

OBJECTIVE CHENISTRY Chapterwise Solved Papers

Chief Editor A.K. Mahajan

Compiled and Edited by Subject Expert Group

Computer Graphics by Balkrishna, Charan Singh, Bhupendra Mishra

Editorial Office 12, Church Lane Prayagraj-211002 \$9415650134 Email : yctap12@gmail.com website : www.yctbooks.com/www.yctfastbook.com/www.yctbooksprime.com © All rights reserved with Publisher

Publisher Declaration Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and E:Book by APP Youth Prime BOOKS In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

INDEX

A.	Some Basic Concepts of Chemistry	16-39
A1.	Dalton's Atomic Theory: Concept of Atom Molecule, Element and Compound, Matter and i	ts Nature 16
A1.1	Multiple Choice Question. (MCQS)	16
A.1.2	Statements Based Question	16
A1.5	Assertion and Reasons	16
A2.	Laws of Chemical Combination, Chemical Equation and Stoichiometry,	17
A2.1	Multiple Choice Question. (MCQS)	17
A2.3	Numerical Answer Types (NATS)	17
A3.	Mole Concept. Atomic and Molecular Mass, Molar Mass, Percentage Composition, F Formulae	Empirical and
A3.1	Multiple Choice Question. (MCQS)	20
A.3.2	Statements Based Question	20
A3.3	Numerical Answer Types (NATS)	20
A3.5	Assertion and Reasons	38
B	Atomic Structure	40-63
B1.	Nature of Electromagnetic Radiation, Photoelectric Effect	40
B1.1	Multiple Choice Question (MCQs)	40
B1.2	Statement Based Question	40
B1.3	Numerical Answer Types (NATs)	40
B1.5	Assertion and Reasons	43
B2	Bohr Model of a Hydrogen Atom, Spectrum of The Hydrogen Atom and its Postu Energy of The Electron and Radii'	lates for The 43
B2.1	Multiple Choice Question (MCQs)	43
B2.2	Statement Based Question	45
B2.3	Numerical Answer Types (NATs)	45
B2.4	Match The Column	49
B2.5	Assertion and Reasons	50
B3.	Dual Nature of Matter, De- Broglie's Heisenberg Uncertainity Principle, Ψ and Quantum Numbers.	Ψ ² , Nodes, 50
B3.1	Multiple Choice Question (MCQs)	50
B3.2	Statement Based Question	55
B3.3	Numerical Answer Types (NATs)	56
B3.4	Match the Column	60
B3.5	Assertion and Reasons	61
B4.	Shapes of s, p and d-Orbital, Aufbau, Pauli's Exclusion, Hund's Rule, Electronic Con Element,	nfiguration of 61
B4.1	Multiple Choice Question (MCQs)	61
B4.2	Statement Based Question	63
B4.5	Assertion and Reasons	63
C.	Chemical Bonding and Molecular Structure	64-106
C1.	The Concept Ionic Bond and Covalent Bond, Kossel- Lewis, Lattice Enthalpy Electr Fajan's Rule, Dipole Moment.	ro Negativity, 64
C1.1	Multiple Choice Question (MCQs)	64
C1.2	Statement Based Question	73
C1.3	Numerical Answer Types (NATs)	73
C1.5	Assertion and Reasons	74
	2	YCT

C2.	VSEPR Theory and Shape, VBT, Hybridization, S, P, and d Orbital's, Resonance	75
C2.1	Multiple Choice Question (MCQs)	75
C2.2	Statement Based Question	90
C2.3	Numerical Answer Types (NATs)	91
C2.4	Match the Column	91
C2.5	Assertion and Reasons	92
C3.	MOT, LCAOs (Bonding, Anti-Bonding), Homonuclear Diatomic Molecules, Bond Order,	Bond
	Length, Bond Energy, Hydrogen Bonding, Metallic Bonding	94
C3.1	Multiple Choice Question (MCQs)	94
C3.2	Statement Based Question	105
C3.5	Assertion and Reasons	105
D.	Chemical Thermodynamics 10	7-143
D1.	Fundamental of Thermodynamic System and Surroundings, State Function, Extensive and Inte	nsive
D1 1	Properties, Types of Processes Multiple Chains Operations (MCOp)	10/
	Statement Based Question (MCQs)	10/
D1.2	Statement Based Question	100
D1.3	Numerical Answer Types (NATS)	109
D1.4	Match the Column	110
D1.5	Assertion and Reasons	110
D2.	The First Law of Thermodynamics, Concept of Work, Heat Internal Energy and Enthalpy, Canacity and Molar Heat Canacity Hess's Law	неат
D2 1	Multiple Choice Question (MCQs)	111
D2.2	Statement Based Question	114
D2.2	Numerical Answer Types (NATs)	114
D2.5	Assertion and Reasons	119
D3.	Enthalpies of Bond Dissociation Combustion Formation, Atomization, Sublimation, I	Phase
	Transition' Hydration, Ionization and Solution	120
D3.1	Multiple Choice Question (MCQs)	120
D3.2	Statement Based Question	122
D3.3	Numerical Answer Types (NATs)	123
D3.5	Assertion and Reasons	134
D4.	The Second Law of Thermodynamic ΔS and ΔG Spontaneity, ΔG° , Equilibrium Constant	134
D4.1	Multiple Choice Question (MCQs)	134
D4.2		
D4 3	Statement Based Question	138
D4.5	Statement Based Question	138 139
D4.5	Statement Based Question	138 139 143
D4.5 D4.5 E.	Statement Based Question	138 139 143 4-167
D4.5 D4.5 E. E1.	Statement Based Question	138 139 143 4-167 Law -
D4.5 D4.5 E. E1.	Statement Based Question	138 139 143 4-167 Law - 144
D4.5 E. E1. E1.1 E1.2	Statement Based Question	138 139 143 4-167 2 aw - 144 146
D4.5 E. E1. E1.1 E1.2 E1.3	Statement Based Question	138 139 143 4-167 J aw - 144 146 146
D4.5 E. E1. E1.1 E1.2 E1.3 E1.5	Statement Based Question	138 139 143 4-167 144 144 146 146 155
 D4.5 E. E1.1 E1.2 E1.3 E1.5 E2. 	Statement Based Question	138 139 143 4-167 144 144 146 146 155 156
 D4.5 D4.5 E. E1.1 E1.2 E1.3 E1.5 E2. E2.1 	Statement Based Question	138 139 143 4-167 4-167 144 144 146 146 155 156
 D4.5 D4.5 E. E1.1 E1.2 E1.3 E1.5 E2.1 E2.2 	Statement Based Question	138 139 143 4-167 Jaw - 144 144 146 146 155 156 156
 D4.5 D4.5 E. E1.1 E1.2 E1.3 E1.5 E2.1 E2.2 E2.3 	Statement Based Question	138 139 143 4-167 Jaw - 144 146 146 155 156 156 156
D4.5 E. E1.1 E1.2 E1.3 E1.5 E2.1 E2.2 E2.3 E2.5	Statement Based Question	138 139 143 4-167 4-167 144 144 146 146 155 156 156 156 156 156

E3.	The Elevation of Boiling Point and Osmotic Pressure, Abnormal Value of Molar Mass and Hoff Factor and its Significance	nd Van't 162
E3 1	Multiple Choice Question (MCOs)	162
E3 3	Numerical Answer Types (NATs)	164
E3.5	Assertion and Reasons	167
E0.0	Equilibrium	- 168-219
F1.	Chemical Processes, Law of Chemical Equilibrium, Equilibrium Constant (K_P and K_C), Sig	nificance
	of ΔG and ΔG° Equilibrium	168
F1.1	Multiple Choice Question (MCQs)	168
F1.2	Statement Based Question	170
F1.3	Numerical Answer Types (NATs)	170
F1.5	Assertion and Reasons	178
F2.	Factors Affecting Equilibrium Concentration, P, T, and Catalyst, Le- Chateliers Principle	180
F2.1	Multiple Choice Question (MCQs)	180
F2.2	Statement Based Question	183
F2.3	Numerical Answer Types (NATs)	183
F2.5	Assertion and Reasons	186
F3	Ionic Equilibrium, Weak and Strong Electrolytes, Ionization Electrolytes	186
F3.1	Multiple Choice Question (MCQs)	186
F3.3	Numerical Answer Types (NATs)	186
F4.	Arrhenius, Bronsted - Lowry and Ionization, Acid,- Base Equilibria and Ionization Const Scale, Buffer Solution, Solubility Product	tant, pH 188
F4.1	Multiple Choice Question (MCQs)	188
F4.2	Statement Based Question	198
F4.3	Numerical Answer Types (NATs)	199
F4.4	Match the Column	218
F4.5	Assertion and Reasons	218
G	Redox Reaction and Electrochemistry	- 220-251
G1	Redox Reaction Electronic Concepts of Oxidation and Reduction Oxidation Number and I	Rules for
	Assigning Oxidation Number, Balancing Redox Reaction	220
G1.1	Multiple Choice Question (MCQs)	220
G1.2	Statement Based Question	226
G1.3	Numerical Answer Types (NATs)	228
G1.5	Assertion and Reasons	233
G2.	Electrolysis Conductance, Molar Conductivities, Kohlrausch's Law and its Application	233
G2.1	Multiple Choice Question (MCQs)	233
G2.2	Statement Based Question	234
G2.3	Numerical Answer Types (NATs)	235
G2.4	Match the Column	238
G2.5	Assertion and Reasons	239
G3.	Electrode Potentials Including Standard Electrode Potential, Different Types of E Electrochemical Cells, Galvanic Cell, Half-Cell and Cell Reaction, Nernst, Equation, Gibb' Change, Dry Cell and Fuel Cells	s Energy
G3.1	Multiple Choice Question (MCQs)	239
G3.2	Statement Based Question	242
G3.3	Numerical Answer Types (NATs)	243
G3.4	Match the Column	251
G3.5	Assertion and Reasons	251

H.	Chemical Kinetics 252	-278
H1.	Rate of Chemical Reaction, Factors Affecting the Rate of Reactions, Elementary and Complex Reaction	-252
H1.1	Multiple Choice Question (MCQs)	-252
H1.2	Statement Based Question	-254
H1.3	Numerical Answer Types (NATs)	-254
H1.5	Assertion and Reasons	-258
Н2.	Order and Molecularity of Reactions, Rate Law, Rate Constant and its Units, Differential Integral Forms of Zero and First Order Reaction, Half life	and -258
H2.1	Multiple Choice Question (MCQs)	-258
H2.2	Statement Based Question	-261
H2.3	Numerical Answer Types (NATs)	-262
H2.5	Assertion and Reasons	-272
Н3.	Arrhenius Theory, Activation Energy Collision Theory of Bimolecular	-272
H3.1	Multiple Choice Question (MCQs)	-272
H3.2	Statement Based Question	-274
H3.3	Numerical Answer Types (NATs)	-275
H3.5	Assertion and Reasons	-278
	Unit- I : Inorganic Chemistry	
I.	Classification of Elements and Periodicity in Properties 279	-311
I1.	Periodic Law and Modern Periodic Table, s, p, d and f Block Elements Electronic Configuration	-279
I1.1	Multiple Choice Question (MCQs)	-279
I1.2	Statement Based Question	-289
I1.4	Match the Column	-291
I1.5	Assertion and Reasons	-292
I2.	Periodic Trends in Properties of Elements	-295
I2.1	Multiple Choice Question (MCQs)	-295
I2.2	Statement Based Question	-309
I2.4	Match the Column	-309
I2.5	Assertion and Reasons	-310
J.	P- Block Elements 312	-367
J1.	Introduction of Group 13 to Group 18 Elements, and Electronic Configuration	-312
J1.1	Multiple Choice Question (MCQs)	-312
J1.2	Statement Based Question	-317
J1.3	Numerical Answer Types (NATs)	-319
J1.4	Match the Column	-319
J1.5	Assertion and Reasons	-320
J2.	General Trends, Physical and Chemical Properties of Elements, Unique Behavior of The Elementer Each Group	nt of -321
J2.1	Multiple Choice Question (MCQs)	-321
J2.2	Statement Based Question	-353
J2.3	Numerical Answer Types (NATs)	-359
J2.4	Match the Column	-360
J2.5	Assertion and Reasons	-360
К.	D and F- Block Elements 368	-383
K1	General Introduction and Electronic Configuration of Transition Elements, Occurrence	and
	Characteristics	-368
K1.1	Multiple Choice Question (MCQs)	-368
K1.5	Assertion and Reasons	-370

K2.	General Trends in Properties of Transition Elements, Physical and Chemical Properties, O States and Magnetic Properties Complex Formation, Interstitial Compounds	xidation 370
K2.1	Multiple Choice Question (MCQs)	370
K2.2	Statement Based Question	377
K2.4	Match the Column	378
K2.5	Assertion and Reasons	378
K3.	Alloy Formation, Inner Transition Elements. (f-Block Elements)	379
K3.1	Multiple Choice Question (MCQs)	379
K3.2	Statement Based Question	381
K3.5	Assertion and Reasons	383
L.	Co-Ordination Compounds	384-411
L1.	Introduction of Coordination Compounds Werner's Theory, Ligand, Co-Ordination Denticity and Chelation	Number 384
L1.1	Multiple Choice Question (MCQs)	384
L1.2	Statement Based Question	388
L1.5	Assertion and Reasons	389
L2.	IUPAC Nomenclature and Isomerism	390
L2.1	Multiple Choice Question (MCQs)	390
L2.2	Statement Based Question	393
L2.4	Match the Column	393
L3.	Valence Bond Theory, Crystal Field Theory and its Application, Importance of Co-Or	dination
1.2.1	Compounds in Biological System	394
L3.1	Statement Based Question (MCQs)	394
L3.2	Statement Based Question	400
L3.3	Numerical Answer Types (NATS)	409
L3.4	Assertion and Peasons	410
L3.5	Unit-II: Organic Chemistry	410
М.	Purification and Characterisation of Organic Compounds	412-414
M1.	Purification	412
M1.1	Multiple Choice Question (MCQs)	412
M1.4	Match the Column	413
M2.	Qualitative analysis and quantitative analysis	413
M2.1	Multiple Choice Question (MCQs)	413
M2.3	Numerical Answer Types (NATs)	413
N.	Some Basic Principles of Organic Chemistry	415-441
N1.	Classification of Organic Compound Based on Functional Group (Containing X, O, M	and S)
	Tetravalency of Carbon, Shape and Hybridization	415
N1.1	Multiple Choice Question (MCQs)	415
N1.3	Numerical Answer Types (NATs)	416
N1.4	Match the Column	416
N2.	Nomenclature and Isomerism	416
N2.1	Multiple Choice Question (MCQs)	416
N2.2	Statement Based Question	433
N2.5	Assertion and Reasons	433
N3.	Covalent Bond Fission (Homolytic and Heterolytic) Free Radicals. Carbocations and Car Electrophiles and Nucleophiles	banions,
N3 1	Multiple Choice Question (MCOs)	<u>/</u> 22
N3 2	Statement Based Question	435
N3 5	Assertion and Reasons	
113.3		

N4.	Electronic Displacement in a Covalent Bond : (Inductive Effect. Electromeric, Resona Hyperconjugation) and Some Common Types of Organic Reactions	nce and 437
N4.1	Multiple Choice Question (MCQs)	437
N4.2	Statement Based Question	440
N4.5	Assertion and Reasons	441
0.	Hydrocarbon	442-478
01.	Classification, Nomenclature, Isomerism	442
01.1	Multiple Choice Question (MCQs)	442
O1.2	Statement Based Question	449
01.4	Match the Column	449
O1.5	Assertion and Reasons	449
O2 .	Method of Preparation	450
O2.1	Multiple Choice Question (MCQs)	450
O2.3	Numerical Answer Types (NATs)	451
O3 .	Physical and Chemical Properties Their Uses	451
O3.1	Multiple Choice Question (MCQs)	451
O3.2	Statement Based Question	476
O3.5	Assertion and Reasons	477
Р.	Organic Compounds Containing Halogens	479-492
P1.	Method of Preparation	479
P1.1	Multiple Choice Question (MCQs)	479
P1.5	Assertion and Reasons	481
P2.	Physical and Chemical Properties and Their Uses	481
P2.1	Multiple Choice Question (MCQs)	481
P2.2	Statement Based Question	489
P2.4	Match the Column	491
P2.5	Assertion and Reasons	492
Q.	Organic Compounds Containing Oxygen	493-544
Q1.	Method of Preparation, Alcohol, Phenol, Ether and Carboxylic Acid	493
Q1.1	Multiple Choice Question (MCQs)	493
Q1.2	Statement Based Question	507
Q1.5	Assertion and Reasons	508
Q2.	Physical and Chemical Properties and Their Uses	509
Q2.1	Multiple Choice Question (MCQs)	509
Q2.2	Statement Based Question	538
Q2.4	Match the Column	539
Q2.5	Assertion and Reasons	540
Q3.	Chemical Test	542
Q3.1	Multiple Choice Question (MCQs)	542
Q3.2	Statement Based Question	544
R.	Organic Compound Containing Nitrogen	545-562
R1.	Nomenclature and Classification Structure of Amine	545
R1.1	Multiple Choice Question (MCQs)	545
R2.	Basic Character and Identification of Primary, Secondary and Tertiary Amines and Their Basicity-	545
R2.1	Multiple Choice Question (MCQs)	545
R2.2	Statement Based Question	558
R2.5	Assertion and Reasons	559

