components like transistors, diodes etc.
- Ш The ratio of excitation to response is either ohm or mho.

Maximum Power Transfer Theorem

Principle A resistive load connected to DC network receives maximum power when the load resistance is equal to Thevenins equivalent resistance of the network as seen from the load terminal. OR It states that the AC voltage source

will deliver maximum power to the variable complex load only when the load impedance is equal to the conjugate of source complex impedance.

Applicable Only when load is variable otherwise (i.e. load is fixed) choose the minimum internal impedance of the source.

Circuit

d is-

Condition for maximum power transfer

The maximum power transferred

$$P_{max} = \frac{V_{th}^2}{4R_{th}}$$

$$V_{th} = \frac{Z_{th} - R_{th} + jX_{th}}{Z_{th} - R_{th} + jX_{th}}$$

When Z_L has both R_L and X_L but R_L is variable [X_L is constant].

$$R_{\rm L} = \sqrt{R_{\rm th}^2 + (X_{\rm L} + X_{\rm th})^2}$$

0 When the load impedance is purely resistive in nature-

$$R_{\rm L} = \sqrt{R_{\rm th}^2 + X_{\rm th}^2}$$
$$R_{\rm L} = |Z_{\rm th}|$$

٢ Different conditions for maximum power transfer theorem-For maximum power transfer

$$Z_{L} = Z_{s}$$
Case-I: If $Z_{s} = R_{s} + jX_{s}$ and

$$Z_{L} = R_{L} + jX_{L}$$

$$R_{L} + jX_{L} = R_{s} - jX_{s}$$

$$\therefore R_{L} = R_{s} \& X_{L} = -X_{s}$$

Case-II : If

$$Z_s = R_s + jX_s$$
 and Z_L
Then $R_L = \sqrt{R_s^2 + X_s}$

$$Z_{s} = R_{s} + jX_{s} \text{ and } Z_{L} = R_{L}$$

Then $R_{L} = \sqrt{R_{s}^{2} + X_{s}^{2}}$
Case-III: If
 $Z_{L} = R_{L} \& Z_{s} = R_{s}$ then $R_{L} = R_{s}$

 \square Note: If Z_s (source resistance) is changed then maximum power is transferred to the load, if $Z_s=$ 0.

$$P_{max} = \frac{V_{th}^2}{4R_L} = \frac{V_{th}^2}{4R_{th}}$$
$$\eta_{max} = \frac{P_{out}}{P_{in}} \times 100 = 50\%$$

Maximum power transfer theorem applied in Radio is communications.

Limitations of Maximum power transfer theorem:

- It cannot be used in non-linear and unilateral networks.
- The maximum efficiency is 50% and not applicable for power systems.
 - There is distinct difference between NOTE drawing maximum power from a source and delivering maximum power to a load. If the load is sized such that its load resistance is equal to the Thevenin resistance of the network to which it is connected, it will receive maximum power from that network. Any change to the load resistance will reduce the power delivered to the load.

■ Compensation Theorem Principle

If impedance 'Z' of any branch of an network is changed by ΔZ then the incremental current ΔI in such branch is that which will be produced by a compensating voltage source V_{C} = I ΔZ the original direction of current I

Figure

iX.

$$V \bigoplus_{\substack{\text{Compensation} \\ \text{network}}} Z \bigoplus_{\substack{Z_{n} \\ Z \\ \text{Compensation}}} Z \bigoplus_{\substack{Z_{n} \\ Z \\ \text{Compensation}}} Z \xrightarrow{Z_{n}} Z \xrightarrow{Z_{$$

Application

Application

Use to obtain the approximate effect of small changes in the elements of an electrical network.

This theorem is used to determine the steady state errors introduced by the measuring instrument and to obtain the null deflection in the galvanometer of the bridge circuit.

Substitution Theorem

Any branch in the network may be substituted by a different branch without disturbing the voltages and current in the entire network provided that new branch has a same set of terminal voltage and current as the original branch.