R3.1 Multiple Choice Question (MCQs) 561 R3.2 Statement Based Question 562 R3.4 Assertion and Reasons 562 R3.5 Assertion and Reasons 563 S1.6 General Introduction and Importance of Biomolecules 563 S1.1 Multiple Choice Question (MCQs) 563 S1.3 Numerical Answer Types (NATs) 565 S1.4 Match the Column 565 S2.1 Multiple Choice Question (MCQs) 565 S2.1 Multiple Choice Question (MCQs) 565 S2.1 Multiple Choice Question (MCQs) 565 S2.3 Statement Based Question 566 S2.4 Statement Based Question 567 S3.1 Multiple Choice Question (MCQs) 570 S3.3 Numerical Answer Types (NATs) 577 S3.4 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 577 S3.4 Statement Based Question 578 S4.4 Match the Column 577 S4.5 Assertion and Reasons 577 S4	R3.	Diazonium Salt: Importance in Synthetic	561
R3.2 Statement Based Question 562 R3.5 Assertion and Reasons 562 R3.6 General Introduction and Importance of Biomolecules 563 S1.1 Multiple Choice Question (MCQs) 563 S1.5 Statement Based Question 565 S1.1 Multiple Choice Question (MCQs) 565 S1.4 Match the Column 565 S2.1 Match the Column 565 S2.1 Multiple Choice Question (MCQs) 565 S2.1 Multiple Choice Question (MCQs) 565 S3.6 Protein 566 S3.7 Protein 570 S3.1 Multiple Choice Question (MCQs) 570 S3.1 Multiple Choice Question (MCQs) 577 S3.1 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 577 S3.5 Numerical Answer Types (NATs) 578 S4.1 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 7.6 Principles Related t	R3.1	Multiple Choice Question (MCQs)	561
R3.5 Assertion and Reasons 562 S. Biomolecules 563 S1.1 Multiple Choice Question (MCQs) 563 S1.2 Statement Based Question 565 S1.3 Numerical Answer Types (NATs) 565 S1.4 Match the Column 565 S2.5 Carcholydrates 565 S2.1 Multiple Choice Question (MCQs) 565 S2.2 Statement Based Question 566 S3.1 Multiple Choice Question (MCQs) 570 S3.1 Multiple Choice Question (MCQs) 570 S3.1 Numerical Answer Types (NATs) 577 S4 Statement Based Question 577 S4 Match the Column 578 S4 Match the Column 578 S4 Match the Column 579 S54 Assertion and Reasons 579 S7 S44	R3.2	Statement Based Question	562
S. Biomolecules 563-579 S1. General Introduction and Importance of Biomolecules 563 S1.1 Multiple Choice Question (MCQs) 563 S1.2 Statement Based Question 565 S1.3 Numerical Answer Types (NATs) 565 S2.1 Multiple Choice Question (MCQs) 565 S2.1 Multiple Choice Question (MCQs) 565 S2.2 Statement Based Question 568 S2.2 Statement Based Question (MCQs) 570 S3.1 Multiple Choice Question (MCQs) 570 S3.1 Multiple Choice Question (MCQs) 577 S4.3 Numerical Answer Types (NATs) 577 S4.3 Numerical Answer Types (NATs) 577 S4.4 Match the Column 577 S4.5 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 579 S4.5 Assertrion and Reasons 579	R3.5	Assertion and Reasons	562
S1. General Introduction and Importance of Biomolecules 563 S1.1 Multiple Choice Question (MCQs) 565 S1.2 Statement Based Question 565 S1.4 Match the Column 565 S2. Carbohydrates 565 S2. Carbohydrates 565 S2. Match the Column 565 S2.1 Multiple Choice Question (MCQs) 565 S2.2 Statement Based Question 568 S2.3 Assertion and Reasons 569 S3.1 Multiple Choice Question (MCQs) 570 S3.1 Numerical Answer Types (NATs) 577 S3.3 Numerical Answer Types (NATs) 577 S4.3 Statement Based Question 577 S4.4 Match the Column 577 S4.5 Assertion and Reasons 577 S4.4 Match the Column 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 S4.6 Principles Related to Practical Chemistry 580 S4.7 Assertion and Reasons <t< td=""><td>S.</td><td>Biomolecules 5</td><td>63-579</td></t<>	S.	Biomolecules 5	63-579
S1.1 Multiple Choice Question (MCQs) 563 S1.2 Statement Based Question 565 S1.3 Numerical Answer Types (NATs) 565 S2. Carbohydrates 565 S2. Multiple Choice Question (MCQs) 565 S2. Statement Based Question 568 S2. Statement Based Question (MCQs) 570 S3.1 Multiple Choice Question (MCQs) 570 S3.2 Statement Based Question (MCQs) 570 S3.1 Numerical Answer Types (NATs) 577 S3.3 Numerical Answer Types (NATs) 577 S3.4 Match the Column 577 S4.5 Atsertion and Reasons 578 S4.4 Match the Column 578 S4.5 Atsertion and Reasons 579 S4.5 Atsertion and Reasons 579 S4.4 Match the Column 578 S4.5 Atsertion and Reasons 579 S4.5 Atsertion and Reasons 579 S4.5 Atsertion and Reasons 579 S4.5 Atsertion and Reasons 578 </td <td>S1.</td> <td>General Introduction and Importance of Biomolecules</td> <td>563</td>	S1.	General Introduction and Importance of Biomolecules	563
Statement Based Question 565 S1.3 Numerical Answer Types (NATs) 565 S1.4 Match the Column 565 S2. Carbohydrates 565 S2. Statement Based Question 565 S2. Statement Based Question 568 S3. Protein 570 S3. Multiple Choice Question (MCQs) 571 S3. Multiple Choice Question (MCQs) 571 S4. Statement Based Question 574 S4. Statement Based Question (MCQs) 577 S4. Multiple Choice Question (MCQs) 578 S4. Match the Column 578 S4. Match the Column 578 S4. Multiple Choice Question (MCQs) 578 S4. Match the Column 579 S1. Detection of Extra Elements (NS and X) in Organic Compounds 580 S1. Detection of the Following Functional	S1.1	Multiple Choice Question (MCQs)	563
S1.3 Numerical Answer Types (NATs) 565 S1.4 Match the Column 565 S2 Carbohydrats 565 S2.1 Multiple Choice Question (MCQs) 565 S2.2 Statement Based Question 568 S2.3 Assertion and Reasons 569 S3.1 Multiple Choice Question (MCQs) 570 S3.1 Multiple Choice Question (MCQs) 571 S3.2 Statement Based Question 571 S3.2 Statement Based Question 577 S3.3 Numerical Answer Types (NATs) 577 S3.4 Match the Column 577 S4.5 Assertion and Reasons 578 S4.4 Match the Column 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 S4.5 Assertion and Reasons 579 S4.5 Assertion and Reasons 579 S4.5 Assertion and Reasons 580 S1.1 Detection of Extra Elements (NS and X) in Organic Compounds 580 S1.1 Detection of CQs)	S1.2	Statement Based Question	565
S1.4 Match the Column 565 S2. Carbohydrates 565 S2.1 Multiple Choice Question (MCQs) 565 S2.2 Statement Based Question 568 S2.5 Assertion and Reasons 569 S2.6 Assertion and Reasons 570 S3.1 Multiple Choice Question (MCQs) 570 S3.2 Statement Based Question 577 S3.3 Numerical Answer Types (NATs) 577 S3.4 Match the Column 577 S4.1 Multiple Choice Question (MCQs) 578 S4.1 Multiple Choice Question (MCQs) 578 S4.1 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 T Principles Related to Practical Chemistry 580 S4.5 Masction and Reasons 579 T.1 Multiple Choice Question (MCQs) 580	S1.3	Numerical Answer Types (NATs)	565
S2. Carbohydrates 565 S2.1 Multiple Choice Question (MCQs) 565 S2.2 Statement Based Question 568 S3.1 Multiple Choice Question (MCQs) 570 S3.4 Match the Column 577 S4.5 Assertion and Reasons 577 S4.5 Assertion and Reasons 577 S4.4 Match the Column 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 T. Principles Related to Practical Chemistry 580-608 T1. Detection of Extra Elements (N,S and X) in Organic Compounds 580 T1.6 Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acteranilide p-nitro Acteanilide Aniline Yellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 586 T3.1 Multiple Choice Question (MCQs) 586 T3.1	S1.4	Match the Column	565
S2.1 Multiple Choice Question (MCQs) 565 S2.2 Statement Based Question 569 S3.1 Protein 570 S3.2 Statement Based Question (MCQs) 570 S3.2 Statement Based Question (MCQs) 571 S3.3 Numerical Answer Types (NATs) 577 S3.4 Match the Column 577 S4. Match the Column 578 S4.1 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 T. Principles Related to Practical Chemistry 578 S4.5 Assertion and Reasons 579 T. Principles Related to Practical Chemistry 580 S1.3 Numerical Answer Types (NATs) 581 S4.5 Assertion and Reasons 579 S1.3 Numerical Answer Types (NATs) 581 S1.4 Match the Column 581 S1.5 Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Anino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Inde Form	S2.	Carbohydrates	565
Statement Based Question	S2.1	Multiple Choice Question (MCQs)	565
S2.5 Assertion and Reasons 569 S3.1 Multiple Choice Question (MCQs) 570 S3.2 Statement Based Question 574 S3.3 Numerical Answer Types (NATs) 577 S3.4 Match the Column 577 S3.5 Assertion and Reasons 577 S4. Vitamins 578 S4.1 Multiple Choice Question (MCQs) 578 S4.5 Assertion and Reasons 577 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 T Principles Related to Practical Chemistry 580-608 T1. Detection of Extra Elements (N,S and X) in Organic Compounds 580 T2. Detection of Extra Elements (N,S and X) in Organic Compounds 581 T3.1 Multiple Choice Question (MCQs) 581 T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Vellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T3.1 Multiple Choice Question (MCQs) 581	S2.2	Statement Based Question	568
S3. Protein 570 S3.1 Multiple Choice Question (MCQs) 570 S3.2 Statement Based Question 574 S3.3 Numerical Answer Types (NATs) 577 S3.4 Match the Column 577 S3.5 Assertion and Reasons 577 S4. Vitamins 578 S4.1 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 S4.5 Assertion and Reasons 578 S4.5 Assertion and Reasons 578 S4.5 Assertion and Reasons 578 S4.5 Assertion and Reasons 579 S7.1 Principles Related to Practical Chemistry 580-608 S1.1 Multiple Choice Question (MCQs) 580 S1.3 Numerical Answer Types (NATs) 581 S1.4 Match the Column 581 S2.5 Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form 581	S2.5	Assertion and Reasons	569
S3.1 Multiple Choice Question (MCQs) 570 S3.2 Statement Based Question 571 S3.3 Numerical Answer Types (NATs) 577 S3.4 Match the Column 577 S3.5 Assertion and Reasons 577 S4. Vitamins 578 S4.1 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 T Principles Related to Practical Chemistry 580 T0 Detection of Extra Elements (NS and X) in Organic Compounds 580 T1.1 Multiple Choice Question (MCQs) 580 T1.3 Numerical Answer Types (NATs) 581 T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T2.1 Multiple Choice Question (MCQs) 581 T3.1 Multiple Choice Question (MCQs) 581 T3.1 Multiple Choice Question (MCQs) 581 <	S3.	Protein	570
S3.2 Statement Based Question	S3.1	Multiple Choice Question (MCQs)	570
S3.3 Numerical Answer Types (NATs) 577 S3.4 Match the Column 577 S3.5 Assertion and Reasons 577 S4. Vitamins 578 S4.1 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 S7 Principles Related to Practical Chemistry 580 S1.1 Multiple Choice Question (MCQs) 580 S1.1 Detection of Extra Elements (N,S and X) in Organic Compounds 580 S1.1 Multiple Choice Question (MCQs) 580 S1.1 Multiple Choice Question (MCQs) 581 S2 Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form 581 S2.1 Multiple Choice Question (MCQs) 581 S3.1 Inorganic Compounds-Mohr's Salt Potash Alum, Oxalic acid Vs KMnO ₄ , Mohr's Salt Vs KMnO ₄ 585 S3.1 Inorganic Compounds-Mohr's Salt Potash Alum, Oxalic acid Vs KMnO ₄ , Mohr's Salt Vs KMnO ₄ 586 S3.1 Multiple Choice Question (MCQs) 586	S3.2	Statement Based Question	574
S3.4 Match the Column 577 S3.5 Assertion and Reasons 577 S4. Vitamins 578 S4.1 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 T. Principles Related to Practical Chemistry 580-608 T1. Detection of Extra Elements (N,S and X) in Organic Compounds 580 T1.1 Multiple Choice Question (MCQs) 580 T1.1 Multiple Choice Question (MCQs) 580 T1.1 Multiple Choice Question (MCQs) 581 T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T2.4 Match the Column 585 T3. Inorganic Compounds- Mohr's Salt Potash Alum, Oxalic acid Vs KMnO4, Mohr's Salt Vs KMnO4 586 T3.2 Statement Based Question 586 T3.3 Numerical Answer Types (NATs) 588 T4. Acids, Bases and the Used as Indi	S3.3	Numerical Answer Types (NATs)	577
S3.5 Assertion and Reasons 577 S4. Vitamins 578 S4.1 Multiple Choice Question (MCQs) 578 S4.5 Assertion and Reasons 579 S4.5 Assertion and Reasons 579 T. Principles Related to Practical Chemistry 580-608 T1. Detection of Extra Elements (N,S and X) in Organic Compounds 580 T3. Numerical Answer Types (NATs) 581 T4.4 Match the Column 581 T2.4 Match the Column 581 T2.5 Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T3.1 Multiple Choice Question (MCQs) 586 T3.2 Statement Based Question 587 T3.3 Numerical Answer Types (NATs) 586 T3.1 Multiple Choice Question (MCQs) 586 T3.3 Statement Based Question 587 T3.3 Numerical Answer Types (NATs) 588 T4.1	S3.4	Match the Column	577
S4. Vitamins 578 S4.1 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 T. Principles Related to Practical Chemistry 580-608 T1. Detection of Extra Elements (N,S and X) in Organic Compounds 580 T1.1 Multiple Choice Question (MCQs) 580 T1.3 Numerical Answer Types (NATs) 581 T1.4 Match the Column 581 T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T3.1 Multiple Choice Question (MCQs) 581 T3.1 Multiple Choice Question (MCQs) 581 T3.2 Statement Based Question 587 T3.3 Numerical Answer Types (NATs) 586 T3.3 Numerical Answer Types (NATs) 588 T3.3 Numerical Answer Types (NATs) 588 T4.4 Acids, Bases and the Used as Indicators 588 <	S3.5	Assertion and Reasons	577
S4.1 Multiple Choice Question (MCQs) 578 S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 S4.5 Assertion and Reasons 570 S60 Gamma Section of Extra Elements (N,S and X) in Organic Compounds 580 T1.1 Multiple Choice Question (MCQs) 581 T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T3.1 Inorganic Compounds-Mohr's Salt Potash Alum, Oxalic acid Vs KMnO ₄ , Mohr's Salt Vs KMnO ₄ 586 T3.1 Multiple Choice Question (MCQs) 586 T3.2 Statement Based Question 586	S4.	Vitamins	578
S4.4 Match the Column 578 S4.5 Assertion and Reasons 579 T Principles Related to Practical Chemistry 580-608 T1. Detection of Extra Elements (N,S and X) in Organic Compounds 580 T1.1 Multiple Choice Question (MCQs) 580 T1.3 Numerical Answer Types (NATs) 581 T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T2.4 Match the Column 581 T3.5 Inorganic Compounds-Mohr's Salt Potash Alum, Oxalic acid Vs KMnO ₄ Mohr's Salt Vs KMnO ₄ 586 T3.2 Statement Based Question 587 T3.3 Numerical Answer Types (NATs) 588 T4.4 Acids, Bases and the Used as Indicators 588 T5.5 Statement Based Question 590 T5.1 Multiple Choice Question (M	S4.1	Multiple Choice Question (MCQs)	578
S4.5 Assertion and Reasons 579 Principles Related to Practical Chemistry 580-608 T1. Detection of Extra Elements (N,S and X) in Organic Compounds 580 T1.1 Multiple Choice Question (MCQs) 580 T1.3 Numerical Answer Types (NATs) 581 T1.4 Match the Column 581 T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide Aniline Yellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T2.4 Match the Column 581 T2.4 Match the Column 581 T2.4 Match the Column 581 T3.5 Inorganic Compounds- Mohr's Salt Potash Alum, Oxalic acid Vs KMnO4, Mohr's Salt Vs KMnO4 585 T3.1 Multiple Choice Question (MCQs) 586 T3.2 Statement Based Question 588 T4.4 Acids, Bases and the Used as Indicators 588 T4.4 Acida, Bases and the Used as Indicators 588 T5.5 Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion 590 T5.2 <td>S4.4</td> <td>Match the Column</td> <td>578</td>	S4.4	Match the Column	578
T. Principles Related to Practical Chemistry 580-608 T1. Detection of Extra Elements (N,S and X) in Organic Compounds 580 T1.1 Multiple Choice Question (MCQs) 580 T1.3 Numerical Answer Types (NATs) 581 T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T2.4 Match the Column 581 T2.5 Inorganic Compounds- Mohr's Salt Potash Alum, Oxalic acid Vs KMnO4, Mohr's Salt Vs KMnO4 586 T3.1 Inorganic Compounds- Mohr's Salt Potash Alum, Oxalic acid Vs KMnO4, Mohr's Salt Vs KMnO4 586 T3.2 Statement Based Question 588 T4.3 Acids, Bases and the Used as Indicators 588 T4.4 Acids, Bases and the Used as Indicators 588 T5.2 Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion 590 T5.1 Multiple Choice Question (MCQs) 590 T5.2 Statement Based Question 590 T5.3 Sastertion and Reasons 603 <td>S4.5</td> <td>Assertion and Reasons</td> <td>579</td>	S4.5	Assertion and Reasons	579
11. Detection of Extra Elements (N,S and X) in Organic Compounds 580 11.1 Multiple Choice Question (MCQs) 581 11.3 Numerical Answer Types (NATs) 581 11.4 Match the Column 581 12. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form 581 12.1 Multiple Choice Question (MCQs) 581 13.1 Multiple Choice Question (MCQs) 581 14.1 Match the Column 585 15.1 Multiple Choice Question (MCQs) 586 16.2 Statement Based Question 586 17.3 Numerical Answer Types (NATs) 588 17.4 Acids, Bases and the Used as Indicators 588 17.5 Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion 590 17.1 Multiple Choice Question (MCQs) 590 17.3 Mutriple Involved in the Following Experiments Enthalpy of Solution CuSO4, Enthalpy of Neutralization of Strong Acid and Strong Bases, Preparation of Lyophilic and Lyophobic Salts. Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature —606 17.5 Assertion and Reasons 606 17.6 Multiple Choice Question (MCQs) 606	Т.	Principles Related to Practical Chemistry 5	80-608
T1.1 Multiple Choice Question (MCQs) 580 T1.3 Numerical Answer Types (NATs) 581 T1.4 Match the Column 581 T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T2.4 Match the Column 581 T2.4 Match the Column 581 T2.4 Match the Column 581 T3.1 Multiple Choice Question (MCQs) 581 T3.3 Inorganic Compounds- Mohr's Salt Potash Alum, Oxalic acid Vs KMnO ₄ , Mohr's Salt Vs KMnO ₄ 586 T3.1 Multiple Choice Question (MCQs) 587 T3.3 Numerical Answer Types (NATs) 588 T4. Acids, Bases and the Used as Indicators 588 T5. Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion 590 T5.2 Statement Based Question 590 T5.2 Statement Based Question 603 T5.5 Assertion and Reasons 605 T6. Chemic	T1.	Detection of Extra Elements (N,S and X) in Organic Compounds	580
T1.3 Numerical Answer Types (NATs) 581 T1.4 Match the Column 581 T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Anilire Vellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T2.4 Match the Column 581 T2.4 Match the Column 581 T3.1 Multiple Choice Question (MCQs) 585 T3.1 Multiple Choice Question (MCQs) 586 T3.2 Statement Based Question 587 T3.3 Numerical Answer Types (NATs) 588 T4.4 Acids, Bases and the Used as Indicators 588 T4.4 Acids, Bases and the Used as Indicators 588 T5. Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion 590 T5.2 Statement Based Question 590 T5.2 Statement Based Question 603 T5.2 Statement Based Question 603 T5.3 Assertion and Reasons 605 T6.4 Chemical Principle Involved in the Following Experiments	T1.1	Multiple Choice Question (MCQs)	580
T1.4 Match the Column -581 T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form -581 T2.1 Multiple Choice Question (MCQs) -581 T2.4 Match the Column -581 T2.4 Match the Column -585 T3. Inorganic Compounds- Mohr's Salt Potash Alum, Oxalic acid Vs KMnO4, Mohr's Salt Vs KMnO4 -586 T3.1 Multiple Choice Question (MCQs) -586 T3.2 Statement Based Question -587 T3.3 Numerical Answer Types (NATs) -588 T4.4 Acids, Bases and the Used as Indicators -588 T4.3 Multiple Choice Question (MCQs) -586 T5. Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion -590 T5.1 Multiple Choice Question (MCQs) -590 T5.2 Statement Based Question -590 T5.3 Assertion and Reasons -605 T6.4 Chemical Principle Involved in the Following Experiments Enthalpy of Solution CuSO4, Enthalpy of Neutralization of Strong Acid and Strong Bases, Preparation of Lyophilic and Lyophobic Sal	T1.3	Numerical Answer Types (NATs)	581
T2. Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Aldehyde and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acetanilide Aniline Yellow Indo Form	T1.4	Match the Column	581
and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide Aniline Yellow Indo Form 581 T2.1 Multiple Choice Question (MCQs) 581 T2.4 Match the Column 585 T3. Inorganic Compounds- Mohr's Salt Potash Alum, Oxalic acid Vs KMnO4, Mohr's Salt Vs KMnO4 586 T3.1 Multiple Choice Question (MCQs) 586 T3.2 Statement Based Question (MCQs) 586 T3.3 Numerical Answer Types (NATs) 587 T4. Acids, Bases and the Used as Indicators 588 T4. Acids, Bases and the Used as Indicators 588 T5. Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion 590 T5.1 Multiple Choice Question (MCQs) 590 T5.2 Statement Based Question 599 T5.4 Match the Column 603 T5.5 Assertion and Reasons 605 T6. Chemical Principle Involved in the Following Experiments Enthalpy of Solution CuSO4, Enthalpy of Neutralization of Strong Acid and Strong Bases, Preparation of Lyophilic and Lyophobic Salts. Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature 606 T6.3 Statement Based Question 607 606	T2.	Detection of the Following Functional Group-Hydroxyl Alcoholic and Phenolic Carbonyl (Alc	lehyde
Annule reliow fluto Form 381 T2.1 Multiple Choice Question (MCQs) 581 T2.4 Match the Column 585 T3. Inorganic Compounds- Mohr's Salt Potash Alum, Oxalic acid Vs KMnO ₄ , Mohr's Salt Vs KMnO ₄ 586 T3.1 Multiple Choice Question (MCQs) 586 T3.2 Statement Based Question 587 T3.3 Numerical Answer Types (NATs) 588 T4. Acids, Bases and the Used as Indicators 588 T4. Acids, Bases and the Used as Indicators 588 T5. Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion 590 T5.1 Multiple Choice Question (MCQs) 590 T5.2 Statement Based Question 599 T5.4 Match the Column 603 T5.5 Assertion and Reasons 605 T6. Chemical Principle Involved in the Following Experiments Enthalpy of Solution CuSO ₄ , Enthalpy of Neutralization of Strong Acid and Strong Bases, Preparation of Lyophilic and Lyophobic Salts. Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature 606 T6. Multiple Choice Question (MCQs) 606 T6.5 Assertion and Reasons		and Ketones) Carboxylic and Amino Groups in Organic Compound Acetanilide p-nitro Acet	anilide 591
12.1 Multiple Choice Question (MCQs) 581 12.4 Match the Column 585 13. Inorganic Compounds- Mohr's Salt Potash Alum, Oxalic acid Vs KMnO ₄ , Mohr's Salt Vs KMnO ₄ 586 13.1 Multiple Choice Question (MCQs) 586 13.2 Statement Based Question 587 13.3 Numerical Answer Types (NATs) 588 14.1 Acids, Bases and the Used as Indicators 588 15. Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion 590 15.1 Multiple Choice Question (MCQs) 590 15.2 Statement Based Question 590 15.3 Assertion and Reasons 603 15.4 Assertion and Reasons 605 16.5 Chemical Principle Involved in the Following Experiments Enthalpy of Solution CuSO ₄ ,Enthalpy of Neutralization of Strong Acid and Strong Bases, Preparation of Lyophilic and Lyophobic Salts. Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature 606 16.1 Multiple Choice Question 607 16.2 Statement Based Question 607 16.5 Assertion and Reasons 606 <td>т2 1</td> <td>Multiple Choice Question (MCQc)</td> <td> 301 581</td>	т2 1	Multiple Choice Question (MCQc)	301 581
T3. Inorganic Compounds- Mohr's Salt Potash Alum, Oxalic acid Vs KMnO ₄ , Mohr's Salt Vs KMnO ₄	T2.1	Match the Column	585
T3. Inorganic Compounds- Mont's Sat Potasi Atam, Oxaic actives KMilo4, Mont's Sat VS KMilo4	12.4 T2	Incompanie Company Make's Solt Patesh Alum Oxalia and Va KMnO. Make's Solt Va KMnO	59 6
T3.1 Multiple Choice Question (MCQs) 530 T3.2 Statement Based Question	тз 1	Multiple Choice Question (MCQs)	380
T3.2 Statement Based Question 537 T3.3 Numerical Answer Types (NATs) 588 T4. Acids, Bases and the Used as Indicators 588 T4.1 Multiple Choice Question (MCQs) 588 T5. Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion 590 T5.1 Multiple Choice Question (MCQs) 590 T5.2 Statement Based Question 590 T5.4 Match the Column 603 T5.5 Assertion and Reasons 605 T6. Chemical Principle Involved in the Following Experiments Enthalpy of Solution CuSO ₄ ,Enthalpy of Neutralization of Strong Acid and Strong Bases, Preparation of Lyophilic and Lyophobic Salts. Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature 606 T6.1 Multiple Choice Question (MCQs) 606 T6.2 Statement Based Question 606 T6.3 Assertion and Reasons 607 T6.4 Acid Reasons 607 T6.5 Assertion and Reasons 607	T3.1	Statement Based Question	580
T4. Acids, Bases and the Used as Indicators 588 T4. Multiple Choice Question (MCQs) 588 T5. Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion 590 T5.1 Multiple Choice Question (MCQs) 590 T5.2 Statement Based Question 590 T5.4 Match the Column 603 T5.5 Assertion and Reasons 605 T6. Chemical Principle Involved in the Following Experiments Enthalpy of Solution CuSO ₄₅ Enthalpy of Neutralization of Strong Acid and Strong Bases, Preparation of Lyophilic and Lyophobic Salts. Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature 606 T6.1 Multiple Choice Question (MCQs) 606 T6.2 Statement Based Question 607 T6.5 Assertion and Reasons 607 T6.5 Assertion and Reasons 607 T6.5 Assertion and Reasons 607	T3.2	Statement Dased Question	387
T4.1 Actus, bases and the Osculas inductors	TJ.J T4	Acids Bases and the Used as Indicators	588 588
 T5. Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion590 T5.1 Multiple Choice Question (MCQs)590 T5.2 Statement Based Question	14. Т4 1	Multiple Choice Question (MCQs)	588
T5.1 Multiple Choice Question (MCQs)	T5	Chemical Principle Involves in the Qualitative Self Analyses Cation and Anion	590
T5.1 Multiple Choice Question (MCQs) T5.2 Statement Based Question T5.4 Match the Column T5.5 Assertion and Reasons T6. Chemical Principle Involved in the Following Experiments Enthalpy of Solution CuSO ₄ , Enthalpy of Neutralization of Strong Acid and Strong Bases, Preparation of Lyophilic and Lyophobic Salts. Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature T6.1 Multiple Choice Question (MCQs) T6.2 Statement Based Question T6.3 Assertion and Reasons T6.4 Statement Based Question T6.5 Assertion and Reasons	т <u>5</u> 1	Multiple Choice Question (MCOs)	590
 T5.2 Statement Based Question T5.4 Match the Column	T5 2	Statement Based Question	590
 T5.5 Assertion and Reasons605 T6. Chemical Principle Involved in the Following Experiments Enthalpy of Solution CuSO₄,Enthalpy of Neutralization of Strong Acid and Strong Bases, Preparation of Lyophilic and Lyophobic Salts. Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature606 T6.1 Multiple Choice Question (MCQs)606 T6.2 Statement Based Question607 T6.5 Assertion and Reasons608 	T5 4	Match the Column	603
 T6. Chemical Principle Involved in the Following Experiments Enthalpy of Solution CuSO₄,Enthalpy of Neutralization of Strong Acid and Strong Bases, Preparation of Lyophilic and Lyophobic Salts. Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature606 T6.1 Multiple Choice Question (MCQs)606 T6.2 Statement Based Question607 T6.5 Assertion and Reasons608 	т <u>5</u> 5	Assertion and Beasons	605
To: Checking Frinciple Involved in the Following Experiments Enthapy of Solution Cuso4,Enthapy of Neutralization of Strong Acid and Strong Bases, Preparation of Lyophilic and Lyophobic Salts. Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature606 T6.1 Multiple Choice Question (MCQs)606 T6.2 Statement Based Question607 T6.5 Assertion and Reasons608	T6	Chemical Principle Involved in the Following Experiments Enthalpy of Solution CuSO. Enth	alny of
Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature606 T6.1 Multiple Choice Question (MCQs)606 T6.2 Statement Based Question607 T6.5 Assertion and Reasons608	10.	Neutralization of Strong Acid and Strong Bases. Prenaration of Lyonhilic and Lyonhobic	Salts.
T6.1Multiple Choice Question (MCQs)606T6.2Statement Based Question607T6.5Assertion and Reasons608		Kinetic Study of the Reaction of Iodide Ions with Hydrogen Peroxide of Room Temperature	606
T6.2Statement Based Question607T6.5Assertion and Reasons608	T6.1	Multiple Choice Question (MCQs)	606
T6.5 Assertion and Reasons608	T6.2	Statement Based Question	607
	T6.5	Assertion and Reasons	608

SYLLABUS

PHYSICAL CHEMISTRY

UNIT-1

SOME BASIC CONCEPTS IN CHEMISTRY

Matter and its nature.

Dalton's atomic theory: Concept of atom, molecule, element and compound,

Laws of chemical combination.

Atomic and molecular masses.

Mole concept, molar mass, percentage composition, empirical and molecular formulae.

Chemical equations and stoichiometry.

UNIT 2

ATOMIC STRUCTURE

Nature of electromagnetic radiation,

Photoelectric effect:

Spectrum of the hydrogen atom.

Bohr model of a hydrogen atom and its postulates.

Derivation of the relations for the energy of the electron and radii of the different orbits for Bohr's model.

Limitations of Bohr's model.

Dual nature of matter.

De-de Broglie's relationship.

Heisenberg uncertainty principle.

Elementary ideas of quantum mechanics and The first law of thermodynamics Quantum mechanics.

The quantum mechanical model of the atom its and important features.

Concept of atomic orbitals as one-electron wave functions.

Variation of Ψ and Ψ^2 with r for ls and 2s orbitals.

Various quantum numbers (principal, angular momentum, and magnetic quantum numbers) and their significance.

Shapes of s, p, and d – orbitals.

Electron spin and spin quantum number:

Rules for filling electrons in orbitals - Aufbau principle, Pauli's exclusion principle and Hund's rule. Electronic configuration of elements, extra stability of half-filled and completely filled orbitals.

UNIT-3

CHEMICAL BONDING AND MOLECULAR **STRUCTURE**

Kossel-Lewis approach to chemical bond formation. The concept of ionic and covalent bonds. Ionic Bonding: Formation of ionic bonds and factors affecting its formation. Calculation of lattice enthalpy. Covalent Bonding: concept of electronegativity.

Fajan's rule.

Dipole moment.

VSEPR theory and shapes of simple molecules.

Quantum mechanical approach to covalent bonding.

Valence bond theory and its important features.

The concept of hybridization involving s, p, and d orbitals.

Resonance.

Molecular orbital Theory

Its important features.

LCAOs, types of molecular orbitals (bonding, antibonding),

Sigma and pi-bonds,

Molecular orbital electronic configurations of homonuclear diatomic molecules,

The concept of bond order, Bond length and bond energy.

Elementary idea of metallic bonding.

Hydrogen bonding and is applications.

UNIT-4

CHEMICAL THERMODYNAMICS

Fundamentals of thermodynamics: system and surroundings, Extensive and intensive properties. State functions.

Types of processes.

Concept of work.

Heat internal energy and enthalpy.

Heat capacity and Molar heat capacity.

Hess's law of constant heat summation:

Enthalpies of bond dissociation. Combustion. Formation. Atomization. Sublimation.

Phase transition, Hydration, Ionization and solution.

The second law of thermodynamics

Spontaneity of processes; ΔS of the universe and ΔG of the system as criteria for spontaneity. ΔG° (Standard Gibbs energy change).

Equilibrium constant.

Unit-5

SOLUTIONS

Expressing the concentration of solution: Molality, molarity, mole fraction, percentage (by volume and mass both),

The vapour pressure of solutions.

Raoult's Law-Ideal and non-ideal solutions.

Vapour pressure composition and Plots for ideal and non-ideal solutions.

Colligative properties of dilute solutions :

A relative lowering of vapour pressure.

Depression of freezing point.

The elevation of boiling point and osmotic pressure. Determination of molecular mass using colligative properties.

Abnormal value of molar mass and Van't Hoff factor and its significance.

UNIT-6

EQUILIBRIUM

Equilibrium and the concept of dynamic equilibrium. Equilibria involving physical processes :

Solid-liquid, Liquid - gas and solid-gas equilibria, Henry's law.

General characteristics of equilibrium involving physical processes.

Equilibrium involving chemical processes :

Law of chemical equilibrium,

Equilibrium constants $(K_p \text{ and } K_c)$ and their significance,

The significance of ΔG and ΔG° in chemical equilibrium,

Factors affecting equilibrium concentration: Pressure, temperature and catalyst.

Le Chatelier's principle.

Ionic equilibrium :

Weak and strong electrolytes.

Ionization of electrolytes.

Various concepts of acids and bases (Arrhenius. Bronsted - Lowry and Lewis) and their ionization.

Acid-base equilibria (including multistage ionization) and ionization constants.

Ionization of water, pH scale, common ion effect.

Hydrolysis of salts and pH of their solutions.

The solubility of sparingly soluble salts and solubility products. Buffer solutions.

UNIT-7

REDOX REACTIONS AND ELECTROCHEMISTRY

Electronic concepts of oxidation and reduction. Redox reactions.

Oxidation number and Rules for assigning oxidation number.

Balancing of redox reactions.

Electrolytic and metallic conduction.

Conductance in electrolytic solutions.

Molar conductivities and their variation with concentration : Kohlrausch's law and its applications. Electrochemical cells - Electrolytic and Galvanic cells.

Different types of electrodes.

Electrode potentials including standard electrode potential.

Half - cell and cell reactions.

Emf of a Galvanic cell and its measurement.

Nernst equation and its applications.

Relationship between cell potential and Gibbs' energy change.

Dry cell and lead accumulator. Fuel cells.

UNIT-8

CHEMICAL KINETICS

Rate of a chemical reaction. Factors affecting the rate of reactions: concentration, Temperature, pressure and catalyst. Elementary and complex reactions. Order and molecularity of reactions. Rate law, rate constant and its units.

Differential and integral forms of zero and first-order reactions.

Characteristics and half-lives of zero and first-order reactions.

The effect of temperature on the rate of reactions.

Arrhenius theory, Activation energy and its calculation.

Collision theory of bimolecular gaseous reactions (no derivation).

INORGANIC CHEMISTRY

UNIT-9

CLASSIFICATION OF ELEMENTS AND <u>PERIODICITY IN PROPERTIES</u>

Modern periodic law and present form of the periodic table.

s,p,d and f block elements.

Periodic trends in properties of elements atomic and ionic radii, Ionization enthalpy, Electron gain enthalpy.

Valency, Oxidation states and chemical reactivity.

UNIT-10

P-BLOCK ELEMENTS

Group-13 to Group 18 Elements

General Introduction :

Electronic configuration

General trends in physical and chemical properties of elements.

Unique behaviour of the first element in each group.

UNIT-11

D-AND F-BLOCK ELEMENTS

Transition Elements

General introduction and Electronic configuration.

Occurrence and characteristics,

General trends in properties of the first-row transition elements - physical properties, Ionization enthalpy, Oxidation states, Atomic radii, Colour, catalytic behaviour, Magnetic properties. Complex formation.

Interstitial compounds.

Alloy formation.

Preparation, properties, and uses of K₂Cr₂O₇, and KMnO₄.

Inner Transition Elements

Lanthanoids - Electronic configuration, oxidation states, and lanthanoid contraction.

Actinoids - Electronic configuration and oxidation states.

UNIT-12

CO-ORDINATION COMPOUNDS

Introduction to coordination compounds.

Werner's theory; ligands, coordination number, denticity, chelation.

IUPAC nomenclature of mononuclear co-ordination compounds,

Isomerism.

Bonding-Valence bond approach.

Basic ideas of Crystal field theory and Colour and magnetic properties.

Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).

ORGANIC CHEMISTRY

UNIT-13

PURIFICATION AND CHARACTERISATION OF **ORGANIC COMPOUNDS**

reactions. **Purification** -Alkanes -Crystallization, Conformations : Sawhorse and newman projections Sublimation, (of ethane) : Mechanism of halogenation of alkanes. Distillation, Alkenes -**Differential Extraction** Geometrical isomerism : Mechanism of electrophilic Chromatography - principles and their applications. addition : **Oualitative analysis -**Addition of hydrogen, halogens, Detection of nitrogen. Water, hydrogen halides (Markownikoffs and Detection of Sulphur. peroxide effect) : Ozonolysis and polymerization). Detection of Phosphorus. Alkynes -Detection of Halogens. Acidic character : Quantiative analysis (basic principles only) -Addition of hydrogen, halogens, water, and hydrogen Estimation of carbon. halides : Estimation of Hydrogen. Polymerization. Estimation of Nitrogen. Aromatic hydrocarbons -Estimation of Halogens. Nomenclature. Benzene - structure and aromaticity. Estimation of Sulphur. Mechanism of electrophilic substitution: Estimation of Phosphorus. Halogenation, nitration. Calculations of empirical formulae and molecular Friedel - Craft's alkylation and acylation. formulae : Numerical problems in organic Directive influence of the functional group in monoquantitative analysis. substituted benezene. 11 YCT

UNIT-14

SOME BASIC PRINCIPLES OF ORGANIC CHEMISTRY

Tetravalency of carbon : Shapes of simple molecules and hybridization (s and p).

Classification of organic compounds based on functional groups containing X (Halogen) O, N and S

Homologous series.

Isomerism - structural and stereoisomerism.

Nomenclature (Trivial and IUPAC)

Covalent bond fission - Homolytic and heterolytic. Free radicals, carbocations, and carbanions. Stability of carbocations and free radicals.

Electrophiles and nucleophiles.

Electronic displacement in a covalent bond-Inductive effect.

Electromeric effect.

Resonance and hyperconjugation.

Common types of organic reactions-

Substitution reaction.

IUPAC nomenclature.

Classification. Isomerism.

Addition reaction. Elimination and rearrangement.

UNITS-15

HYDROCARBONS

General methods of preparation and Properties, and

UNIT-16

ORGANIC COMPOUNDS CONTAINING <u>HALOGENS</u>

General methods of preparation,

Properties and reactions;

Nature of C-X bond;

Mechanisms of substitution reactions.

Environmental effects of chloroform, Iodoform freons, and DDT.

UNIT-17

ORGANIC COMPOUNDS CONTAINING OXYGEN

General methods of preparation. Properties, Reactions and uses.

ALCOHOLS, PHENOLS, AND ETHERS

Alcohols :

Identification of primary, secondary, and tertiary alcohols.

Mechanism of dehydration.

Phenols :

Acidic nature.

Electrophilic substitution reactions : Halogenation, nitration and sulphonation.

Reimer - Tiemann reaction.

Ethers : Structure.

Aldehyde and Ketones :

Nature of carbonyl group.

Nucleophilic addition to >C = O group.

Relative reactivities of aldehydes and ketones.

Important reactions: Nucleophilic addition reactions (addition of HCN, NH₃, and its derivatives), Grignard Reagent, Oxidation, Reduction (Wolf Kishner and Clemmensen).

The acidity of α -hydrogen:

Aldol condensation.

Cannizzaro reaction.

Haloform reaction.

Chemical tests to distinguish between aldehydes and Ketones.

Carboxylic Acids

Acidic strength and factors affecting it.

UNIT-18

<u>ORGANI</u>	C COMPO	UNDS	CONTAININ	G NIT	<u>ROGEN</u>
Amines :					
Nomenc	clature.				
Classifi	cation stru	cture.			
Basic	character	and	identification	n of	primary
seconda	ry, and ter	tiary a	mines and the	eir basi	icity.
Diazonium	Salts :	Impor	rtance in syn	nthetic	e organie
chemist	rv.	-	-		0

UNIT-19

BIOMOLECULES General introduction and importance of biomolecules. CARBOHYDRATES -Classification; aldoses and ketoses. Monosaccharides (glucose and fructose) and constituent monosaccharides of oligosaccharides (sucrose, lactose, and maltose). PROTEINS -Elementary idea of α -amino acids, Peptide bond and polypeptides. Proteins: Primary, secondary, tertiary, and quaternary structure (qualitative idea only). Denaturation of proteins. Enzymes. VITAMINS - Classification and functions. NUCLEIC ACIDS - Chemical constitution of DNA and RNA. Biological functions of nucleic acids. Hormones (General introduction) **UNIT-20** PRINCIPLES RELATED TO PRACTICAL CHEMISTRY Detection of extra elements (N, S and X) in organic compounds. Detection of the following functional groups-Hydroxyl (alcoholic and phenolic). Carbonyl (aldehyde and ketones), carboxyl and amino groups in organic compounds. The chemistry involved in the preparation of the following : Inorganic compounds: Mohr's salt, potash alum. Organic compounds : Acetanilide, p-nitro acetanilide, Aniline yellow, Iodoform. • The chemistry involved in the titrimetric exercises: Acids, bases and the use of indicators, Oxalic-acid vs KMNO₄, Mohr's salt vs KMnO₄. Chemical principles involved in the qualitative salt analysis : **Cations** $- \text{Pb}^{2+}$, Cu^{2+} , Al^{3+} , Fe^{3+} , Zn^{2+} , Ni^{2+} , Ca^{2+} , Ba^{2+} , Mg^{2+} , NH_5^+ Anions - S^{2-} , SO_4^{2-} , NO^{3-} , NO^{2-} , CO_3^{2-} , Cl^{-} , Br⁻, I⁻ (Insoluble salts excluded). Chemical principles involved in the following experiments : Enthalpy of solution of CuSO₄ 1. Enthalpy of neutralization of strong acid and 2. strong base. 3. Preparation of lyophilic and lyophobic sols.

4. Kinetic study of the reaction of iodide ions with hydrogen peroxide at room temperature.

S. No	Exam	Proposed Year	Question Paper	Total Question		
	National Eligibility Cum Entrance Test /All India Pre Medical Test (NEET/AIPMT)					
1.	RE-NEET (UG)-	23.06.2024		50		
2.	NEET (UG)-	05.05.2024		50		
3.	RE NEET -Manipur	06.06.2023		50		
4.	NEET	07.05.2023		50		
5.	NEET	17.07.2022		50		
6.	NEET	12.09.2021		50		
7.	NEET	13.09.2020		50		
8.	NEET	05.06.2019		50		
9.	NEET	06.05.2018		50		
10.	NEET	07.05.2017		50		
11.	NEET	01.05.2016	Phase-I	50		
12.	NEET	24.06.2016	Phase-II	50		
13.	NEET/AIPMT	25.07.2015		50		
14.	NEET	04.05.2014		50		
15.	NEET	05.05.2013		50		
16.	AIPMT	2012		50		
17.	AIPMT	2011		50		
18.	AIPMT	2010		50		
19.	AIPMT	2009		50		
20.	AIPMT	2008		50		
21.	AIPMT	2007		50		
22.	AIPMT	2006		50		
23.	AIPMT	2005		50		
24.	AIPMT	2004		50		
25.	AIPMT	2003		50		
26.	AIPMT	2002		50		
27.	AIPMT	2001		50		
28.	AIPMT	2000		50		
29.	AIPMT	1999-1988		600		
	Telanga	na State Council Hig	her Education			
30.	Telangna SCHE	08.05.2024	Shift-I	40		
31.	Telangana SCHE	07.05.2024	Shift I	40		
32.	Telangana SCHE	07.05.2024	Shift II	40		

All India Medical Entrance Exam Chemistry Previous Years Exam Papers Analysis Chart

All India Institute of Medical Sciences (AIIMS)				
33.	AIIMS	26.05.2019	Shift-I	60
34.	AIIMS	26.05.2019	Shift-II	60
35.	AIIMS	25.05.2019	Shift-I	60
36.	AIIMS	25.05.2019	Shift-II	60
37.	AIIMS	2018		60
38.	AIIMS	2017		60
39.	AIIMS	2016		60
40.	AIIMS	2015		60
41.	AIIMS	2014		60
42.	AIIMS	2013		60
43.	AIIMS	2012		60
44.	AIIMS	2011		60
45.	AIIMS	2010		60
46.	AIIMS	2009		60
47.	AIIMS	2008		60
48.	AIIMS	2007		60
49.	AIIMS	2006		60
50.	AIIMS	2005		60
51.	AIIMS	2004		60
52.	AIIMS	2003		60
53.	AIIMS	2002		60
54.	AIIMS	2001		60
55.	AIIMS	2000		60
56.	AIIMS	1999-1994		300
Andh	ra Pradesh Engineering, Agr	iculture and Medical	Common Entrance	Test (AP EAMCET)
57.	AP EAMCET Medical	2013		50
58.	AP EAMCET Medical	2012		50
59.	AP EAMCET Medical	2010		40
60.	AP EAMCET Medical	2009		40
61.	AP EAMCET Medical	2008		40
62.	AP EAMCET Medical	2007		40
63.	AP EAMCET Medical	2006		40
64.	AP EAMCET Medical	2004		40
65.	AP EAMCET Medical	2003		50
66.	AP EAMCET Medical	2002		40
67.	AP EAMCET Medical	2001		40
68.	AP EAMCET Medical	1999		40
69.	AP EAMCET Medical	1998		50
70.	AP EAMCET Medical	1997		50

Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)				
71.	JIPMER	2019		60
72.	JIPMER	2018		60
73.	JIPMER	2017		60
74.	JIPMER	2016		60
75.	JIPMER	2015		60
76.	JIPMER	2014		60
77.	JIPMER	2013		60
78.	JIPMER	2012		60
79.	JIPMER	2011		60
80.	JIPMER	2010		60
81.	JIPMER	2009		60
82.	JIPMER	2008		60
83.	JIPMER	2007		60
84.	JIPMER	2006		60
85.	JIPMER	2005		60
86.	JIPMER	2004		60
	Uttar Pradesh	Combined Pre Medi	ical Test (UPCPMT)	
87.	UPCPMT	2014		50
88.	UPCPMT	2013		50
89.	UPCPMT	2012		50
90.	UPCPMT	2011		50
91.	UPCPMT	2010		50
92.	UPCPMT	2009		50
93.	UPCPMT	2008		50
94.	UPCPMT	2007		50
95.	UPCPMT	2006		50
96.	UPCPMT	2005		50
97.	UPCPMT	2004		50
98.	UPCPMT	2003		50
99.	UPCPMT	2002		50
100.	UPCPMT	2001		50
			Total	6070

Note : After detailed analysis of above mentioned papers of **NEET** and Other Medical and Engineering Examination Related to **Chemistry** 6070 have been presented chapterwise. Questions of repeated and similar nature have included so that the technique of asking question can benefit the competitors.

01. Some Basic Concepts in Chemistry

A.1 Dalton's atomic theory:	A. Atoms of all elements are composed of two fundamental particles.	
Concept of atom molecule, element and compound,	B. The mass of the electron is 9.10939×10^{-31} kg.	
matter and its nature	C. All the isotopes of a given element show same chemical properties.	
A1.1 Multiple Choice Question. (MCQS)	D. Protons and electrons are collectively	
1. O_2 and O_3 are	known as nucleons.	
(a) allotropes (b) isotopes	E. Dalton's atomic theory, regarded the	
(c) isomorphs (d) polymorphs	Choose the correct answer from the options	
UP CPMT-2010	given below :	
Ans. (a) : Since, in O_2 and O_3 different numbers of	(a) B, C and E only (b) A, B and C only	
same element i.e. oxygen are present, these are	(c) C, D and E only (d) A and E only	
anonopes. Note Different crystalline structures different number of	NEET (UG) -07.05.2023	
atoms and different nuclear spins all result in allotropy.	Ans. (a) : (A) Atoms of all elements are composed of	
2. Isotones have	two fundamental particles. It is incorrect statement.	
(a) same number of protons	(B) The mass of the electron is 9.10939×10^{-5} kg. It is	
(b) same number of electrons	(C) All the isotones of a given element show same	
(c) same number of neutrons	chemical properties is correct statement.	
(d) same isotopic mass	(D) Nucleons-Nucleons are equal to number of proton	
UP CPMT-2010	and neutron in the nucleons.	
Ans. (c): Species having the same number of neutron	eg-if the given atom of isotope is He_2^4, He_z^A	
but different atomic number as well as atomic mass are	z = 2 Number of proton.	
called isotones. E.g. $^{39}_{18}$ Ar, $^{40}_{19}$ K.	A = 4 Number of nucleons	
3. ${}_{19}K^{40}$ and ${}_{20}Ca^{40}$ are known as	A-z = 4-2=2 Number of Neutrons.	
(a) isotopes (b) isobars	(Hence nucleons = Number of protons + neutrons) So It	
(c) isotones (d) isodiaphers	(E) Daltons atomic theory regared the atom as an	
UP CPMT-2002	altimate particles of matter so It is correct statement.	
Ans.(b): ${}_{19}K^{40}$ and ${}_{20}Ca^{40}$ both have same mass no but	A1.5 Assertion and Reasons.	
different atomic number, are called isobars.	6. Assertion: Atoms can neither be created nor	
4. Isotopic pair is	destroyed.	
(a) ${}_{20}X^{40}$, ${}_{21}Y^{40}$ (b) ${}_{20}X^{40}$, ${}_{20}Y^{41}$	Reason: Under similar condition of	
(c) ${}_{40}X^{20}$, ${}_{41}Y^{20}$ (d) None of these	temperature and pressure, equal volume of	
UP CPMT-2005	(a) If both Assertion and Reason are correct and the	
Ans. (b) : Key Idea: Isotopes are the atoms of same	Reason is a correct explanation of the Assertion.	
different number of neutrons). They had same atomic	(b) If both Assertion and Reason are correct but	
numbers.	Reason is not a correct explanation of the	
\therefore choice (b) is the correct answer because both ($_{20}X^{40}$.	Assertion.	
$_{20}X^{41}$) have same atomic number but different atomic	(c) If the Assertion is correct but Reason is incorrect	
mass.	(d) If both the Assertion and Reason are incorrect	
A.1.2 Statements based question	(e) If the Assertion is incorrect but the Reason is	
5. Select the correct statements from the	correct.	
following:	AIIMS-2002	

Ans. (c): Dalton hypothesized the law of conservation of mass. According to this law atoms can neither be created nor destroyed. Avogadro's law states that under similar condition of temperature and pressure, equal volume of gases contain equal number of atoms. Therefore Assertion is correct but Reason is incorrect.	 A2.3 Numerical Answer Types (NATS) 10. A hydrocarbon has 85.7% of carbon by weight. 56 g (2 moles) of hydrocarbon was completely burnt in oxygen and obtained CO₂ and H₂O. What is the weight (in g) of CO₂ formed? (C = 12 u, H = 1 u, O = 16 u) (a) 179 (b) 88 (c) 132 (d) 352
A2. Laws of chemical combination, chemical equation and stoichiometry	Telangna SCHE- 08.05.2024 Shift-IAns. (b) : Given- Mass of carbon/Total mass ofhydrocarbon = 85.7%Moles of carbon = 2 moles (Since the moss of the
A2.1 Multiple Choice Question. (MCQS) 7. Number of moles of K2Cr2O7 reduced by one mole of Sn2+? (a) $\frac{1}{3}$ (b) 3 (c) $\frac{1}{6}$ (d) 6	hydrocarbon is 56g) Moles of hydrogen = y (unknown) $\frac{(12x)}{(12x + y)} = 0.857$ $12x = 0.857 (12x + y)$ $12x = 10.284 x + 0.857 y$ $1.716x = 0.857y = n = 0.5y$
UP CPMT-2005 Ans. (a) One mole of Sn ²⁺ can reduce 1/3 moles K ₂ Cr ₂ O _{7.} 8. KMnO ₄ oxidizes oxalic acid in acid medium. The number of CO ₂ molecules produced as per	The balanced chemical equation for the complete combustion of the hydrocarbon is - C (0.5y) Hy + (0.5y + 0.25y) $O_2 \rightarrow 0.5y CO_2 + (0.5y)$ H ₂ O The calculating the mass of CO ₂ formed.
the balanced equation is: (a) 10 (b) 8 (c) 6 (d) 3 AP EAMCET (Medical) -1998 Are (a): When potagium permenganata (KMnQ)	Mass of CO ₂ formed = $0.5y \times 44$ g/mol = 22yg. Substituting the value of y = 4 (Since the hydrocarbon has 85.7% carbon by weight. Mass of CO ₂ formed = $22 \times 4 = 88g$. Therefore, the mass of CO ₂ is formed is "88g".
oxidize the oxalic acid then following reaction take place during the reaction– $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O.$ In a balanced chemical equation of oxidation of oxalic acid by KMnO_4 in acidic medium evolve 10 molecules	 11. A crystal is formed by X (cations) and Y (anions). Atoms of Y form ccp and atoms of X occupy half of octahedral voids and half of tetrahedral voids. What is the molecular formula of crystal? (a) X₂Y₃ (b) XY₃ (c) X₃Y (d) X₃Y₂
9. In the reaction, $4NH_{3(g)} + 5O_{2(g)} \longrightarrow 4NO_{(g)} + 6H_2O_{(i)}$ when 1 mole of ammonia and 1 mole of O_2 are	Ans. (d) : Atoms of Y formed ccp structure which is referred to as FCC. As we know that FCC has four atom on unit cell. No. of atom(N) = 4
 made to react to completion (a) all the oxygen will be consumed (b) 1.0 mole of NO will be produced (c) 1.0 mole of H₂O is produced (d) all the ammonia will be consumed 	Half octahedral voids at $X = \frac{N}{2} = \frac{4}{2} = 2$ Half tetrahedral voids at $X = \frac{2N}{2} = 4$ Thus, total atom on X (Cation) = 6
Ans. (a): $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ $1 NH_3 + 1.25O_2 \rightarrow 1NO + 1.5 H_2O$ When 1 mole of NH ₃ reacts with 1.25 moles of O ₂ it produces 1 mole of NO and 1.5 moles of H ₂ O. When one mole of ammonia and one mole of oxygen are made to react to completion, then all the oxygen is consumed.	 12. 50 mL of each gas A and of gas B takes 150 and 200 seconds respectively for effusing through a pin hole under the similar conditions. If molecular mass of gas A will be (a) 96 (b) 128 (c) 32 (d) 20.2
1	7 YCT

Ans. (d) : Graham's law of effusion states that the rate Rate of diffusion = $\frac{v}{t}$ of effusion of a gas is inversely proportional to the square root the molar mass of its particles. Where v is volume and t is time $V_A = V_B = 50mL$ $\frac{\mathbf{r}_1}{\mathbf{r}_2} = \sqrt{\frac{\mathbf{M}_2}{\mathbf{M}_1}}$ $T_{A} = 150 s$ $T_{\rm B} = 200 \, {\rm s}$ $\frac{\frac{\mathbf{v}_1}{\mathbf{t}_1}}{\underline{\mathbf{v}_2}} = \sqrt{\frac{\mathbf{M}_2}{\mathbf{M}_1}} = \frac{\mathbf{t}_2}{\mathbf{t}_1} = \sqrt{\frac{\mathbf{M}_2}{49}}$ $M_{\rm B} = 36$ $M_{A} = ?$ From Graham's law of effusion. $\frac{1}{2} = \sqrt{\frac{M_2}{49}}$ $\frac{r_{\rm B}}{r_{\rm A}} = \sqrt{\frac{M_{\rm A}}{M_{\rm B}}} = \frac{V_{\rm B}T_{\rm A}}{T_{\rm B}.V_{\rm A}}$ $M_2 = \frac{49}{4}$ $\sqrt{\frac{M_{A}}{36}} = \frac{V_{A} \times 150}{200 \times V_{A}}$ $M_2 = 12.254$ or $\sqrt{\frac{M_A}{36}} = \frac{15}{20} = \frac{3}{4}$ 15. The density of a gas is found to be 1.56g/L at 745 mm pressure and 65°C. What is the molecular mass of the gas? $\frac{M_A}{36} = \frac{9}{16}$ (a) 44.2 u (b) 4.42 u (c) 2.24 u (d) 22.4 u $M_{A} = \frac{9 \times 36}{16} = \frac{81}{4} = 20.25 \approx 20.2$ **JIPMER-2010** Ans. (a): Pressure is $P = 745 \text{ mm} = 0.98 \text{ atm} (1 \text{ atm} (1 \text{ atm} = 0.98 \text{ atm} (1 \text{ atm} (1 \text{ atm} = 0.98 \text{$ 13. A certain gas takes three times as long to effuse 760 mm Hg) out as helium. Its molecular mass will be Temperature is $T = 65^{\circ}C = 65 + 273 = 338K$ (a) 27 u (b) 36 u (c) 64 u (d) 9 u Density is d = 1.56 g/L**NEET-2012** From ideal gas equation, Ans. (b) : The rate of effusion is inversely proportional PV = nRTto the molecular mass $P = \frac{m}{M \times V} \times R \times T \begin{cases} Where, m = given mass. \\ M = molecular mass \end{cases}$ $\frac{\mathbf{r}_1}{\mathbf{r}_2} = \sqrt{\frac{\mathbf{M}\mathbf{w}_2}{\mathbf{M}\mathbf{w}_1}}$ $M = \frac{d \times R \times T}{P} \qquad (d = density = \frac{m}{v})$ The rate of effusion is the ratio of the volume effused to the time taken $M = \frac{1.56 \times 338 \times 0.0821}{0.02} = 44.2u$ $\frac{\mathbf{v}_1}{\mathbf{t}_1} \times \frac{\mathbf{t}_2}{\mathbf{v}_2} = \sqrt{\frac{\mathbf{M}\mathbf{w}_2}{\mathbf{M}\mathbf{w}_1}}$ 0.98 Hence, the molecular mass of the gas is 44.2u A 0.5 g/L solution of glucose is found to be 16. Here, volume is same. isotonic with a 2.5 g/L solution of an organic So, $\frac{3}{1} = \sqrt{\frac{Mw_2}{4}}$ compound. What will be the molecular weight of that organic compound? (b) 600 (a) 300 $9 = \frac{Mw_2}{4} \qquad Mw_2 = 36$ (c) 900 (d) 200 **JIPMER-2009** Two gases A and B having the same volume 14. Ans. (c) : We know, two solutions are said to be diffuse through a porous partition in 20 and 10 isotonic when pressure are equal. seconds respectively. The molecular mass of A Osmotic pressure is given by (For glucose) is 49 u. Molecular mass of B will be $\frac{nRT}{V} = \frac{mRT}{MV} = \frac{0.5 RT}{M} = \frac{RT}{360}$ (a) 50.00 u (b) 12.25 u (c) 6.50 u (d) 25.00 u For other organic compound. **NEET-2011** $\frac{nRT}{V} = \frac{mRT}{MV} = \frac{2.5RT}{M_1}$ Ans. (b) : Graham's law of diffusion states that the rate of diffusion of a gas is inversely proportional to the square root of its molecular weight. n = Moles of solute.According to the Graham's law m = mass of solute.Rate of diffusion (r) $\propto \frac{1}{\sqrt{M}}$ M = Molecular weight of solute. V = volume of solution.