 $6V \frac{1}{6} 6 \Omega = 10V$

```
Example
```

Principle

YCT

Circuit Law

41

Use	 It can be used for any linear bilateral network with passive elements and multiple energy sources. The power absorbed by the passive element and its equivalent voltage or current source remains the same. This can be done to simplify the network for further analysis without affecting the rest of the network. This theorem replaces the circuit's one element with one more element. This theorem is used to prove numerous other theorems. 	 Limitation of Substitution theorem- In this theorem, when replacing the element, the circuit behaviour should not change. This theorem can not be used for solving a network that includes a minimum of two or above sources that are not within series or parallel. The initial condition of the rest of the circuit remains same, if a network element is replaced by a voltage source having an equal voltage as the voltage across the element at every instant of time.
	Exam 📃	Pointer
 If there are "rindependent tindependent tindependent time average by the numb In a close frequencies of the second provide the numb In a close frequencies of the second provide the numb In a close frequencies of the second provide the numb Which law's network- Kirchhoff's electric circuit in a ning the algebraia a junction provide the second provide the se	"nodes in the circuit there will be o nodal equation- n-1 value of the current is the divided er of currents- boop, the sum of voltage drops across is equal to- The applied voltage is applied for mesh analysis of the Kirchhoff's voltage law first law states that a junction in an ait - $\Sigma I=0$ o kirchhoff's voltage law, the algebraic voltage drop and e.m.f. in any closed etwork is equal to - Zero ic sum of the electric currents meeting at bint is- Zero is based on the principle of conservation marge- Kirchhoff's first rule wim of all currents meeting at a point is law is - Kirchhoff's first rule to branch voltage of a loop, the voltage law imposes - No constraints ethod of circuit analysis is based on - KCL and Ohms law current law (KCL) is applicable only to Junction in a network law states that in a closed loop of a The algebraic sum of the potential	 Kirchhoff's Voltage Law is known as – Energy Conservation Kirchhoff's current law at a junction deals with– Conservation of charge According to KCL as applied to a junction in a network of conductors – Algebraic sum of the all currents meeting at the junction is zero Kirchhoff's first and second laws are respectively based on– Conservation of charge and energy Kirchhoff's voltage law is concerned with– IR drop, Battery e.m.f. Kirchhoff's voltage laws are NOT applicable to circuits with – Distributed parameters The branch current method uses Kirchhoff's current law (KCL) is the first law that deals with the conservation of– Charge According to Kirchhoff's law, the sum of the currents entering a point in the circuit is equal to the– Sum of the currents leaving that point Total current or charge entering a junction is exactly equal to charge leaving the node which means all the current entering and leaving the junction should be equal to zero. Which circuit law is mentioned in this context -Conservation of charge Which laws states that the algebraic sum of the current at a node at any instant is zero–
 Kirchhoff's Linear, nor Mesh analys 	differences is zero voltage law applied to circuit with – n-linear, active, passive time variant as well as time invariant elements is is based on – Kirchhoff's Voltage law	 Which laws states that the algebraic sum of EMFs around a closed loop equal the algebraic sum of IR drops around the loop- Kirchhoff's Voltage Law Which theorem is advantageous, when we have to determine the current in a particular element of a
 For large net The laws us are- Kirchhoff's Kirchhoff's conservation 	tworks generally – The node analysis is preferred sed in cutsets and tiesets of a network Kirchhoff's laws law is applicable to – A.C. networks, D.C. networks second law is based on law of a of – Energy	 determine the current in a particular ciclifient of a linear bilateral network particularly when it is desired to find the current which flows through a resistor for its different values- Thevenin theorem Which linear circuit can be used as an equivalent circuit for a single voltage source and a series resistance- Thevenin equivalent circuit Thevenin's equivalent circuit consists of – Voltage source and series impedance

- According to Thevenin's theorem, electrical network can be reduced to ------ in series with load resistor-Single emf source and series resistor
 - In Thevenin's theorem, to find Z All independent voltage sources are short circuited and all independent current source are open circuited
- Which statement about electrical network and electrical circuit is CORRECT-

Every electrical circuit is a network but all networks are not circuits

- Thevenin's theorem cannot be applied to networks that contain elements which are-Non-Linear
- As per Thevenin's theorem: If internal impedance are not known, independent voltage and current sources will-Be replacec by short and open circuit respectively
- Thevenin's theorem is form of an equivalent circuit -Voltage
- Thevenin's theorem reduces a two terminal network to a - Voltage source in series with an impedance
 - Closed circuit technique are based on -
- Thevenins theorem While calculating the venin resistance (R_{th}) , constant ٠ current sources in the circuit are -

Replaced by 'opens'

- In Thevenin's Model the Resistance Rth is defined as-Impedance calculated by replacing
 - voltage/ current source with their impedance
- In the analysis of a vacuum tube circuit, we generally use Theorem -Thevenin's
- While Thevenizing a circuit between two terminals, V_{TH} is equal to – **Open-circuit terminal voltage**
- How can Thevenin's impedance and Norton's impedance be correlated in a AC circuit-

Always the same

While calculating R_{th} in Thevenin's theorem and ٠ Norton equivalent -

All independent sources are made dead

Thevenin's theorem converts a circuit to an equivalent form consisting of -

A Voltage source and a series resistance

- Norton's equivalent is -Parallel Circuit
- Which theorem is the converse of Thevenins theorem -Norton's theorem
- According to Norton's theorem, electrical network can be reduced to in parallel with load resistor-Single current source and parallel load resistor
- Thevenin's equivalent While calculating in Thevenin's theorem and Norton's equivalent, are
- made dead -All independent sources Norton's Theorem is a way to reduce a network to-
- An equivalent circuit composed of a single current source, parallel resistance, and parallel load

- Norton's theorem states that a complex network ۲ connected to a load can be replaced with an equivalent impedance -
 - In parallel with a current source
- Norton's Theorem results in -٠

A Current source with an impedance in Parallel

- Which theorem is also regarded as Dual of Thevenin's Theorem -Norton's Theorem
- According to Norton's theorem, the expression for D I

load current is -

$$I = I_{SC} \times \frac{R_{int}}{R_{int} + R_L}$$

While applying Notorn's Theorem to DC networks, the network is replaced by a -

Current source in parallel with a resistance

٠ Which theorem works only for circuits that are reducible to series/parallel combinations for each of the power sources at a time and it only works where underlying equations are linear-