T = TemperatureAns. (c): $\frac{2Al_2O_3 + 3C}{3 \times 12 - 36}$ → 4A1 + 3CO, When both the pressures are equal. $4 \times 27 = 108$ RT 2.5RT : For 108 g of Al, 36 g of C is required in above 360 M_1 reaction $M_1 = 900$: For 270 kg of Al require amount of C $=\frac{36}{108}\times 270=90$ kg 17. Volume of water needed to mix with 10 mL 10N HNO₃ to get 0.1N HNO₃ is 21. (a) 1000mL (b) 990mL The number of moles of oxygen obtained by the (c) 1010mL (d) 10mL electrolytic decomposition of 108 g water is **AIIMS-2017** (a) 2.5 (b) 3 **Ans. (b):** Given, $N_1 = 10$ N, $V_1 = mL$, $N_2 = 0.1$ N and (c) 5 (d) 7.5 $V_2 = ?$ **JIPMER-2008** By law of conservation **Ans. (b):** $2H_2O$ Electrolysis $2H_2 + O_2$ $N_1V_1 = N_2V_2$ $10 \times 10 = 0.1 (10 + V)$ 1 mole 2 mole $V = \frac{10 \times 10}{0.1} - 10 = 1000 - 10 = 990 \,\text{mL}$ $2 \times 18 = 36$:: 36 g of H₂O produce 1 mole of oxygen An aqueous solution of 6.3 g of oxalic acid 18. : 108 g of water will produce oxygen dihydrate is made up to 250 mL. The volume of $=\frac{108}{36}=3$ mole 0.1 N NaOH required to completely neutralise 10 mL of this solution is (a) 20 mL (b) 40 mL 22. KMnO₄ reacts with ferrous sulphate according (c) 10 mL (d) 4 mL to the following equation. **AIIMS-2013** $MnO_4^- + 5Fe^{2+} + 8H^- \rightarrow Mn^{2+} + 2Fe^{3+} + 4H_2O$ Ans. (b): As we know, Here, 10 mL of 0.1 M KMnO₄ is equivalent to n- factor for $H_2C_2O_4.2H_2O = 2$ (a) 50 mL of 0.1 M FeSO₄ Normality = $\frac{\text{weight} \times 2 \times 1000}{\text{molecular weight} \times 250} = \frac{6.3 \times 2000}{126 \times 250} = 0.4$ (b) 20 mL of 0.1 M FeSO₄ (c) 40 mL of 0.1 M FeSO₄ $N_1V_2 = N_2V_2$ (d) 30 mL of 0.1 M FeSO₄ $0.4 \times 10 = V_2 \times 0.1 \implies$ Volume (V₂) = 40 mL. **JIPMER-2015** Liquid benzene burns according to $2C_6H_6(l)$ + 19 Ans. (a) : $KMnO_4$ reacts with ferrous sulphate $150_2(g) \rightarrow 1200_2(g) + 6H_2O(g)$ How many litres according to the following equation, of oxygen are required for complete $2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O_4$ combustion of 39g of liquid C₆H₆ (atomic wt. of 2 moles of KMnO₄ reacts with 10 moles of FeSO₄ C=12, O = 16)? The number of moles of KMnO₄ in 10 ml of 0.1 (a) 11.2 (b) 22.4 (c) 42 (d) 84 $M = 0.1 \times 0.01 = 10^{-3}$ moles A.P.EAMCET-1998, 1996 No. of moles $FeSO_4 = 5 \times 10^{-3}$ Ans. (d) : Volume having 5×10^{-3} mol in 0.1 MFeSO₄ $0.1 = \frac{5 \times 10^{-3} \times 1000}{1000}$ $2C_6H_6(l)+15O_2(g) \rightarrow 12CO_2(g)+6H_2O(g)$ 2×78gm 15×22.4L For combustion of 2×78 gm of C₆H₆ $V_{m\ell} = \frac{5 \times 10^{-3} \times 1000}{0.1}$ Volume of O_2 required = 15 × 22.4L \therefore For combustion of 39 gm of C₆H₆ $V_{m\ell} = 50 \, ml$ Volume of O₂ required = $\frac{15 \times 22.4 \times 39}{2 \times 78} = 84$ L 23. An element, X has the following isotopic composition : 20. The mass of carbon anode consumed (giving 200 X : 90% 199 X:8.0% 202 X:2.0% only carbon dioxide) in the production of 270 The weighted average atomic mass of the kg of aluminium metal from bauxite by the naturally occurring element X is closed to Hall process is (a) 270 kg (b) 540 kg (a) 201 amu (b) 202 amu (d) 180 kg (c) 199 amu (d) 200 amu (c) 90 kg **NEET-2005 NEET-2007**

Ans. (d) : weight of 200 X = 0.90 × 200 = 180.00 u	Ans. (a) :				
Weight of 199 X = 0.08 × 199 = 15.92 u	$H_2 + I_2 \rightleftharpoons 2HI$				
Weight of 202 X = 0.02 × 202 = 4.04 u	Intial 1mol 2mol				
Total weight = $199.96 \approx 200$ amu.	At, equibrium $0.2 2-0.8 2 \times 0.8$				
24. Two grams of sulphur is completely burnt i	\mathbf{n} 12mol 16mol				
oxygen to form SO ₂ . In this reaction, what	s The numbers of moles of I_2 and HI at equilibrium are				
the volume (in litres) of oxygen consumed a	t 1.2 moles and 1.6 moles respectively.				
SIP?	27. KMnO ₄ reacts with oxalic acid according to the				
(Atomic weight of support and oxygen are s and 16 respectively)	2 equation: $2M_{1} = -\frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{i=1}^{2} $				
16 22.4	$2MnO_4 + 5C_2O_4^2 + 16H^2 \rightarrow 2Mn^2 + 10CO_2$				
(a) $\frac{10}{22.4}$ (b) $\frac{22.4}{16}$	+8H ₂ O				
22.1 10	Here 20 mL of 0.1 M KMnO ₄ is equivalent to:				
(c) $\frac{22.4}{32}$ (d) $\frac{32}{22.4}$	(a) $20mL \text{ of } 0.5M \text{ H}_2\text{C}_2\text{O}_4$				
52 22.4 A P_F A MCFT (Medical) 200	(b) $50\text{mL of } 0.5\text{M H}_2\text{C}_2\text{O}_4$				
Ans (b) • The following reaction occur which is given	(c) $50 \text{mL of } 0.1 \text{M H}_2 \text{C}_2 \text{O}_4$				
below –	(d) $20mL of 0.1M H_2 C_2 O_4$				
$S + O_2 \rightarrow SO_2$	AIIMS-2013				
Molecular weight of $SO_2 = 32 + 2 \times 16 = 64g$	Ans. (c): 2×4^{-2} 2×4^{-2} 1×4^{-2} 1×4^{-2}				
Volume of oxygen (1 mole), at $STP = 22.4L$	$2MnO_4 + 5C_2O_4^2 + 16H^2 \longrightarrow 2Mn^{24} + 10CO_2 + 8H_2O$				
At STP,	At NTP				
\therefore 32g of sulphur requires $O_2 = 22.4 L$	2×22.4 L reacts with 3×22.4 L of oxalic acid.				
\therefore 2g of sulphur requires $O_2 = \frac{22.4 \times 2}{22.4 \times 2} = \frac{22.4}{L}$	$5 \times 22.4 \times 20$				
32 16	$=\frac{3222223}{2 \times 22.4} = 50 \mathrm{ml}$				
25. How many moles of lead (II) chloride will b	e So, the correct option is 50 ml of 0.1 M oxalic acid.				
formed from a reaction between 6.5 g of Pb					
and 3.2 σ HCI2 (atomic weight of Pb = 207)					
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029	A3. Mole concept. Atomic and				
and 3.2 g HCl? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333	A3. Mole concept. Atomic and molecular mass, molar mass,				
and 3.2 g HCl? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition,				
and 3.2 g HCl? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) :	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae.				
and 3.2 g HCl? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl 2025 Stationary PbCl ₂ + H ₂ O	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS)				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl $_{223g/mol} + _{2(35.59+1)g/mol} \longrightarrow PbCl_{2} + H_{2}O$ $_{277g/mol} + _{18g/mol} + _{277g/mol} + _{27$	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas.				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl (6.5) 70	 A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal 				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl 6.5 \rightarrow x \Rightarrow x = $\frac{6.5 \times 70}{223}$	 A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) 				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \rightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl 6.5 \rightarrow x \Rightarrow x = $\frac{6.5 \times 70}{223}$ \Rightarrow x = 2.04 g of HCl is needed	 A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively 				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl 6.5 \rightarrow x \Rightarrow x = $\frac{6.5 \times 70}{223}$ \Rightarrow x = 2.04 g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂	 A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) V, T (b) V, T (c) 3V,T (d) V, 3T 				
and 3.2 g HCl? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \rightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl 6.5 \rightarrow x \Rightarrow x = $\frac{6.5 \times 70}{223}$ \Rightarrow x = 2.04 g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂ (5.5 \rightarrow x \Rightarrow Correction (b) Cl ₂ (5.5 \rightarrow x \Rightarrow Correction (c) Correctio	 A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) ^V/₃, ^T/₃ (b) ^V/₃, T (c) 3V,T (d) ^V/₃, 3T 				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl 6.5 \rightarrow x \Rightarrow x = $\frac{6.5 \times 70}{223}$ \Rightarrow x = 2.04 g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂ 6.5 \rightarrow y \Rightarrow y = $\frac{6.5 \times 277}{223}$ \Rightarrow y=8.07g	 A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) V/3, T/3 (b) V/3, T (c) 3V,T (d) V/3, 3T Telangana SCHE 07.05.2024 Shift II 				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl $6.5 \rightarrow x \Rightarrow x = \frac{6.5 \times 70}{223}$ $\Rightarrow x = 2.04$ g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂ $6.5 \rightarrow y \Rightarrow y = \frac{6.5 \times 277}{223} \Rightarrow y = 8.07g$ 1 mol \rightarrow 277g	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) $\frac{V}{3}, \frac{T}{3}$ (b) $\frac{V}{3}, T$ (c) $3V,T$ (d) $\frac{V}{3}, 3T$ Telangana SCHE 07.05.2024 Shift II Ans. (b) : Given that, the volume of vessel contain V				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl 6.5 \rightarrow x \Rightarrow x = $\frac{6.5 \times 70}{223}$ \Rightarrow x = 2.04 g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂ 6.5 \rightarrow y \Rightarrow y = $\frac{6.5 \times 277}{223}$ \Rightarrow y=8.07g 1 mol \rightarrow 277g x mol \rightarrow 8.07	 A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) V/3, T/3 (b) V/3, T (c) 3V,T (d) V/3, 3T Telangana SCHE 07.05.2024 Shift II Ans. (b) : Given that, the volume of vessel contain V liters of an ideal gas and ideal gas is T (k). 				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl $6.5 \rightarrow x \Rightarrow x = \frac{6.5 \times 70}{223}$ $\Rightarrow x = 2.04$ g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂ $6.5 \rightarrow y \Rightarrow y = \frac{6.5 \times 277}{223} \Rightarrow y=8.07g$ 1 mol \rightarrow 277g x mol \rightarrow 8.07 $\Rightarrow x = \frac{8.07}{-0.029}$ moles	 A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) V/3, T/3 (b) V/3, T (c) 3V,T (d) V/3, 3T Telangana SCHE 07.05.2024 Shift II Ans. (b) : Given that, the volume of vessel contain V liters of an ideal gas and ideal gas is T (k). 				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl $6.5 \rightarrow x \Rightarrow x = \frac{6.5 \times 70}{223}$ $\Rightarrow x = 2.04$ g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl = 400000000000000000000000000000000000	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) $\frac{V}{3}, \frac{T}{3}$ (b) $\frac{V}{3}, T$ (c) $3V,T$ (d) $\frac{V}{3}, 3T$ Telangana SCHE 07.05.2024 Shift II Ans. (b) : Given that, the volume of vessel contain V liters of an ideal gas and ideal gas is T (k).				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl $\rightarrow PbCl_2 + H_2O$ 223g/mol of PbO need $\rightarrow 70g$ of HCl $6.5 \rightarrow x \Rightarrow x = \frac{6.5 \times 70}{223}$ $\Rightarrow x = 2.04 g$ of HCl is needed. 223g of PbO $\rightarrow 277g$ of PbCl ₂ $6.5 \rightarrow y \Rightarrow y = \frac{6.5 \times 277}{223} \Rightarrow y = 8.07g$ 1 mol $\rightarrow 277g$ x mol $\rightarrow 8.07$ $\Rightarrow x = \frac{8.07}{277} = 0.029$ moles 26. 1 mole of H ₂ and 2 moles of I ₂ are take	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) $\frac{V}{3}, \frac{T}{3}$ (b) $\frac{V}{3}, T$ (c) $3V,T$ (d) $\frac{V}{3}, 3T$ Telangana SCHE 07.05.2024 Shift II Ans. (b) : Given that, the volume of vessel contain V liters of an ideal gas and ideal gas is T (k). Total volume of vessel = V liter.				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl $6.5 \rightarrow x \Rightarrow x = \frac{6.5 \times 70}{223}$ $\Rightarrow x = 2.04$ g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂ $6.5 \rightarrow y \Rightarrow y = \frac{6.5 \times 277}{223} \Rightarrow y=8.07g$ $1 \text{ mol} \rightarrow 277g$ $x \text{ mol} \rightarrow 8.07$ $\Rightarrow x = \frac{8.07}{277} = 0.029 \text{ moles}$ 26. 1 mole of H ₂ and 2 moles of I ₂ are take initially in a two liter vessel. The number of	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) $\frac{V}{3}, \frac{T}{3}$ (b) $\frac{V}{3}, T$ (c) $3V,T$ (d) $\frac{V}{3}, 3T$ Telangana SCHE 07.05.2024 Shift II Ans. (b) : Given that, the volume of vessel contain V liters of an ideal gas and ideal gas is T (k). Total volume of vessel = V liter. Volume of cach part = $\frac{V}{3}$				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl $6.5 \rightarrow x \Rightarrow x = \frac{6.5 \times 70}{223}$ $\Rightarrow x = 2.04$ g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂ $6.5 \rightarrow y \Rightarrow y = \frac{6.5 \times 277}{223} \Rightarrow y=8.07g$ 1 mol \rightarrow 277g x mol \rightarrow 8.07 $\Rightarrow x = \frac{8.07}{277} = 0.029$ moles 26. 1 mole of H ₂ and 2 moles of I ₂ are take initially in a two liter vessel. The number of moles of H ₂ at equilibrium is 0.2. Then, th number of moles of I ₂ and HI at equilibrium	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) $\frac{V}{3}, \frac{T}{3}$ (b) $\frac{V}{3}, T$ (c) $3V,T$ (d) $\frac{V}{3}, 3T$ Telangana SCHE 07.05.2024 Shift II Ans. (b) : Given that, the volume of vessel contain V liters of an ideal gas and ideal gas is T (k). Total volume of vessel = V liter. Volume of cach part = $\frac{V}{3}$				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl $6.5 \rightarrow x \Rightarrow x = \frac{6.5 \times 70}{223}$ $\Rightarrow x = 2.04$ g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂ $6.5 \rightarrow y \Rightarrow y = \frac{6.5 \times 277}{223} \Rightarrow y=8.07g$ 1 mol \rightarrow 277g x mol \rightarrow 8.07 $\Rightarrow x = \frac{8.07}{277} = 0.029$ moles 26. 1 mole of H ₂ and 2 moles of I ₂ are take initially in a two liter vessel. The number of moles of H ₂ at equilibrium is 0.2. Then, th number of moles of I ₂ and HI at equilibrium are-	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) $\frac{V}{3}, \frac{T}{3}$ (b) $\frac{V}{3}, T$ (c) $3V,T$ (d) $\frac{V}{3}, 3T$ Telangana SCHE 07.05.2024 Shift II Ans. (b) : Given that, the volume of vessel contain V liters of an ideal gas and ideal gas is T (k). Total volume of vessel = V liter. Volume of cach part = $\frac{V}{3}$ Total volume of vessel = V liter.				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \rightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl $6.5 \rightarrow x \Rightarrow x = \frac{6.5 \times 70}{223}$ $\Rightarrow x = 2.04$ g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂ $6.5 \rightarrow y \Rightarrow y = \frac{6.5 \times 277}{223} \Rightarrow y = 8.07g$ $1 \text{ mol} \rightarrow 277g$ $x \text{ mol} \rightarrow 8.07$ $\Rightarrow x = \frac{8.07}{277} = 0.029 \text{ moles}$ 26. 1 mole of H ₂ and 2 moles of I ₂ are take initially in a two liter vessel. The number of moles of H ₂ at equilibrium is 0.2. Then, th number of moles of I ₂ and HI at equilibrium are- (a) 1.2, 1.6 (b) 1.8, 1.0	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) $\frac{V}{3}$, $\frac{T}{3}$ (b) $\frac{V}{3}$, T (c) $3V$,T (d) $\frac{V}{3}$, 3T Telangana SCHE 07.05.2024 Shift II Ans. (b) : Given that, the volume of vessel contain V liters of an ideal gas and ideal gas is T (k). Total volume of vessel = V liter. Volume of cach part = $\frac{V}{3}$ Total volume of vessel = V liter. Volume of each part = $\frac{V}{3}$				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl ₂ + H ₂ O 223g/mol of PbO need \rightarrow 70g of HCl $6.5 \rightarrow x \Rightarrow x = \frac{6.5 \times 70}{223}$ $\Rightarrow x = 2.04$ g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂ $6.5 \rightarrow y \Rightarrow y = \frac{6.5 \times 277}{223} \Rightarrow y = 8.07g$ 1 mol \rightarrow 277g x mol \rightarrow 8.07 $\Rightarrow x = \frac{8.07}{277} = 0.029$ moles 26. 1 mole of H ₂ and 2 moles of I ₂ are take initially in a two liter vessel. The number of moles of H ₂ at equilibrium is 0.2. Then, the number of moles of I ₂ and HI at equilibrium are- (a) 1.2, 1.6 (b) 1.8, 1.0 (c) 0.4, 2.4 (d) 0.8, 2.0	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) $\frac{V}{3}$, $\frac{T}{3}$ (b) $\frac{V}{3}$, T (c) $3V$,T (d) $\frac{V}{3}$, 3T Telangana SCHE 07.05.2024 Shift II Ans. (b) : Given that, the volume of vessel contain V liters of an ideal gas and ideal gas is T (k). Total volume of vessel = V liter. Volume of cach part = $\frac{V}{3}$ Total volume of vessel = V liter. Volume of each part = $\frac{V}{3}$				
and 3.2 g HCI? (atomic weight of Pb = 207) (a) 0.011 (b) 0.029 (c) 0.044 (d) 0.333 NEET-200 Ans. (b) : PbO + 2HCl \longrightarrow PbCl ₂ + H ₂ O 233g/mol of PbO need \rightarrow 70g of HCl $6.5 \rightarrow x \Rightarrow x = \frac{6.5 \times 70}{223}$ $\Rightarrow x = 2.04$ g of HCl is needed. 223g of PbO \rightarrow 277g of PbCl ₂ $6.5 \rightarrow y \Rightarrow y = \frac{6.5 \times 277}{223} \Rightarrow y = 8.07g$ 1 mol \rightarrow 277g x mol \rightarrow 8.07 $\Rightarrow x = \frac{8.07}{277} = 0.029$ moles 26. 1 mole of H ₂ and 2 moles of I ₂ are take initially in a two liter vessel. The number of moles of H ₂ at equilibrium is 0.2. Then, th number of moles of I ₂ and HI at equilibrium are- (a) 1.2, 1.6 (b) 1.8, 1.0 (c) 0.4, 2.4 (d) 0.8, 2.0 BCECE-2008, UP CPMT-200	A3. Mole concept. Atomic and molecular mass, molar mass, percentage composition, empirical and formulae. A3.1 Multiple Choice Question (MCQS) 28. At T (K), vessel contains V litres of an ideal gas. The vessel was partitioned into three equal parts. The volume (in L) and temperature (in K) each part are respectively (a) $\frac{V}{3}$, $\frac{T}{3}$ (b) $\frac{V}{3}$, T (c) $3V$,T (d) $\frac{V}{3}$, 3T Telangana SCHE 07.05.2024 Shift II Ans. (b) : Given that, the volume of vessel contain V liters of an ideal gas and ideal gas is T (k). Total volume of vessel = V liter. Volume of cach part = $\frac{V}{3}$ Total volume of vessel = V liter. Volume of each part = $\frac{V}{3}$ Total volume of vessel = V liter.				

29. The number of products formed by thermal ||Ans. (a) : From the ideal Gas equation decomposition of lithium nitrate, sodium nitrate, PV = nRTsodium nitrate respectively are $n = \frac{W}{M}$ where, w = weight(a) 2,3 (b) 2,2 (c) 3, 3 (d) 3, 2 M = Molar massTelangana SCHE 07.05.2024 Shift II $PV = \frac{W}{M}RT$ Ans. (d) : The thermal decomposition of lithium nitrate (Li NO₃) $PM = \frac{W}{V}RT$ $2 \text{ Li NO}_3 \xrightarrow{\Delta} \text{Li}_2\text{O} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2$ as you know $\frac{W}{V}$ is density The no. of product is three. And thermal decomposition of sodium nitrate (NaNO₃) PM = dRT $d = \frac{PM}{RT}$ $2NaNO_3 + \Delta 2 NaNO_2 + O_2$ The no. of product is two. Density is directly proportional to pressure and 30. What is the correct equation that relates inversely proportional to temperature. kinetic energy (Eke) and pressure (P) of one from this equation mole of an ideal gas? $\Rightarrow d = \frac{PM}{RT}$ (V = Volume)(a) $P = \frac{2E_{ke}}{3V}$ (b) $P = \frac{3V}{2E_{ke}}$ for higher density, pressure will be high and temperature should be low. The molecular mass of a volatile substance may 32. (d) $P = \frac{2(E_{ke})^2}{2V}$ (c) $P = \frac{3V^2}{2E_1}$ be measured by (a) Liebig's method (b) Hofmann's method Telangna SCHE- 08.05.2024 Shift-I (c) Victor Meyer's method Ans. (a) : Pressure exerted by the gas, (d) none of these $P = \frac{1}{3}\rho v^2$...(i) **AIIMS-1994** Ans. (c): The molecular mass of volatile substances can Where, P = Total pressurebe determined by Victor Meyar. In this method primary, ρ = Density of gas secondary and tertiary alcohols are subjected to a series of chemical analysis and the colour of resulting solution v = Velocity of gas moleculeobserved. A known mass of the compound is vaporized in Kinetic energy for unit mole of the gas an instrument called Victor Meyar tube. $E_R = \frac{1}{2}mv^2$...(ii) 33. How many neutrons are present in tritium nucleus? Dividing equation (ii) from (i), we get -(a) 2 (b) 3 (c) 1 (d) 0 $\frac{P}{E_{K.e}} = \frac{\frac{1}{3}\rho v^2}{\frac{1}{2}mv^2}$ **UP CPMT-2003 Ans.** (a) : Tritium $\binom{3}{1}$ H) is an isotope of hydrogen \therefore atomic number = 1 or \therefore protons = electrons = 1 $P = \frac{2}{3} \frac{m}{m.v} E_{K.e}$ No. of neutrons = Atomic mass-No. of protons = 3 - 1 = 2 $P = \frac{2}{3} \frac{E_{K.e}}{V}$ 34. Carbon atom consists of electrons, protons and neutrons. If the mass attributed to neutron were halved and that attributed to the electron 31. The correct option in which the density of were doubled, the atomic mass of ${}_{6}C^{12}$ would be argon (Atomic mass = 40) is highest approximately (b) $273^{\circ}C$, 4 atm (a) 0°C,4 atm (a) same (b) doubled (c) STP (d) 0^{0} C, 2 atm (c) halved (d) reduced by 25% **RE-NEET (UG) 06.06.2023 (Manipur) UP CPMT-2013** 21 YCT

Ans. (d) : (i) There is no change by doubling mass on electrons, because there are only 6-electrons in carbon atom which have negligible mass (6/1837 of the mass of a proton). (ii) However, by reducing mass of neutron half, total atomic mass becomes 6 (protons) +3 (neutrons) instead 6 (protons) +6 (neutrons). Thus, the new atomic mass of ${}_{6}C^{12}$ would be $\frac{3}{2} \times 100 = 25\%$	 Ans. (a): 1 mole of CH₄ contains 1 gm of carbon and 4gm of mole of hydrogen. Methane (CH₄) is a colorless, odorless, flammable gas that is the simplest hydrocarbon and is the major constituent of natural gas. 39. Temperature does not affect: (a) Molality (b) Formality (c) Molarity (d) Normality Ans. (a): Since molality is defined in terms of the 		
$\frac{12}{12}$	solvent's mass not its volume, the temperature does not		
35. The number of moles of KMnO ₄ reduced by 25% .	Where as in case of formality molarity and normality		
one mole of KI in alkaline medium is	volume which change with the change of temperature.		
(a) one fifth (b) five (c) one (d) two	40. The amount of zinc required to produce 224		
JCECE-2012	ml. of H_2 at STP on treatment with dilute H_2SO_4 will be		
JIPMER-200'	(a) 65 g (b) 0.065 g		
Ans. (d) : In alkaline solution, $KMnO_4$ is reduced to MnO_2 (colourless)	(c) 0.65 g (d) 6.5 g		
$2KMnO_4 + 2H_2O \longrightarrow MnO_7 + 2KOH + 3[O]$	NEET-1996		
$KI + 3[O] \longrightarrow KIO_{2}$	Ans. (c): when Zine react with H_2SO_4 $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$		
$\frac{1}{2KMnO_4 + 2H_2O + KI \longrightarrow 2MnO_2 + 2KOH}$	1 mole of Zinc will react to give 1 moles of hydrogen		
+ KIO ₃	Volume of 1 mole of hydrogen at $STP = 22400 \text{ ml}$		
Hence, two moles of $KMnO_4$ are reduced by one mole of KI.	1 mole of Zn = 65 grams = $\frac{65 \times 224}{22400} = 0.65$ g		
36. For preparing 0.1 N solution of a compound	0.65 grams of Zinc can react to give 224 ml of		
from its impure sample of which the	hydrogen.		
percentage purity is known, the weight of the substance required will be	41. Avogadro's number of oxygen atom weighs		
(a) less than the theoretical weight	(a) $32 g$ (b) $8 g$ (c) $56 g$ (d) $16 g$		
(b) more than the theoretical weight	(c) 50 g (d) 10 g		
(c) same as the theoretical weight	Ans. (d): Avogadro's number number of units is one		
(d) none of these	mole of any substance (defined as its molecular weight		
AIIMS-2012	is grams), equal to 6.023×10^{23} .		
Ans. (b): The sample contains impurity. The impurity won't contribute to the normality of the solution. So, we	Weight of 6.023×10^{23} molecular of oxygen (O ₂) = 32g		
need to take more amount of sample than the theoretical	Since the oxygen is diatomic, therefore weight of		
weight so that the theoretical weight of compound	Avogadro's number of oxygen atom = $\frac{32}{2}$ = 16 g		
37 One mole of fluorine reacted with two moles of	f 42. The number of moles of water present in 180		
hot concentrated KOH. The products formed	gm of water is		
are KF, H ₂ O and O ₂ . The molar ratio of KF	(a) 18 (b) 5 (c) 100 (d) 10		
H ₂ O and O ₂ respectively, is?	(c) 100 (d) 10 AIIMS_1096		
(a) $1:1:2$ (b) $2:1:0.5$ (c) $1:2:1$ (d) $2:1:2$	Ans (d): Given that Molecular weight of water = 18		
$\begin{array}{c} (c) \ 1.2.1 \\ \textbf{AP FAMCET}_{-} \ 200' \\ \end{array}$	Mass		
Ans. (b) : $F_{4} + 2KOH \rightarrow 2KF + H_{2}O_{4}$	\therefore No of moles of water = $\frac{1}{Mass}$		
The molar ratios of KF H ₂ O and O ₂ is 2° 1. 0.5	180		
respectively.	$=\frac{100}{18}=10$ moles		
38. One mole of CH ₄ contains	43. 0.833 mol of a carbohydrate with empirical		
(a) 4 g atoms of hydrogen	formula CH ₂ O, has 10g of hydrogen. Molecular		
(b) 3.0 g atoms of carbon (c) $(02)(10^{23} \text{ starses Ch} - 1)$	tormula of carbohydrate is		
(c) 0.02×10^{-3} atoms of nyarogen (d) 1.81×10^{23} molecules of CH	(a) $C_3 \Pi_5 O_3$ (b) $C_6 \Pi_{12} O_6$ (c) $C_2 \Pi_{12} O_6$ (d) $C_2 \Pi_2 O_5$		
	$\frac{1}{2} \qquad \qquad$		
	22 YCT		

Ans. (a) : Giv molecular weigh \therefore No. of moles $=\frac{1}{2}=0.5$ moles For 14 g of N ₂ - So, No. of moles Hence, 1.0 g of 14g of N ₂ . 49. The amou ml. of $\frac{M}{20}$ (Molar m (a) 2.25g (c) 0.44g	Yen that, weit t of $H_2 = 2$ = Weight Molecular w = $\frac{14}{28} = \frac{1}{2} = 0.3$ H_2 has same n Int of glucose aqueous solut ass of glucose	ght of H eight 5 moles umber of r required ion is: : 180 g m (b) 4.5g (d) 1 12	2 = 1gm and molecules as in to prepare 250 ol ⁻¹) 5g	51. Mass in gram of copper deposited by passing 9.6487 A current through a voltmeter containing copper sulphate solution for 100 seconds is: (Given: Molar mass of Cu:63 g mol ⁻¹ , If = 96487C) (a) 3.15 g (b) 0.315g (c) 31.5g (d) 0.0315g NEET (UG) 05.05.2024 Ans. (b) : Given, Current (I) = 9.6487 A Time (t) = 100s Molar mass of Cu = 63 g mol ⁻¹ According to the first law of electrolysis- w = $Z \times q$ w = $\frac{E}{96487} \times I \times t$ (Equivalent weight for Cu, $E = \frac{63}{2} = 31.5$)
(c) 0.44g	$\frac{\mathbf{RE}}{\mathbf{M}} = \frac{\mathbf{W}_2 \times 10}{100}$	(d) 1.12 <u>C-NEET (l</u>	JG)-23.06.2024	$w = \frac{31.5}{96487} \times 9.6487 \times 100$ w = 0.315 g
Given, $(M) \Rightarrow$ $\frac{1}{20} = \frac{W_2 \times 1000}{180 \times 250}$ $W_2 = \frac{180 \times 250}{20 \times 1000}$ $W_2 = 2.25g$ 50. A compose and remains the empirical (Given atted (a) ABC ₃ (c) ABC ₄	M ₂ (M ₂₀ ind X contait aining percent formula of X mic masses of	v) ns 32% of itage of is : (A = 64; B (b) AB ₂ (d) A ₂ B ¹ NEET (1	f A 20% of B C. Then, the = 40; C = 32 u) C ₂ C ₂ UG) 05.05.2024	52. The highest number of helium atoms is in (a) 4 u of helium (b) 4 g of helium (c) 2.271098 L of helium at STP (d) 4 mol of helium NEET (UG) 05.05.2024 Ans. (d) : (i) 4 mole of helium = 4 N _A He atoms (ii) 4 u of helium = $\frac{4}{4}$ = 1 He atom $\left(\because n = \frac{W}{mW}\right)$ (iii) 4 g of helium = $\frac{4}{4}$ mole = 1 N _A He atom (iv) 2.271098 L of helium at STP = $\frac{2.271098}{22.4}$ mole = 0.1 NA He atom Hence, the highest number of helium atoms is in 4 mole of helium.
Ans.(a) : Element Mas percen e	s No. of tag moles	No. of moles in smallest number	Simplification whole number	 53. 0.1435 g of silver chloride was obtained from 0.0945 g of an organic compound by Carius method The percentage of chlorine by weight in the compound is
A 32%	$\frac{32}{64} = \frac{1}{2}$	$\frac{1}{2} \times 2$	1	(molar mass of Ag Cl = 143.5 g mol ⁻¹) (a) 18.9 (b) 37.6 (c) 24.9 (d) 56.7 Talangana SCHE 07.05 2024 Shift H
B 20%	$\frac{20}{40} = \frac{1}{2}$	$\frac{1}{2} \times 2$	1	Ans. (b) : Given that, 0.0945 gm of organic compound give 0.1435 gm of AgCl.
C 48%	$\frac{48}{32} = \frac{3}{2}$	$\frac{3}{2} \times 2$	3	$\therefore 143.32 \text{ gm of AgCl contains } 35.5 \text{ gm of Cl}$ 0.1535 gm of AgCl contain = $\frac{35.5 \times 0.1435}{143.32}$
So, impirical fo2 = A:B:C1:1:3The correct imp	rmula of irical formula	of compo	unds ABC ₃	= 0.03554 gm of chlorine So, the percentage of chlorine in the organic chloro compound = $\frac{0.03554 \times 100}{0.0945} = 37.6\%$

54. A hydrocarbon containing C and H has 92.3%
of C. When 52 g of hydrocarbon is completely burnt in oxygen X moles of water and y moles
of CO_2 were formed. The liberated water is
sufficient to liberate one mole of H_2 when
reacted with sodium metal. What is the weight
(in g) of O_2 consumed? (C=12u; H = Iu; O=16u) (a) 80 (b) 160
$\begin{array}{c} (a) & 80 \\ (b) & 100 \\ (c) & 240 \\ (d) & 320 \\ \end{array}$
Telangana SCHE 07.05.2024 Shift II
Ans. (b) : Determine the empirical formula of the
hydrocarbon-
• Given that the hydrocarbon has 92.3% C, the rest is
hydrogen.
• Percentage of hydrogen : 100% – 92.3% for 100g of hydro carbon
• Mass of carbon – 92.3g
• Mass of hydrogen = 7.7g
Moles of carbon $\frac{92.3g}{1} = 7.692 \text{ mol}$
12g/mol
Moles of hydrogen $\frac{7.7g}{\lg/mol} = 7.7mol$
Simplifying the ratio of moles-
• Ratio of C is approximately 1:1
• Moles of hydrocarbon (CH) = $\frac{25g}{139/mol}$ = 4mol.
$2CH + 20_2 \rightarrow 2CO_2 + H_2O$
According to balanced equation
moles of $O_2 = 4$ moles
mass of O_2 consumed $4 \text{ mol} \times 32 \text{ g/mol} = 128$
Thus the 160g correct balancing mass O_2 consumes
55. Weight (g) of two moles of the organic
compound, which is obtained by heating
sodium ethanoate with sodium hydroxide in
presence of calcium oxide is :
(a) 18 (b) 16 (c) 22 (d) 20
(C) 52 (d) 50 NEET (UC) 07 05 2023
$\frac{1}{1} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000000000000000000000000000000000$
0
II - + NaOH
$CH_3 - C - O$ Na CH_4
Sodium CaO/Δ (Methane)
enolate
1 mole of $CH_4 = 16$
$2 \text{ mole of CH}_4 = 2 \times 16$
=32
56. The right option for the mass of CO ₂ produced
by heating 20 g of 20% pure limestone is
(Atomic mass of Ca =40)
$\left\lfloor CaCO_{3} \xrightarrow{1200K} CaO + CO_{2} \right\rfloor$

(a) 1.32 g (b) 1.12 g (c) 1.76 g (d) 2.64 g NEET (UG) -07.05.2023 Ans. (c) : Sample of $CaCO_3 = 20\%$ $= 20 \times \frac{20}{100} = 4$ gram $CaCO_3 \xrightarrow{1200k} CaO + CO_7$ 1 mole CaCO₃ gives 1 mole CO₂. 100gram CaCO₃ \longrightarrow 44gram CO₂ 4gram Ca CO₃ $\longrightarrow \frac{44}{100} \times 4 = \frac{176}{100} = 1.76$ gram 57. The density of 1 M solution of a compound 'X' is 1.25 g mL⁻¹. The correct option for the molality of solution is (Molar mass of compound X= 85 g). (b) 0.858 m (a) 1.165m (c) 0.705m (d) 1.208m **RE-NEET (UG) 06.06.2023 (Manipur)** Ans. (b) : $d = \frac{m}{V}$ Volume of solution = 1000 cm^3 Density = 1.25 gcm⁻³ $m = d \times V$ Mass of solution = $1000 \times 1.25 = 1250g$ Given Molar mass of compound X = 85gmass of solvent = 1250 - 85 = 1165gmolality of solution : 1000M $m = \frac{1}{1000 \rho - M \times M_{solute}}$ $\rho = density$ M = Molarity = 1M1000×1 m = $\frac{1000 \times 1.25 - (1 \times 85)}{1165}$ m = 0.858mCalculate the millimoles of SeO₃²⁻ in solution on 58. the basis of following data: 70 mL of $\frac{M}{60}$ solution of KBrO₃ was added to SeO₃²⁻ solution. The bromine evolved was removed by boiling and excess of KBrO3 was back titrated with 12.5 mL of $\frac{M}{25}$ solution of NaAsO₂. The reactions are given below. I. $\operatorname{SeO}_3^{2-} + \operatorname{BrO}_3^{-} + \operatorname{H}^+ \rightarrow \operatorname{SeO}_4^{2-} + \operatorname{Br}_2^{+} + \operatorname{H}_2\operatorname{O}$ II. $BrO_3^- + AsO_2^- + H_2O \rightarrow Br^-AsO_4^{3-} + H^+$ (a) 1.6×10^{-3} (b) 1.25 (c) 2.5×10^{-3}

(d) None of these AIIMS-2009

67. Sulphur forms the chlorides S₂Cl₂ and SCl₂. Ans. (a): Given, 6% of solution contains 6g of The equivalent mass of sulphur in SCl₂ is Compound in 100 ml of solution. (a) 8 g/ mol (b) 16 g/mol Then, mass of Compound present in 1 liter of (c) 64.8 g/mol (d) 32 g/mol Solution = 60 g**AIIMS-2015** \Rightarrow No. of moles = $\frac{\text{given mass}}{60\text{g}} = \frac{60\text{g}}{60\text{g}}$ Ans. (b): Equivalent mass of sulphur molar mass atomic mass of sulphur \Rightarrow Active mass is defined as number of moles per litre. valency So, Active mass = $\frac{60g}{M}$ / litre $\operatorname{SCl}_{2}^{x(-1)} = x + 2(-1) = 0$ $\tilde{x} = 2$ $2 = \frac{60}{M} \times \frac{1}{1L}$ $\Rightarrow \frac{32}{2} = 16$ Then, M (molar mass) = 30In acidic medium, dichromatic ion oxidizes 68. 64. A bivalent metal has the equivalent weight of ferrous ion to 'ferric ion'. If the gram 12. The molecular weight of its oxide will be molecular weight of potassium dichromate is (a) 36 (b) 24 294g, its gram equivalent weight (in grams) is (c) 40 (d) 32 (a) 24.5 (b) 49 **AIIMS-1994** (c) 125 (d) 250 Ans. (c): Molecular weight = equivalent weight \times n-**JIPMER-2015** factor **Ans.** (b) : In acidic medium K₂Cr₂O₇ acts as a strong (Where, n-factor of the metal ion = 2.) oxidising agent and itself gets reduced to Cr^{3+} . So molecular weight = $12 \times 2 = 24$ $Cr_2O_7^{-2} + 6e^- \rightarrow 2Cr^{3+}$ Since it is bivalent ion it requires only one oxygen The oxidation state of K₂Cr₂O₇ combine to form oxide. 2(+1) + 2x + 2(-7) = 0Therefore, the molecular wt. of the oxide is molecular 2x = +12wt. = molecular wt. of metal + molecular wt. of oxygen x = +6i.e. molecular wt. = 24 + 16 = 40Equivalent weight of Boron has two stable isotopes, ¹⁰B(19%) and **65**. $K_2Cr_2O_7 = \frac{Molecular weight}{Valency} = \frac{294}{6} = 49$ ¹¹B(81%). Calculate average at. wt. of boron in the periodic table. 69. Which of the following is correctly arranged in (a) 10.8 (b) 10.2 order of increasing weight? (c) 11.2 (d) 10.2 (a) 0.0105 equivalent of $H_2C_2O_4$. $2H_2O < 0.625$ g **NEET-1990** of Fe < 0.006 g atom of Ag < 6.0×10^{21} atoms Ans. (a) : Average atomic weight of Zn $-\underline{\sum \%}$ abundant × atomic mass (b) 0.625 g of Fe < 0.0105 equivalent of $H_2C_2O_4.$ $2H_2O < 6.0 \times 10^{21}$ atoms of Zn < 0.006 g atom 100 $=\frac{19\times10+81\times11}{100}=10.81$ of Ag (c) 0.625 g of Fe < 6.0×10^{21} atoms of Zn < 0.006g atom of Ag < 0.0105 equivalent of H₂C₂O₄. The equivalent weight of KMnO₄ in acidic 66. $.2H_2O$ medium is (d) 0.0105 equivalent of $H_2C_2O_4$. $2H_2O < 0.006$ g (a) 158 (b) 52.67 atom of $Ag < 6.0 \times 10^{21}$ atoms of Zn < 0.625 g (c) 31.6 (d) 49 of Fe **UP CPMT-2002 JIPMER-2015 Ans.** (c) : Equivalent weight of $KMnO_4 = 158$ Ans. (c) : Here, the correct order of increasing weight, - 0.625 g of Fe < 6.0×10^{21} atoms of Zn < 0.006 g atom KMnO₄ as an oxidizer in acidic media of Ag < 0.0105 equivalent of $H_2C_2O_4$. 2H₂O. 6.0 × 10²¹ atoms of Zn (atomic weight 65.4 g/mol) $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O$ Corresponds to $\frac{6.0 \times 10^{21}}{6.0 \times 10^{23}} \times 65.4 = 0.654 \text{ g}$ In Acidic medium $\frac{\text{Molecular weight}}{\text{No. of electron lost or gained}} = \frac{158}{5} = 31.6$ 0.006 g atom of Ag (atomic mass 108 g/mol) In Basic Medium = $\frac{\text{Molecular weight}}{3} = \frac{158}{3} = 52.67$ Corresponds to $0.006 \times 108 = 0.648$ g 0.0105 equivalent of $H_2C_2O_4.2H_2O$ (equivalent mass In Neutral Medium = $\frac{\text{Molecular weight}}{158}$ 63 g/eq) Corresponds to $0.0105 \times 63 = 0.662$ g

70. What is the mass of the precipitate formed (a) 63 (b) 50 when 50 mL of 16.9% solution of AgNO₃ is (c) 53 (d) 23 mixed with 50mL of 5.8% NaCl Solution? **UP CPMT-2009** (Ag = 107.8, N = 14, O = 16 Na = 23, Cl = 35.5)Ans. (a): We know that, (a) 3.5 g (b) 7 g $w = \frac{E \times NV}{1000}$ (c) 14 g (d) 28 g **NEET-2015** $\therefore \text{ Eq. wt. of acid} = \frac{\text{w} \times 1000}{\text{NV}}$ Ans. (b): 16.9 g AgNO₃ is present in 100 mL solution. : 8.45 g AgNO₃ is present in 50 mL solution. $= \frac{0.126 \times 1000}{1000}$ 5.8 g NaCl is present in 100 mL solution. 0.1×20 2.9 g NaCl is present in 50 mL solution. Initial mole = 63 $AgNO_1 + NaCl \rightarrow AgCl + NaNO_3$ 74. 1.520 g of hydroxide a metal on ignition gave 0.995 g of oxide. The equivalent weight of metal 0 is 169.5 58.5 (a) 1.52 (b) 0.995 =0.049 = 0.049(c) 190 (d) 9 After reaction 0.049 0.049 0 0 **UP CPMT-2006** Ans. (d) : Since hydroxide and oxide both are involving Therefore, mass of AgCl precipitated in same reaction, the ratio of their molecular weight is $= 0.049 \times 143.5 = 7 \text{ g}$ equal to the ratio of their equivalent weight. 71. Which has the maximum number of molecules $\frac{E_{\rm Hydroxide}}{E_{\rm metal} + E_{\rm OH^-}} = \frac{E_{\rm oxide}}{E_{\rm metal} + E_{\rm O}}$ among the following? (b) 48 g O₃ (a) 44g CO₂ (c) $8 g H_2$ (d) 64 g SO₂ $\frac{1.520}{E+17} = \frac{0.995}{E+8}$ **AIIMS-2014** Ans. (c): 8g H₂ has the maximum number of molecules. E = 9weight of the substance No. of moles = $\frac{\text{weight of and}}{\text{Molecular weight of the substance}}$ The oxygen obtained from 72 kg water is 75. (a) 72 kg (b) 46 kg (c) 50 kg (d) 64 kg Moles of $CO_2 = \frac{44}{44} = 1 \text{ mol.}$ **UP CPMT-2002** Ans. (d) : Molecular weight of $H_2O = 18$ Moles of $O_3 = \frac{48}{48} = 1 \text{ mol.}$ Atomic weight of oxygen = 16 \therefore 18 gm H₂O contain = 16 gm Oxygen Moles of H₂ = $\frac{8}{2}$ = 4 mol $\therefore 72 \text{ kg H}_2\text{O contain} = \frac{72 \times 16}{18}$ Moles of SO₂ = $\frac{64}{64}$ = 1 mol. = 64000 gm or 64 kg.76. The oxide of an element contains 67.67% Maximum no. of moles will corresponds to maximum oxygen and the vapour density of its volatile number of molecules. 4 moles of H₂ i.e. $4 \times 6.023 \times 10^{23}$ molecules. chloride is 79. Equivalent weight of the element is Equivalent weight of (NH₄)₂Cr₂O₇ in the 72. (a) 2.46 (b) 3.82 change is (c) 4.36 (d) 4.96 $(NH_4)_2Cr_2O_7 \rightarrow N_2 + Cr_2O_3 + 4H_2O$ **AIIMS-1998** (a) Mol. wt./6 (b) Mol. wt./3 Ans. (b): Equivalent weight of an element is its weight (c) Mol. wt./4 (d) Mol. wt./2 which reacts with 8 gm of oxygen to form oxide. **UP CPMT-2013** 67.67 g of oxygen combines with 32.33 g of the element **Ans.** (a) : 1 mole $(NH_4)_2 Cr_2 O_7 \equiv 1$ mole of $Cr_2 O_3$ to form oxide. $\equiv 1 \times 6$ eq. of Cr₂O₃ 1 g of oxygen will combine with $\frac{32.33}{67.67}$ g of element to : Reduction of $Cr_2O_7^{2-}$ to Cr^{3+} is a 6e⁻ change. form oxide. $\left[\left(\mathrm{Cr}^{6+}\right)_2 + 6\mathrm{e}^- \rightarrow \left(\mathrm{Cr}^{3+}\right)_2\right]$ 8 g of oxygen will combine with $8 \times \frac{32.33}{67.67} = 3.82$ g of Therefore, equivalent weight of $(NH_4)_2 Cr_2 O_7 = M/6$ element to form oxide. 0.126 g of an acid is titrated with 0.1 N 20 mL 73 Hence, the equivalent weight of the element is 3.82 g. of an base. The equivalent weight of the acid is

77. The weight to a metal of equivalent weight 12.	(a) 2 mol (b) 4 mol		
which will give 0.475 g of its chloride, is	(c) 8 mol (d) 10 mol		
(a) 0.18 g (b) 0.12 g (c) 0.24 g (d) 0.16 g	UP CPMT-2012		
(c) 0.24 g (d) 0.10 g	NEET-2009		
AllWIS-1994	Ans. (b) : $2H_2 + O_2 \rightarrow 2H_2O$		
Equivalent weight of Metal + Equivalent wt. of	10g of hydrogen (molar mass 2g /mol) = $\frac{10g}{2g / mol}$		
Cl = 12 + 35.5 = 47.5	= 5 mol		
Then 0.475g of metal chloride will give 12g of metal	64		
$\equiv \frac{12 \times 0.475}{2}$	64g of oxygen (molar mass $32g/mol$) = $\frac{64}{32g/mol}$		
47.5	= 2 mol		
= 0.12g	2 moles of oxygen will react with $2 \times 2 = 4$ moles of		
78. What is the weight of oxygen required for the	hydrogen to form 4 moles of water.		
complete combustion of 2.8 kg of ethylene?	81. The mass of one mole of electron is		
(a) 2.8 kg (b) 6.4 kg	(a) 9.1×10^{-28} g (b) 0.55 mg		
(c) 9.6 kg (d) 96 kg	(c) 9.1×10^{-24} g (d) $6 \ 10^{-12}$ g		
NEET-1989	UP CPMT-2010		
Ans. (c): $C_2H_4(ethylene) + 3O_2 \longrightarrow 2CO_2 + 2H_2O$	UPTU/UPSEE-2006		
To oxidise 1mol of ethylene we required 3 moles of	Ans. (b): As we know that,		
oxygen.	Mass of one electron = 9.1×10^{-31} kg		
Then,	$=9.1 \times 10^{-28} \text{ g}$		
For oxidising 28g of C_2H_4 ,	$1 \text{ mole} = 6.023 \times 10^{23} \text{ electron}$		
We need $3 \times 32 = 96g$ of oxygen.	So, 1 mole of electron has mass of		
For 2.8kg of C_2H_4 ,	$= 9.1 \times 10^{-28} \times 6.023 \times 10^{23}$		
We need = $\frac{96}{5} \times 2.8 = 9.6$ kg of oxygen	$= 5.48 \times 10^{-4}$		
$\frac{1}{28}$ $\frac{1}{28}$ $\frac{1}{28}$ $\frac{1}{28}$ $\frac{1}{28}$ $\frac{1}{28}$	= 0.55mg		
79. The maximum number of molecules is present in	82. Which one of the following has maximum number of atoms?		
(a) 15 L of H_2 gas at STP	(a) 1 g of Ag _(x) [Atomic mass of Ag = 108]		
(b) 5 L of N_2 gas at STP	(b) 1 g of Mg _(s) [Atomic mass of Mg = 24]		
(c) 0.5 g of H_2 gas	(c) 1 g of $O_{2(s)}$ [Atomic mass of $O = 16$]		
(d) 10 g of H_2 gas	(d) 1 g of $Li_{(s)}$ [Atomic mass of $Li = 7$]		
NEET-2004	NEET-2020		
Ans. (a)	Ans. (d):		
1 mole of gas at STP occupies a volume of 22.4 L	1		
Option (a)- 15 L of gas corresponds to	Number of atoms in 1g of Li = $\frac{1}{7} \times N_A$		
$\frac{15L}{22.4I} = 0.67$ moles	$=\frac{1}{2} \times 6.023 \times 10^{23}$		
Option (b)- 5L of N_2 gas at STP:	$7 = 0.86 \times 10^{23}$		
5L of gas corresponds to $\frac{5L}{22.4L} = 0.22$ moles	Number of atoms in 1g of Ag = $\frac{1}{100} \times N_A$		
Option (c) - 0.5g of H ₂ gas (molecular weight 2g/mole)	$108 = 0.056 \times 10^{23}$		
corresponds to $\frac{0.5g}{2g/mol} = 0.25$ moles	Number of atoms in 1g of Mg = $\frac{1}{24} \times N_A$		
Option (d) - 10g of O_2 gas (molecular weight 3g/ mol)	$= 0.25 \times 10^{23}$		
corresponds to $\frac{10g}{32g/mol} = 0.3125$ moles	Number of stores in 1×10^{-1} M $\sim 2^{-1}$		
Higher is the number of moles of a gas, higher will be its number of molecules.	Number of atoms in 1g of $O_2 = \frac{1}{32} \times N_A \times 2$		
80. 10 gm of hydrogen and 64 g of oxygen were	$=\frac{1N_{\rm A}}{10}=0.37\times10^{23}$		
kept in a steel vessel and exploded. Amount of water produced in this reaction will be	Max. number of atoms are present in 1g of Li.		

83. $2KHCO_3 \rightarrow + CO_2 + H_2O$ find amount of	Molecular Weight of haemoglobin ×% of iron			
gases formed (in lit).	$100 \times \text{Atomic weight of Iron}$			
When amount of KHCO ₃ is 33 gm. (a) 5 (b) 11 2	67200×0.334			
(a) 5.6 (b) 11.2 (c) 7.20 (d) 22.4	$=\frac{0.7200\times0.554}{1000-50}=4$			
(c) 7.59 (d) 22.4	100×56			
JIF WIER-2019	87. A mixture of 2.3 g formic acid and 4.5 g oxalic			
	acid is treated with conc. H ₂ SO ₄ . The evolved			
$2 KHCO_3(s) \longrightarrow K_2CO_3(s) + CO_2(g) + H_2O$	nellets Weight (in) g of the remaining product			
$n = \frac{35}{100}$ 0.165 0.166	at STP will be			
Total moles of gas (0.165 ± 0.165) mol	(a) 1.4 (b) 3.0			
Total volume of gas = 0.33×22.4 L	(c) 2.8 (d) 4.4			
= 7.39 L	NEET-2018			
84. Which one of the following is the lightest?	Ans. (c)			
(a) 0.2 mole of hydrogen gas	$HCOOH \xrightarrow{H_2SO_4} CO + H_2O \qquad \dots(i)$			
(b) 6.023×10^{22} molecules of nitrogen	$(COOH) \xrightarrow{H_2SO_4} CO + CO + H O$ (ii)			
(c) 0.1 g of silver	$(coord)_2 - co + co_2 + r_2 o \dots (r)$			
(d) 0.1 mole of oxygen gas	Conc. H_2SO_4 is a strong dehydrating agent			
AIIMS 25 May 2019 (Evening)	Moles of HCOOH = $\frac{2.3}{16}$ = 0.05 mole			
Ans. (c):	46			
(a) Moles = $\frac{\text{Weight}}{1}$	Moles of (COOH) ₂ = $\frac{2.5}{46}$ = 0.05 mole			
Molecular weight	46 From reaction (i)			
Weight of $H_2 = mole \times molecular$ wt.	Number of CO formed = 0.05 mole			
$= 0.2 \times 2 = 0.4 \text{ g}$	From reaction (ii)			
(b) 6.023×10^{23} represents 1 mole	Number of CO formed = 0.05 mole			
Thus 6.023×10^{22} will represent 0.1 mole	Number of CO_2 formed = 0.05 mole			
Weight of $N_2 = 0.1 \times 28 = 2.8 \text{ g}$	Hence, Total CO formed = $0.05 + 0.05 = 0.1$ mole			
(c) Weight of Silver = 0.1 g	KOH pellets absorbs all CO ₂ , H ₂ O absorbed by H ₂ SO ₄			
(d) Weight of oxygen = $32 \times 0.1 = 3.2$ g	thus CO is remaining product.			
Thus from the above, silver is lightest.	Thus the weight of the remaining product = 0.1×28			
85. Calculate molarity of a 63% w/w HNO ₃	= 2.8g			
solution if density is 1.4g/mL: (a) 14 M (b) 12 M	88. In which case is number of molecules of water			
$\begin{array}{c} (a) & 14 & M \\ (c) & 10 & M \\ (d) & 8 & M \\ \end{array}$	(a) 18 mL of water			
AIIMS 26 May 2019 (Evening)	(b) 0.18 g of water			
Ans. (a):	(c) 0.00224 L of water vapours at 1 atm and 273 K			
HNO ₃ solution = 63 % w/w	(d) 10^{-3} mol of water			
Density = $1.4 \text{ g} / \text{mL}$	NEET-2018			
Molarity = $\frac{\% \text{ w/w} \times \text{d} \times 10}{}$	Ans. (a) : 1 moles of water contain = 6.023×10^{23} atom			
M _{Saluta}	(i) Mass of water = $18 \times 1 = 18g$ (H ₂ O = 18)			
$63 \times 1.4 \times 10$	Molecules of water			
$M = \frac{03 \times 1.4 \times 10}{100} = 14 M$	$=$ mole \times N _A $= \frac{18}{12} \times 6.023 \times 10^{23} = 6.023 \times 10^{23}$			
63	$\frac{18}{100}$			
86. Haemoglobin contains 0.33% of iron by weight.	(II) Molecules of water – mole $\times N_A$			
I ne molecular weight of naemoglobin is approximately 67200. The number of iron	$=\frac{16}{18}\times 6.023\times 10^{23}$			
atoms (at. Wt. of Fe= 56) present in one	$= 6.023 \times 10^{21}$			
molecule of haemoglobin is	(iii) Molecules of water = mole $\times 6.023 \times 10^{23}$			
(a) 6 (b) 1 (c) 2 (d) 4	$=10^{-4} \times 6.023 \times 10^{23}$			
AIIMS-27 May, 2018 (E)	$= 6.023 \times 10^{-19}$			
Ans. (d) : Given,	(iv) Molecules of water = mole \times N _A =			
% of Iron = 0.334 %	6.023×10 ²³ ×10 ⁻³			
Molecular weight of the haemoglobin = $67200 \text{ g} / \text{mol}$	$= 6.023 \times 10^{20}$			
Weight of the Iron = 56 g	From above, It is clear that 18 mL of water has			
I he number of iron atoms =	maximum molecules.			