Superposition theorem

- Superposition theorem is valid for which circuit ٠ elements -Linear bilateral elements
- ٠ When the voltage sources are replaced with short circuits and current sources are replaced with open circuits, leaving dependent sources in the circuit, the theorem applied is-**Superposition Theorem**
- On which concept, the superposition theorem is ٠ based -Linearity
- Superposition theorem is applicable to ٠

Linear bilateral network

- According to Super position theorem. a voltage ٠ source of 0 V can be replaced by a – Short circuit
- A non-linear network does not satisfy -۲ Both homogeneity as well as superposition condition
- The Superposition Theorem is applicable to -٠ Current, voltage
- To neglect a voltage source, the terminals across the ٠ Short-circuited source are-
- A linear element satisfies the properties of ٠

Superposition and Homogeneity

Superposition theorem is used to obtain current or voltage across any conductor of the -

Linear network

- ----- is applicable to both linear and non linear Substitution theorem circuits-
 - Superposition theorem is applicable for –

Linear network

- Superposition theorem is only applicable for determining only-Voltage and current
- In electrical circuits states that for a response (voltage or current) in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source acting alone-

Superposition Theorem

The Superposition theorem is used when the circuit contains -

Many number of voltage or current source

A network has two AC sources of different frequencies. Which method of analysis can be used to find current and voltage of different branches-

Superposition theorem

٠

- The superposition theorem requires as many circuits to be solved as there are -Sources
- In applying superposition theorem, to determine branch currents and voltages-

Voltage sources are shorted and current sources are open circuited

What is the true condition for maximum power transfer from source to load as per maximum power transfer theorem-

Source resistance is equal to load resistance

- When a source is delivering maximum power to the load; the efficiency will be -50%
- The maximum power is delivered from a source to a load when the source resistance is -

Equal to load resistance

Which expression is the expressed of maximum power theorem -

$$P_{max} = \frac{V_{Th}^2}{4R_x}$$

- Maximum power transfer from source to load occurs when the load resistance is the internal resistance of the circuit-Equal to
- It is not desired to attain the condition of maximum power transfer -**Electric circuits**
- Maximum power transfer theorem states an independent voltage source in series with an impedance Z_{th} delivers a maximum average power to the load impedance Z_L: where in- $Z_{th}^*=Z_L$
- "Maximum power output is obtained from a network when the load resistance is equal to the output resistance of the network as seen from the terminals of the load". The given statement is associated with-

Maximum power transfer theorem

The maximum power transfer theorem is used in -

Electronic circuits

Given condition justifies which network theorems -٠ The load impedance should be complex conjugate of the internal impedance of the active network-

Maximum power transfer theorem

- In a maximum power transfer theorem the internal resistance must be-Equal to load resistance
- Enables a number of voltage (or current) source to be combined directly into a single voltage (or Millman's theorem current) source-
- Millaman's theorem yields-Equivalent voltage or current source

"This theorem is applicable only to two sources directly connected in parallel. It is not applicable where there are resistance elements between the sources". This theorem is-Millman's theorem

The Tellegan's theorem can be applied to -

Passive, Active, Linear and non-linear, hysteresis and non-hysteresis network

- ٠ Which theorem states that the sum of instantaneous power in 'n' number of branches of an electrical network is zero?-**Tellegen's**
- The theorem which states that in any linear nonlinear, passive, active, time-variant and timeinvariant network, the summation of instantaneous powers is zero will be called as-Tellegen's theorem
- The maximum power transfer theorem can be ٠ applied to -Both AC and DC circuits
- Tellegen's theorem is based on the principle of law ۲ of – **Conservation of energy**
- ۲ According to Tellegen's Theorem, the sum of instantaneous powers for the n branches in a network is always -Equal to zero
- Which one of applicable to any network linear or ۲ non-linear, active or passive, time varient or invarient as long as Kirchhoff's laws are not violated-**Tellegen's theorem**
- A passive 2-port network is in a steady- state. Compared to its input, the steady state output can never offer-**Greater** power
- Which network analysis states that the algebraic sum ٠ of voltage on a closed loop is zero -

Loop current method of analysis

Which step for solution of a network utilizing reciprocity theorem is truly stated -

The current in the branch

where voltage source was

Which is the direct method of network analysis -٠

Reciprocity theorem

- A network contains linear resistors and ideal voltage sources. If values of all the resistors are doubled, then the voltage across each resistor is-Not changed
- In balanced bridge, if the positions of detector and ۲ source are interchanged, the bridge will still remain balanced. This can be explained from which theorem-

Reciprocity Theorem

In any bilateral network, if a source of e.m.f. E in ٠ any branch produces a current I in any other branch, then same e.m.f. acting in the second branch would produce the same current I in the first branch. This statement is associated with-

Reciprocity theorem

The reciprocity theorem is applicable for-

Only single source network

46