89. Solid NaHCO ₃ will be neutralized by 40.0mL of	92. 1.0 g of magnesium is burnt with 0.56 g O_2 in a			
0.1M H_2SO_4 solution. What would be the	closed vessel, Which reactant is left in excess			
weight of solid NaHCO ₃ in gram?	and how much? (At. wt. Mg = 24, O = 16)			
(a) $0.672g$ (b) $6.07g$	(a) Mg, 0.16 g (b) O_2 , 0.16 g			
(c) 1/g (d) 20g	(c) Mg, 0.44 g (d) O_2 , 0.28 g			
JIPMER-2016	NEET-2014			
Ans. (a) :	Ans. (a):			
$2NaHCO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O + 2CO_2$	$2Mg + O_2 \rightarrow 2MgO$			
Mole 2mole 1mole ratio =168g =98g	2 moles of Mg require 1 mole of O_2 to produce			
m- moles of $H_2SO_4 = M \times V_{m1} = 40.0 \times 0.01$	2 moles of MgO.			
= 4 m - mole	given mass			
Moles of $H_2SO_4 = M \times VmL = 40.0 \times 0.1 = 4m$ mol	Mole of Mg = $\frac{B}{\text{molar mass}}$			
Also, it can written as m-moles of NaHCO ₃ when	1			
neutralised = $4 \times 2 = 8$ m-moles.	$=\frac{1}{24}=0.041667$			
But m mole = $\frac{W}{1000}$	24			
m	moles of $O_2 = \frac{gives mass}{gives mass}$			
$8 = \frac{W}{1000} \Rightarrow W = \frac{84 \times 8}{1000} \Rightarrow W = 0.672 \text{cm}$	- molar mass			
$8 - \frac{1000}{84} \Rightarrow w - \frac{1000}{1000} \Rightarrow w - 0.072 \text{ g}.$	0.56 0.0175			
90. In order to prepare one liter 1N solution of	$=\frac{1}{32}=0.0175$			
KMnO ₄ , how many grams of KMnO ₄ are	$\Rightarrow 0.0175$ moles O ₂ require $0.0175 \times 2 = 0.035$ moles of			
required, if the solution to be used in acid	Mg.			
medium for oxidation? (1) 41.75	Mass of Magnesium (Mg) that reacts:-			
(a) $128 g$ (b) $41.75 g$	$Mass = moles \times molar mass$			
(c) 51.00 g (d) 62.34 g	$= 0.035 \times 24$			
JII WER-2013	= 0.84 g			
Ans. (c) : $Oiven,$ Normality = 1 N volume = 11	That means only 0.84 g magnesium is used.			
No of gram equivalence	Therefore magnesium is in excess by 0.16 g			
Normality = $\frac{10000 \text{ grainequivalence}}{\text{Volume of solution in (L)}}$	93. Calculate the normality of 10 volume H ₂ O ₂ ?			
Normality = $1000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N			
Normality = $1000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N			
Normality = $1000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013			
Normality = $1000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H_2O_2 ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Array (c) Neurality Gram equivlent			
Normality = $1000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H_2O_2 ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$			
Normality = $1000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H_2O_2 ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Molar mass			
Normality = $1000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H_2O_2 ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$			
Normality = $1000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H_2O_2 ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$			
Normality = $\frac{10000 \text{ gammequivalence}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = N × V in (L) = 1 × 1 = 1 No. of gram equivalence = $\frac{\text{wt}}{\text{eq wt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 +2 KMnO ₄ \longrightarrow Mn \Rightarrow n factor = 5	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g			
Normality = $1000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2.			
Normality = $1000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2.			
Normality = $14000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17			
Normality = $\frac{140.01 \text{ gram equivalence}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = N × V in (L) = 1 × 1 = 1 No. of gram equivalence = $\frac{\text{wt}}{\text{eqwt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 +2 MnO ₄ \implies n factor = 5 equal = $\frac{158}{5}$ = 31.6 Let of KMnO ₄ = eq. wt × No. of gram equivalence = 31.6 × 1 == 31.6 g	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = 17			
Normality = $\frac{140.01 \text{ gath required ratione}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = $N \times V$ in (L) = $1 \times 1 = 1$ No. of gram equivalence = $\frac{\text{wt}}{\text{eqwt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 $1 \times 1 = 1$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 $1 \times 1 = 1$ KMnO ₄ \rightarrow Mn \Rightarrow n factor = 5 equal = $\frac{158}{5} = 31.6$ Let of KMnO ₄ = eq. wt × No. of gram equivalence = $31.6 \times 1 = 31.6 \text{ g}$ 91. A mixture of gases contains H ₂ and O ₂ gases in	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7			
Normality = $1000000000000000000000000000000000000$	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7 94. The vapour density of a mixture containing			
Normality = $\frac{140.01 \text{ gath required ratione}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = $N \times V$ in (L) = $1 \times 1 = 1$ No. of gram equivalence = $\frac{\text{wt}}{\text{eq wt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 $1 \times 1 = 1$ KMnO ₄ \rightarrow Mn \Rightarrow n factor = 5 equal = $\frac{158}{5} = 31.6$ Let of KMnO ₄ = eq. wt × No. of gram equivalence $= 31.6 \times 1 == 31.6 \text{ g}$ 91. A mixture of gases contains H ₂ and O ₂ gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture?	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7 94. The vapour density of a mixture containing NO ₂ and N ₂ O ₄ is 27.6 Mole fraction of NO ₂ in			
Normality = $\frac{140.01 \text{ gauncequivalence}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = $N \times V$ in (L) = $1 \times 1 = 1$ No. of gram equivalence = $\frac{\text{wt}}{\text{eq wt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 +2 KMnQ4 \longrightarrow Mn \Rightarrow n factor = 5 equal = $\frac{158}{5} = 31.6$ Let of KMnO4 = eq. wt × No. of gram equivalence = $31.6 \times 1 == 31.6 \text{ g}$ 91. A mixture of gases contains H ₂ and O ₂ gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture? (a) 16 : 1 (b) 2 : 1 (b) 2 : 1 (c) 1 + 1	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7 94. The vapour density of a mixture containing NO ₂ and N ₂ O ₄ is 27.6 Mole fraction of NO ₂ in the mixture is			
Normality = $\frac{140.01 \text{ gammequivalence}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = $N \times V$ in (L) = $1 \times 1 = 1$ No. of gram equivalence = $\frac{\text{wt}}{\text{eqwt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 +2 KMnO ₄ \longrightarrow Mn \Rightarrow n factor = 5 equal = $\frac{158}{5} = 31.6$ Let of KMnO ₄ = eq. wt × No. of gram equivalence = $31.6 \times 1 == 31.6 \text{ g}$ 91. A mixture of gases contains H ₂ and O ₂ gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture? (a) 16 : 1 (b) 2 : 1 (c) 1 : 4 (d) 4 : 1 NEET-2015 cancelled	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7 94. The vapour density of a mixture containing NO ₂ and N ₂ O ₄ is 27.6 Mole fraction of NO ₂ in the mixture is (a) 0.8 (b) 0.6			
Normality = $\frac{140.01 \text{ gath required ratione}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = $N \times V$ in (L) = $1 \times 1 = 1$ No. of gram equivalence = $\frac{\text{wt}}{\text{eqwt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 +2 +2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7 94. The vapour density of a mixture containing NO ₂ and N ₂ O ₄ is 27.6 Mole fraction of NO ₂ in the mixture is (a) 0.8 (b) 0.6 (c) 0.4 (d) 0.2			
Normality = $\frac{140.01 \text{ gauntequivalence}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = $N \times V$ in (L) = $1 \times 1 = 1$ No. of gram equivalence = $\frac{\text{wt}}{\text{eqwt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 $1 \times 1 = 1$ KMnO ₄ \rightarrow Mn \Rightarrow n factor = 5 equal = $\frac{158}{5} = 31.6$ Let of KMnO ₄ = eq. wt × No. of gram equivalence $= 31.6 \times 1 = = 31.6 \text{ g}$ 91. A mixture of gases contains H ₂ and O ₂ gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture? (a) 16 : 1 (b) 2 : 1 (c) 1 : 4 (d) 4 : 1 NEET-2015, cancelled Ans. (d) Number of moles (n) = $\frac{\text{given mass}(m)}{1 + 1 \times 1 + 1 $	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7 94. The vapour density of a mixture containing NO ₂ and N ₂ O ₄ is 27.6 Mole fraction of NO ₂ in the mixture is (a) 0.8 (b) 0.6 (c) 0.4 (d) 0.2 AIIMS-2012			
Normality = $\frac{140.01 \text{ gain required ratio e}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = $N \times V$ in (L) = $1 \times 1 = 1$ No. of gram equivalence = $\frac{\text{wt}}{\text{eq wt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 +2 KMnO ₄ \longrightarrow Mn \Rightarrow n factor = 5 equal = $\frac{158}{5} = 31.6$ Let of KMnO ₄ = eq. wt × No. of gram equivalence = $31.6 \times 1 = 31.6 \text{ g}$ 91. A mixture of gases contains H ₂ and O ₂ gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture? (a) 16 : 1 (b) 2 : 1 (c) 1 : 4 (d) 4 : 1 NEET-2015, cancelled Ans. (d) Number of moles (n) = $\frac{\text{given mass}(m)}{\text{Molar mass}(M)}$	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7 94. The vapour density of a mixture containing NO ₂ and N ₂ O ₄ is 27.6 Mole fraction of NO ₂ in the mixture is (a) 0.8 (b) 0.6 (c) 0.4 (d) 0.2 AIIMS-2012 Ans. (a): Let the moles of NO ₂ be x.			
Normality = $\frac{140.01 \text{ gauntequivalence}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = $N \times V$ in (L) = 1 × 1 = 1 No. of gram equivalence = $\frac{\text{wt}}{\text{eqwt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 +2 KMnQ, \longrightarrow Mn \Rightarrow n factor = 5 equal = $\frac{158}{5} = 31.6$ Let of KMnQ ₄ = eq. wt × No. of gram equivalence = $31.6 \times 1 == 31.6$ g 91. A mixture of gases contains H ₂ and O ₂ gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture? (a) 16 : 1 (b) 2 : 1 (c) 1 : 4 (d) 4 : 1 NEET-2015, cancelled Ans. (d) Number of moles (n) = $\frac{\text{given mass}(m)}{\text{Molar mass}(M)}$ As the ratio by weight of Hydrogen and Oxygen is 1: 4	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7 94. The vapour density of a mixture containing NO ₂ and N ₂ O ₄ is 27.6 Mole fraction of NO ₂ in the mixture is (a) 0.8 (b) 0.6 (c) 0.4 (d) 0.2 AIIMS-2012 Ans. (a): Let the moles of NO ₂ be x. Moles of N ₂ O ₄ will be 1 - x			
Normality = $\frac{140.01 \text{ grannequivalence}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = $N \times V$ in (L) = 1 × 1 = 1 No. of gram equivalence = $\frac{\text{wt}}{\text{eqwt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 +2 KMnO ₄ \longrightarrow Mn \Rightarrow n factor = 5 equal = $\frac{158}{5}$ = 31.6 Let of KMnO ₄ = eq. wt × No. of gram equivalence = 31.6 × 1 == 31.6 g 91. A mixture of gases contains H ₂ and O ₂ gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture? (a) 16 : 1 (b) 2 : 1 (c) 1 : 4 (d) 4 : 1 NEET-2015, cancelled Ans. (d) Number of moles (n) = $\frac{\text{given mass}(m)}{\text{Molar mass}(M)}$ As the ratio by weight of Hydrogen and Oxygen is 1: 4 Melan matic mill has $n_{\text{H}_2} = \frac{32}{2}$ 4:1	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7 94. The vapour density of a mixture containing NO ₂ and N ₂ O ₄ is 27.6 Mole fraction of NO ₂ in the mixture is (a) 0.8 (b) 0.6 (c) 0.4 (d) 0.2 AIIMS-2012 Ans. (a): Let the moles of NO ₂ be x. Moles of N ₂ O ₄ will be 1 - x Molar mass = 2 × Vapour density			
Normality = $\frac{140.01 \text{ gluin equivalence}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = $N \times V$ in (L) = 1 × 1 = 1 No. of gram equivalence = $\frac{\text{wt}}{\text{eqwt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = 158g +7 +2 mode = $\frac{158}{5} = 31.6$ Let of KMnO ₄ = eq. wt × No. of gram equivalence = $31.6 \times 1 == 31.6 \text{ ggs}$ 91. A mixture of gases contains H ₂ and O ₂ gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture? (a) 16 : 1 (b) 2 : 1 (c) 1 : 4 (d) 4 : 1 NEET-2015, cancelled Ans. (d) Number of moles (n) = $\frac{\text{given mass}(m)}{\text{Molar mass}(M)}$ As the ratio by weight of Hydrogen and Oxygen is 1: 4 Molar ratio will be $\frac{n_{H_2}}{n} = \frac{32}{8} = 4:1$	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7 94. The vapour density of a mixture containing NO ₂ and N ₂ O ₄ is 27.6 Mole fraction of NO ₂ in the mixture is (a) 0.8 (b) 0.6 (c) 0.4 (d) 0.2 AIIMS-2012 Ans. (a): Let the moles of NO ₂ be x. Moles of N ₂ O ₄ will be 1 - x Molar mass = 2 × Vapour density So. Molar mass = 2 × 27.6 = 55.2 g			
Normality = $\frac{10000 \text{ grannequivalence}}{\text{Volume of solution in (L)}}$ No. of gram equivalence = $N \times V$ in (L) = $1 \times 1 = 1$ No. of gram equivalence = $\frac{\text{wt}}{\text{eqwt}}$ Where, eq. wt = $\frac{\text{molecular wt}}{n - \text{factor}}$.m.w = $158g$ +7 +2 m m = $n \text{ factor} = 5$ equal = $\frac{158}{5} = 31.6$ Let of KMnO ₄ = eq. wt × No. of gram equivalence = $31.6 \times 1 == 31.6 \text{ g}$ 91. A mixture of gases contains H ₂ and O ₂ gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture? (a) $16 : 1$ (b) $2 : 1$ (c) $1 : 4$ (d) $4 : 1$ NEET-2015, cancelled Ans. (d) Number of moles (n) = $\frac{\text{given mass}(m)}{\text{Molar mass}(M)}$ As the ratio by weight of Hydrogen and Oxygen is $1: 4$ Molar ratio will be $\frac{n_{H_2}}{n_{o_2}} = \frac{32}{8} = 4:1$ The molar ratio of bydrogen and Oxygen is $4:1$	93. Calculate the normality of 10 volume H ₂ O ₂ ? (a) 1.7 N (b) 12 N (c) 30.3 N (d) 0.0303 N AIIMS-2013 Ans. (a): Normality = $\frac{\text{Gram equivlent}}{\text{volume}}$ Gram equivalent = $\frac{\text{Molar mass}}{\text{Normality factor}}$ Molar mass of H ₂ O ₂ is = 1 × 2 + 2 × 16 = 34 g N. factor of H ₂ O ₂ is 2. Gram equivalent = $\frac{34}{2}$ = 17 Normality = $\frac{17}{10}$ = 1.7 94. The vapour density of a mixture containing NO ₂ and N ₂ O ₄ is 27.6 Mole fraction of NO ₂ in the mixture is (a) 0.8 (b) 0.6 (c) 0.4 (d) 0.2 AIIMS-2012 Ans. (a): Let the moles of NO ₂ be x. Moles of N ₂ O ₄ will be 1 - x Molar mass = 2 × Vapour density So, Molar mass = 2 × 27.6 = 55.2 g Molar mass of NO ₂ = 46 g and N ₂ O ₄ = 92 g			

$\frac{x \times 46 + (1 - x) \times 92}{1} = 55.2$	Ans. (b): 8 mol O-atoms are contained by 1 mole $Mg_3(PO_4)_2$.		
$\frac{1}{46x + 92 - 92x} = 55.2$	\therefore 0.25 mole of O-atoms are present in		
$x = \frac{36.8}{46} = 0.8$	$Mg_3(PO_4) = \frac{1}{8} \times 0.25 \text{ mol}$		
46 Here mole fraction of NO ₂ in the mixture is 0.8	$= 3.125 \times 10^{-2} \text{ mol}$		
95. How many grams of sulphuric acid is to be	98. 0.1 mol HCl is equal to		
dissolved to prepare 200 mL aqueous solution	(a) 3.65 g (b) 36.5 g		
having concentration of $[H_3O^+]$ ions 1 M at 25 ⁰	(c) 18 g (d) 1.8 g		
C temperatures? [H= 1, O= 16, S= 32g mol ⁻¹]	JIPMER-2011		
(a) 4.9g (b) 19.6g	Ans. (a): Given,		
(c) 9.8g (d) 0.98g	The number of moles of HCl = 0.1 The number of particles in one male = 6.022 × 10^{23}		
UP CPMT-2012	The multiple of particles in one more -0.023×10^{-10}		
Ans. (c) \therefore 2 M [H ₃ O ⁺] ions are obtained from 1M H ₂ SO ₄	1 mole of that substance, expressed in gram per mole,		
\therefore 1 M [H ₃ O ⁺] ions are obtained from 0.5 M H ₂ SO ₄	and is equal to the mass of 6.022×10^{23} atoms,		
Molarity	molecules, or formula units of that substance.		
$m(H_2SO_4) \times 1000$	So the mass of one mole of $HCl = 1 + 35.5 = 36.5 \text{ g}$		
$M = \frac{1}{M(\text{molar mass H}_2\text{SO}_4)} \times \text{Volume of solution(mL)}$	• So, the mass of 0.1 mole = $\frac{36.5}{10} = 3.65$ g		
$0.5 = \frac{m \times 1000}{m \times 1000} = \frac{0.5 \times 98 \times 200}{m \times 98} = 9.8g$	99. A solution is prepared by dissolving 24.5 g of		
98×200 1000 C	solution The molerity of NeOH in the solution		
96. Which has the maximum number of molecules	is (Given that molar mass of NaOH = 40.0 g		
among the following ?	mol ⁻¹)		
(a) 44 g CO_2 (b) 48 g O_3	(a) 0.2450 M (b) 0.6125 M		
(c) 8 g H_2 (d) 64 g SO_2	(c) 0.9800 M (d) 1.6326 M		
NEE1 Mains-2011	AIIMS-2010		
Ans. (c): No. of moles $(n) = \frac{\text{weight in gram}}{n}$	Ans. (b): Given, $W_{NaOH} = 24.5 \text{ g}$		
molecualr weight	Molar mass of NaOH = $23 + 16 + 1 = 40$		
\int Molecular weight of CO ₂	No. of moles of NaOH = $\frac{24.5}{10}$ moles		
(1) (1)	40		
$(1)^{44} \operatorname{gram} \operatorname{CO}_2 = \frac{1}{44}$ $= 12 + 32$	-0.0125		
=44	\therefore Molarity of solution = $\frac{0.0125 \text{ moles}}{11}$		
= 1 mal	1L 0.(125.M		
-1 III01	= 0.6125 M		
$= N_A 1.e. 6.022 \times 10^{-4} atoms$	100. The number of water molecules is maximum in (a) 1.8 gram of water		
(ii) 48 gram $O_3 = \frac{48}{48} = 1 \text{ mol}$	(b) 18 gram of water		
48	(c) 18 moles of water		
(iii) 8 gram H ₂ = $\frac{8}{2}$ = 4 mol	(d) 18 molecules of water		
2 64	NEET-2013		
(iv) 64 gram SO ₂ = $\frac{64}{(22+2)(16)}$	Ans. (c) : No of moles of water in $1.8 \text{ g} = 0.1 \text{ moles}$		
$(32 + 2 \times 10)$	in 18 g = 1 moles.		
$=\frac{64}{1}=1$ mol	\therefore 1 mole water = 6.02×10^{-2} molecules		
64	\therefore 18 mole water = 18 × 6.02 × 10 ⁻¹ molecules		
So, maximum no. of moles present in H_2 .	molecules.		
97. How many moles of magnesium phosphate,	101. 25.3 g of sodium carbonate, Na ₂ CO ₃ is		
$Mg_3(PO_4)_2$ will contain 0.25 mole of oxygen	dissolved in enough water to make 250 ml. of		
atoms. (1) $2 \cdot 125 = 10^{-2}$	solution. If sodium carbonate dissociates		
(a) 0.02 (b) 3.125×10^{-2}	completely, molar concentration of sodium ion,		
(c) 1.25×10^{-2} (d) 2.5×10^{-2}	Na and carbonate ions, CO_3^{-1} are respectively		
UP CPMT-2011	(Molar mass of $Na_2SO_3 = 106 \text{ g mol}^{-1}$)		

Number of g.molecules $\times 6.02 \times 10^{23} \times \text{atomicity}$ (a) 0.955 M and 1.910 M (b) 1.910 M and 0.955 M (c) 1.90 M and 1.910 M =1amu $=1.6 \times 10^{-24}$ g (d) 0.477 M and 0.477 M $=100 \,\mathrm{amu} = 1.6 \times 100 \times 10^{-24} \,\mathrm{g}$ **NEET-2010** Ans. (b) : Given that, weight of sodium carbonate = $\frac{100 \times 1.6 \times 10^{-24}}{4} \times 6.023 \times 10^{23} \times 10^{23}$ 25.3 gm Moles of $Na_2CO_3 = \frac{Moles of solute}{litre of solution}$ $=25 \times 1.6 \times 10^{-24} \times 6.023 \times 10^{23} = 25$ 105. The total number of protons in 10g of calcium $=\frac{25.3}{106}=0.239$ moles carbonate is ($N_0 = 6.023 \times 10^{23}$) (a) 3.01×10^{24} (b) 4.06×10^{24} Molarity of solution $=\frac{0.239}{0.25}=0.956$ mol/litre (c) 2.01×10^{24} (d) 3.01×10^{24} **UP CPMT-2003** $Na_2CO_3 \rightarrow 2Na^+ + CO_3^{2-}$ Ans. (a) : Number of protons = Atomic number \therefore Protons in 1 mole CaCO₃ \therefore Concentration of $CO_3^{2-} = 0.956 \text{ M}$ = Atomic No. of Ca + atomic. No. of C + $3 \times$ atomic Concentration of $Na^+ = 2 \times 0.956$ No. of O = 1.912 M. $= 20 + 6 + 3 \times 8$ 102. The number of atoms in 0.1 mol of triatomic = 50gas is (N_A= $6.02 \times 10^{23} \text{ mol}^{-1}$) Atomic mass of CaCO₃ (b) 1.806×10^{23} (a) 6.026×10^{22} $=40+12+3\times 16$ (c) 3.600×10^{23} (d) 1.800×10^{22} =100**NEET-2010** $:: 100 \text{ g of CaCO}_3 \text{ has protons} = 50$: 10 g of CaCO₃ has protons Ans. (b) : 1 mole of triatomic gas has $3 \times 6.02 \times 10^{23}$ atoms $=\frac{50}{100}\times10\times6.02\times10^{23}$ Therefore, no. of atoms 0.1 mol = $0.1 \times 3 \times 6.02 \times 10^{23}$ $= 1.806 \times 10^{23}$ $=\frac{50}{100}\times10\times6.02\times10^{23}$ 103. Which has maximum molecules? (a) $7 g N_2$ (b) 2 g H₂ $= 3.01 \times 10^{24}$ (c) 16 g NO₂ (d) 16 g O₂ 10²¹ molecules are removed from 200 mg of 106. **NEET-2002** CO₂. The moles of CO₂ left are: Ans. (b): 1 mole of any element contain 6.022×10^{23} (a) 2.84×10^{-3} (b) 28.4×10^{-3} number of molecules so (c) 284×10^{-3} (d) 28.4×10^3 (a) 28 g $N_2 = 1$ mole of N_2 **AIIMS-2001** $7 \text{g N}_2 = \frac{7}{28} = 0.25 \text{ mole}$ **Ans. (a):** Given mass = 200 mg = 0.2 gMolar mass of $CO_2 = 44$ g (d) 32 g $O_2 = 1$ mole of O_2 Number of moles $=\frac{\text{Weight}}{\text{Mole weight}} = \frac{0.2}{44} = \frac{1}{220}$ 16 g O₂ = $\frac{16}{32}$ = 0.5 mole No. of molecules = $6.022 \times 10^{23} \times 1/220$ (b) $2g H_2 = 1$ mole of H_2 (c) 46 g $NO_2 = 1$ mole of NO_2 $= 2.73 \times 10^{21}$ 16 g NO₂ = $\frac{16}{46}$ = 0.35 mole As 10²¹ molecules are removed, Hence, No. of Molecules left = $2.73 \times 10^{21} - 10^{21}$ Maximum number of moles will corresponds to $= 1.73 \times 10^{21}$ maximum number of molecules. No. of moles = No. of molecules /Avogadro's number So, 2g H₂ contain maximum molecules $=\frac{1.73\times10^{21}}{6.23\times10^{23}}=2.88\times10^{-3}$ 104. Number of atoms of He in 100 amu of He (atomic wt. of He is 4) are 107. The weight of NaCl decomposed by 4.9 g of (a) 25 (b) 100 H₂SO₄, if 6g of sodium hydrogen sulphate and (d) 100 (c) 50 1.825 g of HCl, were produced in the reaction is: **UP CPMT-2006** (b) 4.65g (a) 6.921g **Ans. (a) :** Number of atom of a substance = Number of (c) 2.925g (d) 1.4 g gram molecular weight $\times 6.05 \times 10^{23} \times$ atomicity **AIIMS-2001**

	(a) 0.8 M (b) 1.6 M
HCl (1.825g)	(c) 1.2 M (d) 10.0 M
The law of conservation of mass states that in a	AIIMS-2000
chemical reaction mass is neither created nor destroyed.	Ans. (b): $HCl \rightleftharpoons H^+ + Cl^-$
\therefore Mass of the reactants = Mass of Products	$CaCl \implies Ca^{2+} + 2Cl^{-}$
x + 4.9 = 6 + 1.825 g	$2 \times 12^{-1} \times $
x = 2.925 g	Total moles of $Cl^{-} = 0.4 + 0.4 = 0.8$ moles
108. The molarity of 98% by weight H_2SO_4 solution,	Volume of solution of $500ml = 0.5 L$
which has a density 1.84 g/cc at 35° C is:	Molarity of $Cl^- = moles Cl^- / volume of solution$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
(c) 20.0 M (d) 24.5 M AIIMS-2001	Molarity of $Cl^{-} = \frac{0.8}{0.5} = 1.6 M$
Ans. (b): The solution contains 98% H ₂ SO ₄ by weight/	111. Volume of CO_2 obtained by the complete
mass that means 100 gram of solutions 98 grams of	decomposition of 9.85 g of BaCO ₃ is
H ₂ SO ₄ .	(a) 2.24 L (b) 1.12 L
Density is 1.84 gm/ml (cc = ml)	(c) 0.84 L (d) 0.56 L
mass of the solution	NEET-2000
So, volume of the solution = $\frac{\text{density of solution}}{\text{density of solution}}$	Ans. (b) :
100	$BaCO_2 \longrightarrow BaO + CO_2 \uparrow$
$=\frac{100 \text{ gram}}{1.04} = 54.34 \text{ ml}$	1 mole 1 mole mole
1.84	Given weight 9.85
No. of moles of $H_2SO_4 = \frac{\text{weight of } H_2SO_4}{1}$	$Moles = \frac{Given weight}{molecular weight} = \frac{9.65}{107 g/mol}$
2 molar mass of $H_{2}SO_{4}$	molecular weight 19/g/mol.
$=\frac{98}{1000}$ = 1 moles	=0.05 mole
98	At STP. 1 mole = 22.4 L
Molarity = 1 mole = 18.41 M	$0.05 \text{ mole} = 22.4 \times 0.05 \text{ L} = 1.12 \text{ L}$
1000000000000000000000000000000000000	112. The number of atoms in 4.25 g of NH_3 is
109. The normality of orthophosphoric acid having	approximately (a) 4×10^{23} (b) 2×10^{23}
nurity of 70% by woight and specific gravity	(a) 4×10 (b) 2×10
pully of 7070 by weight and specific gravity	(a) 1×10^{23} (d) 6×10^{23}
1.54 is:	(c) 1×10^{23} (d) 6×10^{23}
1.54 is: (a) 11 N (b) 22 N	(c) 1×10^{23} (d) 6×10^{23} NEET-1999
Image: purity of 70% by weight and specific gravity 1.54 is: (a) 11 N (c) 33 N (d) 44 N	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NUL = 4.25 g
is: (a) 11 N (b) 22 N (c) 33 N (d) 44 N AIIMS-2001	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ =4.25g Weight
I.54 is:(b) 22 N(c) 33 N(d) 44 NAIIMS-2001Ans. (c): Density of orthophosphoric acid $(H_3PO_4) =$	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ =4.25g Number of moles of NH ₃ = Weight
I.54 is:(a) 11 N(b) 22 N(c) 33 N(d) 44 NAIIMS-2001Ans. (c): Density of orthophosphoric acid $(H_3PO_4) =$ specific gravity × density of water.	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ =4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$
I.54 is:(a) 11 N(b) 22 N(c) 33 N(d) 44 NAIIMS-2001Ans. (c): Density of orthophosphoric acid $(H_3PO_4) =$ specific gravity × density of water.Density of orthophosphoric acid = 1.54 × 0.998	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ = 4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ = $\frac{4.25}{2} = 0.25$ mole
Ans. (c): Density of orthophosphoric acid $= 1.54 \times 0.998$ = 1.54 g/ml	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ = 4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25$ mole
AIIMS-2001 Ans. (c): Density of orthophosphoric acid $(H_3PO_4) =$ specific gravity × density of water. Density of orthophosphoric acid = 1.54×0.998 = 1.54 g/ml Mass in 1000 ml = $1.54 \times 1000 = 1540 \text{ g}$	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ = 4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25$ mole Number of molecules in 0.25 moles of NH ₃
Ans. (c): Density of orthophosphoric acid $(H_3PO_4) =$ specific gravity × density of water. Density of orthophosphoric acid $(H_3PO_4) =$ = 1.54 g/ml Mass in 1000 ml = $1.54 \times 1000 = 1540 \text{ g}$ Gram equivalent weight of orthophosphoric acid =	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ = 4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25$ mole Number of molecules in 0.25 moles of NH ₃ $= 0.25 \times 6.023 \times 10^{23}$
Ans. (c): Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid (H_3PO_4) = = 1.54 g/ml Mass in 1000 ml = $1.54 \times 1000 = 1540 \text{ g}$ Gram equivalent weight of orthophosphoric acid = $\frac{\text{Molar mass}}{1000 \text{ g}} = \frac{98}{2} = 32.66 \text{ g eq}.$	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ = 4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25$ mole Number of molecules in 0.25 moles of NH ₃ $= 0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$
Ans. (c): Density of orthophosphoric acid = 1.54 sc (a) 11 N (b) 22 N (c) 33 N (d) 44 N AIIMS-2001 Ans. (c): Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid = 1.54×0.998 = 1.54 g/ml Mass in 1000 ml = $1.54 \times 1000 = 1540 \text{ g}$ Gram equivalent weight of orthophosphoric acid = $\frac{\text{Molar mass}}{\text{N} - \text{factor}} = \frac{98}{3} = 32.66 \text{ g eq}.$	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ = 4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ = $\frac{4.25}{17} = 0.25$ mole Number of molecules in 0.25 moles of NH ₃ = $0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ = 6.023×10^{23}
Ans. (c): Density of orthophosphoric acid $(H_3PO_4) =$ specific gravity × density of water. Density of orthophosphoric acid $(H_3PO_4) =$ secific gravity × density of water. Density of orthophosphoric acid $= 1.54 \times 0.998$ = 1.54 g/ml Mass in 1000 ml $= 1.54 \times 1000 = 1540$ g Gram equivalent weight of orthophosphoric acid $=$ $\frac{Molar mass}{N-factor} = \frac{98}{3} = 32.66$ g eq. orthophosphoric acid is only 70% pure so the weight of	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ = 4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25$ mole Number of molecules in 0.25 moles of NH ₃ $= 0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ $= 6.023 \times 10^{23}$ $\approx 6 \times 10^{23}$
Ans. (c): Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid (H ₃ PO ₄) = secific gravity × density of water. Density of orthophosphoric acid = 1.54×0.998 = 1.54 g/ml Mass in 1000 ml = $1.54 \times 1000 = 1540$ g Gram equivalent weight of orthophosphoric acid = $\frac{Molar mass}{N - factor} = \frac{98}{3} = 32.66$ g eq. orthophosphoric acid = $1540 \times \frac{70}{100} = 1078$ g	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ = 4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ = $\frac{4.25}{17} = 0.25$ mole Number of molecules in 0.25 moles of NH ₃ = $0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ = 6.023×10^{23} Xee Solution 1 Xee All Sector Xee Sector Xee
Ans. (c): Density of orthophosphoric acid = 1.54 gs (a) 11 N (b) 22 N (c) 33 N (d) 44 N AIIMS-2001 Ans. (c): Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid = 1.54×0.998 = 1.54 g/ml Mass in 1000 ml = $1.54 \times 1000 = 1540$ g Gram equivalent weight of orthophosphoric acid = $\frac{\text{Molar mass}}{\text{N} - \text{factor}} = \frac{98}{3} = 32.66 \text{ g eq.}$ orthophosphoric acid = $1540 \times \frac{70}{100} = 1078$ g Number of gram equivalents of orthophosphoric acid	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ = 4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25 \text{mole}$ Number of molecules in 0.25 moles of NH ₃ $= 0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ $= 6.023 \times 10^{23}$ Xumber of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ $\approx 6 \times 10^{23}$ Xumber of N/5 HCI and 30mL of N/10HCI is:
Ans. (c): Density of orthophosphoric acid $(H_3PO_4) =$ specific gravity × density of water. Density of orthophosphoric acid $(H_3PO_4) =$ specific gravity × density of water. Density of orthophosphoric acid = 1.54×0.998 = 1.54 g/ml Mass in 1000 ml = $1.54 \times 1000 = 1540$ g Gram equivalent weight of orthophosphoric acid = $\frac{Molar mass}{N - factor} = \frac{98}{3} = 32.66$ g eq. orthophosphoric acid = $1540 \times \frac{70}{100} = 1078$ g Number of gram equivalents of orthophosphoric acid 1078 = 22	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ =4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25 \text{mole}$ Number of molecules in 0.25 moles of NH ₃ $= 0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ $= 6.023 \times 10^{23}$ $\approx 6 \times 10^{23}$ 113. The normality of a solution obtained by mixing 10 mL of N/5 HCI and 30mL of N/10HCI is: (a) $\frac{N}{2}$ (b) $\frac{N}{2}$
Ans. (c): Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid (H ₃ PO ₄) = secific gravity × density of water. Density of orthophosphoric acid = 1.54×0.998 = 1.54 g/ml Mass in 1000 ml = $1.54 \times 1000 = 1540$ g Gram equivalent weight of orthophosphoric acid = $\frac{Molar mass}{N - factor} = \frac{98}{3} = 32.66$ g eq. orthophosphoric acid = $1540 \times \frac{70}{100} = 1078$ g Number of gram equivalents of orthophosphoric acid $= \frac{1078}{32.66} = 33$	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ =4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25 \text{mole}$ Number of molecules in 0.25 moles of NH ₃ $= 0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ $= 6.023 \times 10^{23}$ $\approx 6 \times 10^{23}$ 113. The normality of a solution obtained by mixing 10 mL of N/5 HCI and 30mL of N/10HCI is: (a) $\frac{N}{15}$ (b) $\frac{N}{5}$
Ans. (c): Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid = 1.54 × 0.998 = 1.54 g/ml Mass in 1000 ml = 1.54 × 1000 = 1540 g Gram equivalent weight of orthophosphoric acid = $\frac{Molar mass}{N - factor} = \frac{98}{3} = 32.66 g eq.$ orthophosphoric acid is only 70% pure so the weight of orthophosphoric acid = 1540 × $\frac{70}{100} = 1078g$ Number of gram equivalents of orthophosphoric acid $= \frac{1078}{32.66} = 33$ (number of gram equivalents)	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ =4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ = $\frac{4.25}{17} = 0.25$ mole Number of molecules in 0.25 moles of NH ₃ = $0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ = 6.023×10^{23} Xistic Probability of a solution obtained by mixing 10 mL of N/5 HCI and 30mL of N/10HCI is: (a) $\frac{N}{15}$ (b) $\frac{N}{5}$ (c) $\frac{N}{23}$ (d) $\frac{N}{25}$
Ans. (c): Density of orthophosphoric acid = 1.54 ss (a) 11 N (b) 22 N (c) 33 N (d) 44 N AIIMS-2001 Ans. (c): Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid = 1.54×0.998 = 1.54 g/ml Mass in 1000 ml = $1.54 \times 1000 = 1540$ g Gram equivalent weight of orthophosphoric acid = $\frac{\text{Molar mass}}{\text{N}-\text{factor}} = \frac{98}{3} = 32.66 \text{ g eq.}$ orthophosphoric acid = $1540 \times \frac{70}{100} = 1078$ g Number of gram equivalents of orthophosphoric acid $= \frac{1078}{32.66} = 33$ Normality = $\frac{(\text{number of gram equivalents})}{(\text{volume of solution in L})}$	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ =4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25 \text{mole}$ Number of molecules in 0.25 moles of NH ₃ $= 0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ $= 6.023 \times 10^{23}$ Xistic equations and a solution obtained by mixing 10 mL of N/5 HCI and 30mL of N/10HCI is: (a) $\frac{\text{N}}{15}$ (b) $\frac{\text{N}}{5}$ (c) $\frac{\text{N}}{7.5}$ (d) $\frac{\text{N}}{8}$
Ans. (c): Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid = 1.54×0.998 = 1.54 g/ml Mass in 1000 ml = $1.54 \times 1000 = 1540$ g Gram equivalent weight of orthophosphoric acid = $\frac{Molar mass}{N - factor} = \frac{98}{3} = 32.66$ g eq. orthophosphoric acid = $1540 \times \frac{70}{100} = 1078$ g Number of gram equivalents of orthophosphoric acid $= \frac{1078}{32.66} = 33$ Normality = $\frac{(number of gram equivalents)}{(volume of solution in L)}$	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ =4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25 \text{mole}$ Number of molecules in 0.25 moles of NH ₃ $= 0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ $= 6.023 \times 10^{23}$ $\approx 6 \times 10^{23}$ 113. The normality of a solution obtained by mixing 10 mL of N/5 HCI and 30mL of N/10HCI is: (a) $\frac{\text{N}}{15}$ (b) $\frac{\text{N}}{5}$ (c) $\frac{\text{N}}{7.5}$ (d) $\frac{\text{N}}{8}$ AIIMS-1999
Ans. (c): Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid = 1.54 × 0.998 = 1.54 g/ml Mass in 1000 ml = 1.54 × 1000 = 1540 g Gram equivalent weight of orthophosphoric acid = $\frac{Molar mass}{N - factor} = \frac{98}{3} = 32.66 g eq.$ orthophosphoric acid = 1540 × $\frac{70}{100} = 1078 g$ Number of gram equivalents of orthophosphoric acid $= \frac{1078}{32.66} = 33$ Normality = $\frac{(number of gram equivalents)}{(volume of solution in L)}$ Normality = 33 N.	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ = 4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25 \text{mole}$ Number of molecules in 0.25 moles of NH ₃ $= 0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ $= 6.023 \times 10^{23}$ Xinthe normality of a solution obtained by mixing 10 mL of N/5 HCI and 30mL of N/10HCI is: (a) $\frac{\text{N}}{15}$ (b) $\frac{\text{N}}{5}$ (c) $\frac{\text{N}}{7.5}$ (d) $\frac{\text{N}}{8}$ AIIMS-1999 Ans. (d): N = M × n – factor
Ans. (c): Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid = 1.54 × 0.998 = 1.54 g/ml Mass in 1000 ml = 1.54 × 1000 = 1540 g Gram equivalent weight of orthophosphoric acid = $\frac{Molar mass}{N-factor} = \frac{98}{3} = 32.66 g eq.$ orthophosphoric acid = 1540 × $\frac{70}{100} = 1078 g$ Number of gram equivalents of orthophosphoric acid $= \frac{1078}{32.66} = 33$ Normality = $\frac{(number of gram equivalents)}{(volume of solution in L)}$ Normality = 33 N. 110. 0.4 moles of HCl and 0.2 moles of CaCl₂ were	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ =4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ $= \frac{4.25}{17} = 0.25 \text{mole}$ Number of molecules in 0.25 moles of NH ₃ $= 0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ $= 6.023 \times 10^{23}$ XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
hundry of 70% by weight and specific gravity 1.54 is: (a) 11 N (b) 22 N (c) 33 N (d) 44 N AIIMS-2001 Ans. (c): Density of orthophosphoric acid (H ₃ PO ₄) = specific gravity × density of water. Density of orthophosphoric acid = 1.54 × 0.998 = 1.54 g/ml Mass in 1000 ml = 1.54 × 1000 = 1540 g Gram equivalent weight of orthophosphoric acid = $\frac{Molar mass}{N-factor} = \frac{98}{3} = 32.66 \text{ g eq.}$ orthophosphoric acid is only 70% pure so the weight of orthophosphoric acid = 1540 × $\frac{70}{100} = 1078 \text{ g}$ Number of gram equivalents of orthophosphoric acid $= \frac{1078}{32.66} = 33$ Normality = $\frac{(number of gram equivalents)}{(volume of solution in L)}$ Normality = 33 N. 110. 0.4 moles of HCl and 0.2 moles of CaCl ₂ were dissolved in water to have 500ml of solution, the morality of CL ion is:	(c) 1×10^{23} (d) 6×10^{23} NEET-1999 Ans. (d) : Given that, Weight of NH ₃ =4.25g Number of moles of NH ₃ = $\frac{\text{Weight}}{\text{Molecular Weight}}$ = $\frac{4.25}{17} = 0.25$ mole Number of molecules in 0.25 moles of NH ₃ = $0.25 \times 6.023 \times 10^{23}$ So, number of atoms = $4 \times 0.25 \times 6.023 \times 10^{23}$ = 6.023×10^{23} $\approx 6 \times 10^{23}$ 113. The normality of a solution obtained by mixing 10 mL of N/5 HCI and 30mL of N/10HCI is: (a) $\frac{\text{N}}{15}$ (b) $\frac{\text{N}}{5}$ (c) $\frac{\text{N}}{7.5}$ (d) $\frac{\text{N}}{8}$ AIIMS-1999 Ans. (d): N = M × n – factor NV = N ₁ V ₁ + N ₂ V ₂ {where N = Normality of mixture V = Volume of mixture

$$\begin{aligned} & \text{NV} = \frac{1}{5} \times 10 + \frac{1}{10} \times 30 \\ & \text{N} \times 40 = 2 + 3 \\ & \text{N} \times 40 = 2 + 3 \\ & \text{N} = \frac{3}{40} \\ & \text{N} = \frac{1}{8} \\ \hline & \text{III. The molar concentration of 20g of NaOH present in 5 litre of solution is: (a) 0.1 mols/litre (b) 0.2 mols/litre (c) 1.0 mols/litre (c) 1.0 mols/litre (d) 2.0 mols/litre (c) 1.0 mols/litre (d) 2.0 mols/litre (d) 2.0 mols/litre (c) 1.0 mols/litre (d) 2.0 mols/litre (d) 2.4 mole fraction of solute in 20% aqueous H2O2 to 0.588 (d) 4.44 (c) 0.1168 (d) 4.25 of 3.84 + .44 (c) 0.1168 (d) 4.20 (d) 0.21 mol (c) 0.186 mol (d) 0.22 mol (d) 0.22 mol (d) 0.22 mol (d) 0.22 mol (d) 0.5 molecules (d) 0.5 molecules (d) 0.5 molecules (d) 0.5 molecules (d) 0.5 mo$$

121.	The number of oxygen atoms in 4.4 g of CO ₂ is (a) 1.2×10^{23} (b) 6×10^{22}	124. If Avogadro number N_A , is changed from 6.022 $\times 10^{23}$ mol ⁻¹ to 6.022 $\times 10^{20}$ mol ⁻¹ , this would
	(c) 6×10^{23} (d) 0.12×10^{23}	change
	NEET-1989	(a) the mass of one mole of carbon
Ans.	(a) : Moles of $CO_2 = \frac{4.4}{44} = 0.1 \text{ moles}$	(b) the ratio of chemical species to each other in a balanced equation.
: Nu	umber of molecules of $CO_2 = 0.1 \times 6.022 \times 10^{23}$	(c) the ratio of elements to each other in a compound
	$= 6.022 \times 10^{22}$ molucules	(d) the definition of mass in units of grams.
1 mol	ecule of CO_2 contains 2 oxygen atoms.	NEET-2012
∴ Ni	The second seco	Ans. (a) :
	$= 12.044 \times 10^{22}$	Mass of 1 mole (6.022×10^{23}) atoms of carbon = 12 g
	$= 1.2 \times 10^{23}$ atoms	If Avogadro Number (N_A) is changed than mass of 1 mol (6.022)(10 ²⁰ starm) of each or
122.	1 cc N ₂ O at NTP contains	$10 (0.022 \times 10^{-20} \text{ atom}) \text{ of carbon}$
	(a) $\frac{1.8}{224} \times 10^{22}$ atoms	$=\frac{12\times6.022\times10^{23}}{6.022\times10^{23}}=12\times10^{-3}\mathrm{g}$
	(1) 6.02 (2^{23}) 1 1	Therefore, Mass of 1 mol of carbon is changed.
	(b) $\frac{10^{23}}{22400} \times 10^{23}$ molecules	125. The volume in litres of CO ₂ liberated at STP
	() 1.32 1023 1	when 10 g of 90% pure lime stone is heated
	(c) $\frac{1}{224} \times 10^{-1}$ electrons	$\begin{array}{c} \text{completely is:} \\ (x) \ 2 \ 0 \ 1 \ (x) \ 2 \ 0 \ 1 \ (x) \ 2 \ 0 \ 1 \ (x) \ (x) \ 2 \ 0 \ 1 \ (x) \ (x)$
	(d) All of the above	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	NEET-1988	(c) 2.24 (d) 22.4 AP FAMCET (Medical) -1998
Ans.	(d) : At NTP 22400 cc of N_2O contains =	
6.02×	10 ²³ molecules	Ans. (a): $CaCO_3 \xrightarrow{\sim} CaO + CO_2$
∴1 c	the N ₂ O will contain = $\frac{6.02 \times 10^{23}}{1000}$ molecules	\therefore Molecular weight of CaCO ₃ = 100g/mole
	22400	Weight of 10 gm of 00% pure limestone 10×90
$\ln N_2$	O molecule, number of atoms = $2 + 1 = 3$	weight of rogin of 90% pure innestone = $\frac{100}{100}$
Thus,	the number of atoms = $\frac{3 \times 6.02 \times 10^{23}}{22400}$ atoms	= 9 gm pure CaCO ₃ \therefore 9 gm pure CaCO ₃
	$=\frac{1.8\times10^{22}}{221}$ atoms	$CO_2 = \frac{22.4 \times 9}{100} = 2.016 L$.
	224	100 126 The total number of valence electrons in 4.2 g
In an $\alpha = 2^{10}$	N_2O molecule, the number of electrons = $/ + / +$	120. The total number of valence electrons in 4.2 g of N^- ion is (N, is the Avogadro's number)
0 - 2.	2	(.) 2.1 N ((X_A) is the Avogadi o's humber)
Henc	e. the number of electrons. = $\frac{6.02 \times 10^{23}}{22} \times 22$	(a) $2.1 N_A$ (b) $4.2 N_A$
	22400	$(c) 1.0 N_A$ $(u) 5.2 N_A$
	$=\frac{1.32\times10^{23}}{1000}$ electrons	$\mathbf{A} = (\mathbf{A} + \mathbf{M}_{1}) + \mathbf{A} = (\mathbf{A} + \mathbf{M}_{2}) + \mathbf{A} = (\mathbf{A} + \mathbf{M}_{2})$
	$=\frac{1}{224}$ electrons.	Ans. (c) : Molecular wt of $N_3 = 3 \times 14 = 42g$
123.	At STP the density of CCl ₄ vapour of g/L will be nearest to	Moles of N_3^- ion $=\frac{4.2}{42}=0.1$
	(a) 6.87 (b) 3.42	Each nitrogen atom has 5 valence electrons, total
	(c) 10.26 (d) 4.57	number of electrons in
	NEET-1988	N_{3}^{-} ion = 16
Ans.	(a): We know that, mass of $C = 12g$, $Cl = 35.5 g$	Total number of electrons in 0.1 mole,
1 mol	$e CCl_4$ vapours = $12 + 4 \times 35.5$	4.2g of N_3^- ion = 0.1 × 16 × N_A = 1.6 N_A
	= 154g	127. An organic compound contains 78% (by wt)
At ST	TP, volume of 1 mole of gas = 22.4 L	carbon and remaining percentage of hydrogen.
Thus.	154g = 22.4 L	The right option for the empirical formula of
	154 -1	this compound is [Atomic wt. of C is 12, h is 1]
∴ De	ensity of CC1 ₄ vapours = $\frac{1}{22.4}$ gL ⁴	$(a) CH_4 (b) CH$
	$= 6.87 \text{ g L}^{-1}$	(c) UH_2 (d) UH_3
L	····· 0	NEE 1-2021

Ans. (a): Given, $\frac{C}{H} = \frac{1}{2}$ % Ans. (d) : Element Mass % At. weight At. Weight Atomic mass of H = 1Simplest ratio. Atomic mass of C = 12С 78 12 78/12 = 6.565/6.5 = 1According to the option Η 22 1 22/1 = 2222/6.5 = 3In Empirical formula of this compound is CH₃. $CH_2 \rightarrow \frac{C}{H} = \frac{2}{12} = 1:6$ The empirical formula of the compound if M = 128. 68% (atomic mass = 34) and remaining 32% $C_2H \rightarrow \frac{C}{H} = \frac{1}{24} = 1:24$ oxygen is? (a) MO (b) M_2O $CH_3 \rightarrow \frac{C}{H} = \frac{3}{12} = 1:4$ (c) MO_2 (d) M_2O_3 AIIMS 25 May 2019 (Morning) Ans. (a): We know that, $CH_4 \rightarrow \frac{C}{H} = \frac{4}{12} = 1:3$ No. of moles = $\frac{Percentage of element}{Percentage of element}$ 131. organic compound At.mass An contains carbon. hydrogen and oxygen. Its element analysis gave No. of moles of element (M) = $\frac{68}{34}$ = 2 C, 38.71% and H, 9.67%. The empirical formula of the compound would be No. of moles of oxygen = $\frac{100-68}{16} = 2$ (a) CHO (b) CH₄O (c) CH₃O (d) CH₂O **NEET-2008** Empirical formula of compound = $M_2O_2 = MO$ Ans. (c): For calculating Empeirical formula, 129. A binary mixture of bivalent metals having Element Relative Simplest % At. mass 2 g, molecular mass of A and B are 15 and Wt. No. of ratio of 30 respectively, is dissolved in HCl, it evolves atoms atoms 2.24L H₂ at STP, what is the mass of A present С 38.71 12 3.23 3.23/3.23=1 in mixture? (Atomic mass of $A = 15\mu$, $B = 30\mu$) 9.67 Η 1 9.67/3.23=3 9.67 (b) 1.5 g (a) 1 g 0 51.62 16 3.23 3.23/3.23=1 (c) 0.5 g (d) 0.75 g Hence, empirical formula is CH₃O. AIIMS-26 May, 2018 (E) Ans. (a): For metal A let the mass of metal is x 132. In an organic compound, C =68.5% and H = 4.91%. Which empirical formula is correct for No. of moles = x/15it? $A + 2HCl \rightarrow ACl_2 + H_2$ (a) C₆H₁₀ (b) C₇H₆O₂ one mole of metal gives one mole of H2 gas (c) C_5H_8O (d) C_9H_3O Mole : $\frac{x}{15}$ Х **UP CPMT-2009** 15 Ans. (b): For calculating Empirical formula, $B + 2HCl \rightarrow BCl_2 + H_2$ No.of moles Simple molar ratio Element At.wt. Percent $\frac{2-x}{30}$ Mole $\frac{2-x}{30}$ composition С 12 68.5 5.708 = 5.708 $= 3.41 \times 2 = 7$ Total moles of H₂ = $\frac{x}{15} + \frac{2 - x}{30} = \frac{2.24}{22.4} = \frac{1}{10}$ 12 1.67 $\frac{4.91}{1.67} = 2.95 \times 2 = 6$ 4.91 Η 1 491 = 4.91 1 $\frac{2+x}{30} = \frac{1}{10}$ $\frac{1.67}{1.67} = 1 \times 2 = 2$ 0 16 (100 - 68.5 - 4.91)26.59 =1.67 16 = 26.59 20 + 10x = 30Hence, the empirical formula of the compound is 10 = 10x $C_7H_6O_2$ x = 1gIn a compound C, H and N are present in 9:1: 133. In a hydrocarbon, mass ratio of hydrogen and 130. 3.5 by weight. If molecular weight of the carbon is 1:3, the empirical formula of compound is 108, then the molecular formula hydrocarbon is of the compound is (a) CH₄ (b) CH₂ (a) $C_2H_6N_2$ (b) C_3H_4N (c) C₂H (d) CH_3 (d) C₉H₁₂N₃ (c) $C_6H_8N_2$ **AIIMS-2012 UP CPMT-2006** 37 YCT

Ans. (c) :	$\frac{\text{Molecular}}{\text{C}}$ $\frac{9}{2} = 0.75$	weight of compose H N 1 3. $\frac{1}{1} = 1$ $\frac{3.5}{14} =$	ind = 108 1 5 0.25	136. An organic compound containing C and H has 92.3% of carbon, Its empirical formula is (a) CH (b) CH3 (c) CH2(b) CH3 (d) CH4 A.P.EAMCET-2004A.P.EAMCET-2004Ans. (a) : Given that, C = 92.3% and H is 7.7%			
	$\frac{0.75}{0.25} = 3$	$\frac{1}{0.25} = 4$ $\frac{0.25}{0.25}$	$\frac{1}{2} = 1$	ElementPercentageSimple ratio			Simple ratio
0.25 0.25 $0.25So, empirical formula = C2H4N$			0		atomic weight		
Molecular weight of $C_3H_4N = 54$				C		$\frac{92.3}{12} = 7.69$	$\frac{7.69}{7.69} = 1$
\Rightarrow	1	$n = \frac{108}{54} = 2$		Н		$\frac{7.7}{-1.7} = 7.7$	$\frac{7.70}{2} \simeq 1$
\therefore Molecular formula = $(C_3H_4N)_2$			Ц.	nee the empire	$\frac{1}{1}$	7.69	
$= C_6 H_8 N_2$			137. How many litres of oxygen (at STP) are				
134. A c hyd	ompound i rogen ar	is 60g on analysis 1d oxygen 24g The empirical for	y on analysis produce carbon, Dxygen 24g, 4g and 32g			required for complete combustion of 39 g of liquid benzene?	
(a)	$C_2H_2O_2$	(b) C ₂	H_4O_2		(atomic wei	ghts : C =12, O =10	6, H=1)
(c)	CH ₂ O	(d) C ₂	H_4O_6		(a) 84	(b) 22	2.4
			UP CPMT-2002		(c) 42	(d) 1	1.2 P EAMCET-2001
Ans. (c) :	A	9/ af alamant	Dalating	Ans	s. (a)	1 1.	1.L/ WICE 1-2001
Element	produce	% of element	number	C ₆ l	$H_6(l) + \frac{15}{2}O_2(g)$	$) \rightarrow 6CO_2(g) + 3H$	₂ O(g)
С	24	$\frac{24}{60} \times 100 = 40\%$	$\frac{40}{12} = 3.33 = 1$	Мо	lar mass of $C_6 H$	$H_6 = 78 \text{ g/mol}$	
Н	4	$\frac{4}{60} \times 100 = 6.66\%$	$\frac{6.66}{1} = 6.66 = 2$	39 gms of $C_6H_6(l) = \frac{39}{78}$ moles = 0.5 moles			
N	32	$\frac{32}{60} \times 100 = 53.33\%$	$\frac{53.33}{14} = 3.33 = 1$	For 2 moles, we require 15 moles of O_2 , for 0.5 moles we will require-			O_2 , for 0.5 moles
Hence, the	e empirical	formula is CH ₂ O.	14	\Rightarrow	$\frac{0.5}{2} \times 15 = -$	$\frac{15}{4}$ moles of O ₂	
135. 4g gav	4g of a hydrocarbon on complete combustion gave 12,571 g of CO ₂ and 5.143 g of water. What			$=\frac{15}{4} \times 22.4 \text{ litres} = 84 \text{ litres}$			
is th	e empirica	l formula of the h	ydrocarbon?		A3.5	Assertion and Re	asons
(a) (c)	CH CH ₂	(b) Cl (d) C	п ₂ .На	138	Assertion: 1	Molecular weight	of a compound is
(0)	CII3	(u) 02 A.I	P.EAMCET-2002		100, 11 115 72	vpour density is 90.	apour density
Ans. (b) :	% of carbo	on			Reason: Mo	olecular Weight = –	2
$=\frac{12}{-12}$ ×	weighto	$f CO_2 \times 100$			(a) If both	Assertion and Reas	on are correct and
44 w	eight of or	ganic compound		Assertion.			
$=\frac{12}{44}\times\frac{12}{44}$	$\frac{.571}{4} \times 100 =$	= 85.7%		(b) If both Assertion and Reason are correct, but			
44	4	2 weight of w	ater	Reason is not the correct explanation of			
% of Hy	drogen = $\frac{1}{1}$	$\frac{2}{8} \times \frac{\text{weight of } m}{\text{weight of com}}$	$\frac{100}{100} \times 100$	(c) If Assertion is correct but Reason is incorrect.			
2 5143×100			(d) If both the Assertion and Reason are				
$=\frac{18}{18}\times$	$\frac{1}{4} = 1$	43%			incorrec	et.	
Element	% ato	omic weight	Simple ratio	An	(c): Relation	AIIMS 25 Ma	y 2019 (Morning)
C	85.7	= 7.15	$\frac{7.15}{7.15} = 1$	vapour density is,			and weight and
ц	12		7.15	Mo	lecular weight	of compound = 2×10^{-10}	vapour density
п	$\frac{14.3}{1}$	=14.3	$\frac{14.3}{7.15} = 2$		=	= 2 × 90	
Hence the empirical formula = CH_2					= nce, assertion is	s correct but reason	is incorrect.
	*	_		8			VCT

Atomic Structure

From de- Broglie equation -	Ans. (b) : We know that –
$h_{\lambda} = h_{\lambda}$	Wave length $(\lambda) = \frac{c}{c}$
λp	V V
where $\lambda = Wavelength of light$	3×10^8 210 200 210 2
h = Planck's constant	$\lambda = \frac{1368 \times 10^3}{1368 \times 10^3} = 219.298 \text{m} = 219.3 \text{m}$
n = Momentum of electron	8 The energy required to overcome the attractive
$(-2) \cdot 10^{-34}$ La	forces on the electrons, w. of some metals is
$\therefore \qquad \lambda = \frac{0.02 \times 10^{-10} \text{ Js}}{100000000000000000000000000000000000$	listed below. The number of metals showing
$6.62 \times 10^{-20} \mathrm{kgms^{-1}}$	photoelectric effect when light of 300 nm
$\lambda = 1 \times 10^{-6} \mathrm{m}$	wavelength falls on it is
or	$(1 eV = 1.6 \times 10^{-19} J)$
$\lambda = 1000$ nm	Metal Li Na K Mg Cu Ag Fe Pt W
5. The value of Planck's contant is 6.63×10^{-34} Js.	w(eV) 2.4 2.3 2.2 3.7 4.8 4.3 4.7 6.3 4.75
Speed of light is 3×10^{17} nm s ⁻¹ . Which a value	(a) 6 (b) 8
is closed to the wavelength in nanomter of a	(c) 5 (d) 4
quantum of light with frequency of 6×10 ¹⁵ s ⁻¹ ?	AP EAMCET (Medical) - 2013
(a) 50 (b) 75	Ans. (d) : Given:
(c) 10 (d) 25	wavelength (λ) = 300 nm = 300×10 ⁻⁹ m
NEET-2013	$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$
Ans. (a) : We know that –	: Energy of a photon of radiation of wavelength 300nm
$c = v\lambda$	will be -
, c	E = hv
$\lambda = -$ v	E = hc
3×10^{17}	or $E = \frac{1}{\lambda}$
$\lambda = \frac{5 \times 10^{15}}{6 \times 10^{15}} = 50 \text{ nm}$	$((10^{-34})^{-34})^{-34}$
0×10	or $F = \frac{6.0 \times 10}{10} (JS) \times 3 \times 10 (MS)$
6. The value of Planck's constant is 0.63×10^{-7} Js.	$300 \times 10^{-9} \mathrm{m}$
The velocity of light is 5.0 ×10 ms . Which value is closest to the wavelength in nonometers	or $E = 6.6 \times 10^{-19} J$
of a quantum of light with frequency of	-6.6×10^{-19}
$8 \times 10^{15} \mathrm{s}^{-1}$?	$E = \frac{1.6 \times 10^{-19}}{1.6 \times 10^{-19}} eV$
(a) 2×10^{-25} (b) 5×10^{-18}	$F = 4 \ 14 \ eV$
(c) 4×10^{1} (d) 3×10^{7}	There are 4 metals for which the energy required to overcome
NEET-2003	the attractive forces on the electrons, w, is less than 4.14eV,
Ans. (c): Given that –	the energy of light of wavelength 300 nm. Thus the number of
$c = 3 \times 10^8 \text{ m/s}$	metals showing a photoelectric effect is 4.
$\lambda = 8 \times 10^{15} \text{s}^{-1}$	9. The work functions of Ag, Mg, K and Na
We know that.	respectively in eV are 4.3, 3.7, 2.25, 2.30, When
. C	an electromagnetic radiation of wavelength of
$\lambda = \frac{1}{10}$	300 nm is allowed to fall on these metal surface,
3×10^{8}	are ejected is $(1ev = 1.6022 \times 10^{-19} \text{ J})$
$\lambda = \frac{5 \times 10^{15}}{9 \times 10^{15}} = 0.375 \times 10^{-7} \mathrm{m}$	(a) 4 (b) 3
8×10 - 0.275 × 10 ⁻⁷ × 10 ⁹ nm	(a) + (b) = (b) = (c)
-0.375×10^{2} nm	AP EAMCET-2017
$= 0.3/3 \times 10^{-1111}$	Ans (b) · Given that
$\sim 4 \times 10^1 \mathrm{nm}$	$\lambda = 300 \text{ nm} = 300 \times 10^{-9} \text{ m}$
~4^10 mm	
7. A particular station of All Inula Raulo, New Delhi broadcasts on a frequency of 1.368 kHz	$E = \frac{\pi c}{2}$
(kilohertz). The wavelength of the electro-	Λ
magnetic radiation emitted by the transmitter	$E = \frac{6.6 \times 10^{-34} \times 3 \times 10^{\circ}}{2}$
is [speed of light, $c = 3.0 \times 10^8$ m s ⁻¹]	300×10 ⁻⁹
(a) 21.92 cm (b) 219.3 m	$F = \frac{19.8 \times 10^{-26}}{10^{-26}}$
(c) 219.2 m (d) 2192 m	$\frac{1}{300 \times 10^{-9}}$
NEET-2021	$E = 6.6 \times 10^{-19}$ Joule
4	YCI YCI

And work function for Ag, Mg, K and Na in Joules are – Ag = $4.3 \times 1.6022 \times 10^{-19} = 6.89 \times 10^{-19}$ Joule Mg = $3.7 \times 1.6022 \times 10^{-19} = 5.93 \times 10^{-19}$ joule K = $2.25 \times 1.6022 \times 10^{-19} = 3.60 \times 10^{-19}$ joule Na = $2.30 \times 1.6022 \times 10^{-19} = 3.68 \times 10^{-19}$ Joule 13. According to law of photochemical equivalence the energy absorbed (in ergs/mole) is given as (h = 6.62×10^{-27} ergs, c = 3×10^{10} cm s⁻¹, N_A = 6.02×10^{23} mol⁻¹) (a) $\frac{1.196 \times 10^8}{\lambda}$ (c) $\frac{2.859 \times 10^{16}}{\lambda}$ (b) $\frac{2.859 \times 10^5}{\lambda}$ Thus Mg, K and Na metal will eject electron only when $W \le E_{(300)}$. (d) $\frac{1.196 \times 10^{16}}{\lambda}$ Hence the option (b) is correct A bulb emitted electromagnetic radiation of 10. 660 nm wavelength. The total energy of radiation is 3×10^{-18} J. The number of emitted Karnataka NEET-2013 Ans. (a) : Given data, photon will be: $h = 6.62 \times 10^{-27} \text{ ergs}$ $h = 6.6 \times 10^{-34} \text{ Js, } c = 3 \times 10^8 \text{ m/s}$ $c = 3 \times 10^{10} \text{ cm s}^{-1}$ (a) 1 (b) 10 $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ (c) 100 (d) 1000 $E = \frac{hcN_A}{\lambda}$ AIIMS 26 May 2019 (Morning) **Ans. (b):** Given that, total energy of radiation = 3×10^{-10} $=\frac{6.62\times10^{-27}\times3\times10^{10}\times6.02\times10^{23}}{\lambda}$ $=\frac{1.196\times10^{8}}{\lambda}\text{ ergs mol}^{-1}.$ $h = 6.6 \times 10^{-34} Js, c = 3 \times 10^8, \lambda = 660 \times 10^{-9}$ Number of photons emitted = n We know that, $\mathrm{E}=\,\frac{nhc}{\lambda}$ The energies E₁ and E₂ of two radiations are 25 14. eV and 50 eV respectively. The relation Where, h = the plank's constantbetween their wavelengths i.e. λ_1 and λ_2 will be c = the speed of light(a) $\lambda_1 = \lambda_2$ (b) $\lambda_1 = 2\lambda_2$ and λ = wavelength (c) $\lambda_1 = 4\lambda_2$ (d) $\lambda_1 = \frac{1}{2}\lambda_2$ Now, by substituting the value of these, we get- $3 \times 10^{-18} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8 \times n}{660 \times 10^{-9}}$ $n = \frac{30}{3} = 10$ **NEET-2011** Ans. (b) : Given, $E_1 = 25ev$ and $E_2 = 50 ev$ $E_1 = \frac{hc}{\lambda_1}, E_2 = \frac{hc}{\lambda_2}$ Find the frequency of light that corresponds to 11. By dividing E₁ and E₂ photons of energy 5.0×10⁻⁵ erg? $\Rightarrow \frac{25}{50} = \frac{\lambda_2}{\lambda_1}$ (a) $7.5 \times 10^{-21} \, \text{sec}^{-1}$ (b) 7.5×10^{-21} sec (c) $7.5 \times 10^{21} \text{ sec}^{-1}$ (d) 7.5×10^{21} sec AIIMS-2010 $\Rightarrow \frac{\lambda_2}{\lambda_1} = \frac{1}{2}$ Ans. (c): We know that, E= hv. $v = \frac{E}{h} = \frac{5.0 \times 10^{-5} \text{ erg}}{6.63 \times 10^{-34} \text{ Js}}$ $\Rightarrow \lambda_1 = 2\lambda_2$ For given energy, $E = 3.03 \times 10^{-19}$ Joules 15. $v = \frac{5.0 \times 10^{-5} \text{ erg}}{6.63 \times 10^{-34} \times 10^7 \text{ erg sec}}$ corresponding wavelength is $(h = 6.626 \times 10^{-34})$ J sec, $c = 3 \times 10^8$ m/sec (a) 65.6 nm (b) 6.36 nm \therefore [1J=10⁷ erg] (c) 3.4 nm (d) 656 nm $v = 7.54 \times 10^{21} \text{ sec}^{-1}$ **NEET-2000** Ratio of energy of photon of wavelength 3000Å 12. Ans. (d) : We know thatand 6000Å is $E = \frac{hc}{r}$ (a) 3 : 1 (b) 2:1 (c) 1:2 (d) 1:3 **AIIMS-2012** Given that - $E = 3.03 \times 10^{-19} J$ Ans. (b): Given that, ratio of energy of photon of $h = 6.626 \times 10^{-34} \text{ Js}$ wavelength 3000Å and 6000Å $c = 3 \times 10^8 \text{ m/s}$ $E = \frac{hc}{\lambda}$ $\lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{3.03 \times 10^{-19}}$ $\frac{\lambda_2}{\lambda_1} = \frac{6000}{3000} = 2:1$ $= 6.56 \times 10^{-7} \text{ m} = 656 \times 10^{-9} \text{ m} = 656 \text{ nm}$

$121863 - \frac{109677.76}{1000000000000000000000000000000000000$	(a) $n = 2$ to $n = 3$ (b) $n = 4$ to $n = 3$
$n_1^2 = \frac{n_1^2}{n_1^2}$	(c) $n = 3$ to $n = 2$ (d) $n = 2$ to $n = 1$
100(77.7(AP – EAMCET - (Medical)-1997
$n_1^2 = \frac{109677.76}{9} = 9, n_1 = 3$	Ans. (b) : The spectrum of hydrogen atom obey the
12186.3	following formula–
The line belongs to Paschen series.	
22. If r is the radius of the first orbit, the radius of	$ \overline{v} = \mathbf{R} \left(\frac{1}{v} - \frac{1}{v}\right)$
nth orbit of H-stom is given by	$V = R_{\rm H} \left(n_1^2 + n_2^2 \right)$
(a) rn^2 (b) rn	Wilson D. D. Illions constant
$ \begin{array}{c} (a) \\ (b) \\ (b) \\ (c) $	where $R_{\rm H} = Rydberg$ constant
(c) r/n (d) $r^{2}n^{2}$	In the Paschen series of hydrogen atom spectrum, the
NEET-1988	minimum energy difference found in $n = 4$ to $n = 3$ due
Ans. (a) : Radius of nth orbit= r_1n^2 (for H-atom).	to which they have longest wavelength.
23 What are the values of n and n respectively	27. For which of the following species. Bohr theory
25. What are the values of Π_1 and Π_2 respectively	does not apply?
for H_{β} line in the Lyman series of hydrogen	(a) H (b) Ha^+
atomic spectrum?	(a) Π (b) Π^{+}
(a) 3 and 5 (b) 2 and 3	(c) H^{2} (d) Li^{2}
(c) 1 and 3 (d) 2 and 3	AIIMS-2000
UP CPMT-2008	Ans. (c) : One of the limitations of Bohr's atomic
Ans (a): H line is formed when electron jumps from	model is that it does not explain the spectra of multi-
2^{rd} orbit in Lyman series	electron atoms all these species like H He ⁺ and Li ²⁺ are
	iso electronic and have only one electron Their
$n_1 = 1, n_2 = 3$	electronic configurations are same and so their spectra
24. What are the values of n_1 and n_2 respectively	is explained by Robr's stomic model But H^{-} has 2
for H _B line in the Lyman series of hydrogen	is explained by boil s atomic model but II has 2
atomic spectrum 44?	election.
(a) $3 \text{ and } 5$ (b) $2 \text{ and } 3$	28. Ratio of radii of second and first Bohr orbits of
(a) 5 and 5 (b) 2 and 5 $(c) 1 and 3 (d) 2 and 4$	H atom is
(c) 1 and 5 (d) 2 and 4 HDMED 2000	(a) 2 (b) 4
JIPMER-2009	(c) 3 (d) 5
Ans. (c) : H_B line is formed when electron jumps from	.IIPMER-2005
3 rd orbit to 1 st orbit in Lyman Series	
\therefore n ₁ = 1, n ₂ = 3	Ans. (b): According to Bonr's rule, $r \propto n$
(7^2)	Where r is radii and n is the number of orbit
25. Based on equation, $E = -2.178 \times 10^{-18} J \left \frac{L}{2} \right $	r_{1} $(2)^{2}$
$(\mathbf{n}^2)^2$	So, $\frac{1}{r} = \frac{r}{(1)^2} = 4$
certain conclusions are written. Which of them	I_2 (1)
is not correct?	Hence, ratio of radii is 4.
(a) Larger the value of n, the larger is the orbit	29. What will be the number of waves formed by a
radius	Bohr electron in one complete revolution in its
(b) Equation can be used to calculate the change	second orbit?
(b) Equation can be used to calculate the change	(a) Three (b) Two
(a) For $n=1$ the electron has a more negative	$(c) One \qquad (d) Zero$
(c) For $n-1$, the electron has a more negative	
energy than it does for n=6 which means that	JIPMER-2010
the electron is more loosely bound in the	Ans. (b) :
smallest allowed orbit.	circumference of orbit
(d) The negative sign in equation simply means	Number of waves = $\frac{1}{de}$ Broglie wavelength of electron
that the energy of electron bound to the	de – Bioglie wavelength of electron
nucleus is lower than it would be if the	h = h
electrons were at the infinite distance from	$\lambda - \frac{1}{mv}$
the nucleus.	$2\pi r$ 2π
AIIMS-2015	$\mu = \frac{2\pi i}{h} = \frac{2\pi}{h} \times mvr$
Ans (c): For n=1 the electron has a more negative	<u> </u>
energy than it does for $n=6$ which means that the	mv
electron is more loosely bound in the smallest elleword	nh 2π nh
orbit	$mvr = \frac{1}{2\pi}, \mu = \frac{1}{h} \times \frac{1}{2\pi}$
26. In the Bohr hydrogen atom, the electronic	μ^{-11}
transition emitting light of longest wave	For second orbit, $n = 2$
length is:	\therefore number of waves, $\mu = 2$
	44 VCT

45

Ans. (b):
$$r = \frac{a^2}{z} \times a_0$$

For He⁺, n = 2
 $Z = 2$
 $r_{uc} = 105.8 \text{ pm}$
 $f_{uc}^{-} = \frac{(2)^2}{2} \times a_0$
 $g_0 = \frac{05.8 \times 2}{2} = 52.9$
For Li²⁺, n = 3, Z = 3
 $r_{u,c} = \frac{a^2}{3} \times a_0$
 $r_{u,c} = \frac{a^2}{4} = \frac{a^2}{$

(a) 2.389×10^{-12} ergs (b) 0.239×10^{-10} ergs Ans. (b): Assume that atom to be hydrogen like, (c) 2.15×10^{-11} ergs (d) 0.1936×10^{-12} ergs Energy of nth energy level $E_n = \frac{-E_1}{2}$, where E_1 is energy of first energy level **NEET-1996** Ans. (d) : According to Bohr's model of atom $E_2 = \frac{-E_1}{2^2} = \frac{-E_1}{4} = \frac{-21.79 \times 10^{-12}}{4}$ $\Delta E = 2.18 \times 10^{-18} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) J$ $=-5.447 \times 10^{-12}$ erg per atom $=2.18 \times 10^{-18} \left(\frac{1}{2} - \frac{1}{9}\right) J$ The energy of an electron in second Bohr orbit 49. of hydrogen atom is- $=1.9 \times 10^{-18} \text{ J}$ (a) -5.44×10^{-19} eV (b) -5.44×10^{-19} cal $= 1.9 \times 10^{-18} \times 10^7 \text{ erg}$ (c) -5.44×10^{-19} kJ (d) -5.44×10^{-19} J $= 0.19 \times 10^{-10}$ erg AIIMS 26 May 2019 (Evening) 53. According to the Bohr theory, which of the **Ans. (d) :** For H atom , $E_x = \frac{-13.6z^2}{n^2} eV$ following transitions in the hydrogen stom will give the ratio the least energic photon? For second orbit, n = 2(a) n = 6 to n = 1(b) n = 5 to n = 4z = 1 (for hydrogen) (c) n = 6 to n = 5(d) n = 5 to n = 3 $\therefore E_2 = \frac{-13.6 \times (1)^2}{(2)^2} = -\frac{13.6}{4} eV$ **NEET-Mains 2011** Ans. (c) : We know that $\Delta E \propto \left| \frac{1}{n_1^2} - \frac{1}{n_2^2} \right|$, where $n_2 > n_1$ $= \frac{-13.6 \times 1.6 \times 10^{-19}}{4} \,\mathrm{J}$ $= -5.44 \times 10^{-19} \text{ J}$ \therefore n=6 to n=5 will give least energetic photon The ratio of the difference in energy between 54. The energy of second Bohr orbit of the hydrogen atom is -328 kJ mol⁻¹. hence the the first and the second Bohr orbit to that between the second and the third Bohr orbit is energy of fourth Bohr orbit would be (a) 1/2(b) 1/3 (a) -41 kj mol^{-1} (b) -82 kj mol^{-1} (c) 4/9 (c) -164 kj mol^{-1} (d) 27/5 (d) $-1312 \text{ kj mol}^{-1}$ **JIPMER-2012 NEET-2005 Ans. (d)** : $\Delta E = E_2 - E_1 = \frac{1312}{1^2} - \frac{1312}{2^2} = 1312 \left(\frac{3}{4}\right)$ **Ans. (b) :** Energy of electron in nth orbit of hydrogen $E_n = -\frac{E}{n^2}$ $= E_3 - E_2 = \frac{1312}{2^2} - \frac{1312}{3^2} = 1312 \left(\frac{5}{36}\right)$ Where E is a constant $E_2 = \frac{E}{2^2} = -328 \text{ kJ mol}^{-1}$ $\therefore E_2 - E_1: E_3 - E_2 = \frac{3}{4}: \frac{5}{36} = 27:5$ $E=4\times328 \text{ kJ mol}^{-1}$ 51. The Bohr orbit radius for the hydrogen atom $E_4 = \frac{-E}{4^2} = \frac{-4 \times 328}{16} \text{ kJ mol}^{-1}$ (n =1) is approximately 0.530Å. The radius for the first excited state (n=2) orbit is (in Å) $= -82 \text{ kJ mol}^{-1}$ (a) 4.77 (b) 1.06 The radius of which of the following orbit is 55. (c) 0.13 (d) 2.12 same as that of the first Bohr's orbit of **NEET-1998** hydrogen atom Ans. (d) : Radius of hydrogen atom = 0.53Å (b) $Li^{2+}(n=2)$ (d) $Be^{4+}(n=2)$ (a) $He^+(n=2)$ (c) $Li^{2+}(n=3)$ Number of excited state (n) = 2Atomic number of hydrogen atom (Z)=1 **UP CPMT-2013** We know that the Bohr radius. Ans. (d) : For H-like particles, the radii of the first $r = \frac{n^2}{Z} \times r_n = \frac{(2)^2}{1} \times 0.530$ stationary states are given by the expression $r_n = \frac{a_0 n^2}{7}$ $= 4 \times 0.530$ = 2.12Å For H-atom, n = 1 and Z = 1In a Bohr's model of an atom, when an electron 52. ÷. $r_n = a_0 = Bohr$ jumps from n = 1 to n = 3, how much energy radius = 52.9 pm. will be emitted or absorbed?

(a) For He¹ ion, n = 2 and Z = 2
:.
$$r_n = \frac{a_n(2)^2}{2} = 2a_n$$

(b) For Li² ion, n = 2 and Z = 3
:. $r_n = \frac{a_n(2)^2}{3} = \frac{4a_n}{3}$
(c) For Li² ion, n = 3 and Z = 3
:. $r_n = \frac{a_n(2)^2}{3} = 3a_n$
(d) For Be⁴: ion, n = 2 and Z = 4
:. $r_n = \frac{a_n(2)^2}{4} = a_n$ = Bohr radius = 52.9 pm
56. The energy of second Bohr orbit of hydrogen atom is 28 JJ mol⁻¹
(c) -164 JJ mol⁻¹
(d) -132 JJ Jatom
(a) $-113 \frac{6}{14} \text{ eV}$
(b) $-131 \frac{6}{14} \text{ eV}$
(c) $-1\frac{13}{6} \frac{6}{14} \text{ eV}$
(c) $-1\frac{13}{6} \frac{6}{14} \text{ eV}$
(c) $-\frac{13}{6} \frac{6}{2} \text{ V}$
(d) $-\frac{13.6}{n^2} \text{ eV}$
(e) $-\frac{13.6}{n^2} \text{ eV}$
(f) $-\frac{13.6}{n^2} \text{ eV}$
(g) -13.26 eV
(g) -13.6 eV
(g) $-\frac{13.6}{n^2} \text{ eV}$
(g) -13.6 eV
(g) $-\frac{13.6}{n^2} \text{ eV}$
(g) $-\frac{13.6}{n^2}$

(a) 1 2 4 3 (b) 4 3 1 2 (c) 3 1 2 4 (d) 4 3 2 1 JIPMER-2017	(a) $n=4$, $l=2$, $m_l=-2,0,+1,+2$, $m_s=-1/2$ (b) $n=5$, $l=3$, $m_l=-3,-2,-1,0,+1,+2,+3$, $m_s=+12$ (c) $n=4$, $l=3$, $m_l=-3,-2,-1,0,+1,+2,+3$, $m_s=-1/2$
Ans. (a) : The correct match is	(d) n=5, $l=2$, $m_l=-2,-1,+1,+2$, $m_s=+1/2$
$(A) \rightarrow Lyman \rightarrow (1)$ Ultraviolet	RE-NEET (UG) 06.06.2023 (Manipur)
(B) \rightarrow Paschen \rightarrow (2) Near infrared	Ans. (d) : For any set of Quantam number the following
$(C) \rightarrow Balmer \rightarrow (4)$ Visible	4 representation is used,
$(D) \rightarrow Pfund \rightarrow (3)$ Far infrared	n = Principal quantum number.
B2.5 Assertion and Reasons	l = Azimuthal quantum number.
62. Assertion: A spectral line will be seen for a $2P_x$	m= Magnetic quantum number.
$\rightarrow 2p_y$ transition.	S= Spin quantum number. For given value of n/r anges from 0 to $n-1$. It means $''$
Reason: Energy is released in the form of waves	depends on the value of n.
of light when the electron drops from $2p_x$ to $2p_y$	For given value of l, m ranges from $-l$ to l
(a) If both Assertion and Reason are true and the Reason is a correct explanation of the	spin quantum number is always = $+\frac{1}{2}$ and $-\frac{1}{2}$
Assertion (b) If both Assertion and Reason are true but	\Rightarrow n = 5, l = 2, m _l =-2,-1,+1,+2, m _s = $+\frac{1}{2}$
Reason is not a correct explanation of the Assertion	This is incorrect because, value of m_l is not completed. The correct set is
(d) If both Assertion and Reason are false AIIMS-1996	n = 5, l = 2, m _l =-2,-1, 0,+1,+2, m _s = $+\frac{1}{2}$ or $\frac{-1}{2}$.
Ans (d): In this case both assertion and reason are	65. Wave nature of electrons was demonstrated by
false. Both $2p_x$ and $2p_y$ orbitals have equal energy (2p)	(a) Schrödinger (b) de-Bröglie
orbitals are degenerate), there is no possibility of	(c) Davisson and Germer (d) Heisenberg
electron transition and hence, no energy is released and	I & K CFT_(1999)
thus, no spectral line will be observed.	Ans. (c) : (a) Schrodinger He put forward new model
B3. Dual Nature of Matter, De- Broglie's Heisenberg uncertainity Principle, Ψ and Ψ^2 , nodes, quantum numbers.	of atom by taking into account the de-Broglie concept of dual nature matter and Heisenberg's uncertainly principle. He described the motion of electron in threo dimensional space in the form of mathematical equation known as Schrödinger wave equation. (b) de-Broglie According to him, all the material
B3.1 Multiple Choice Question (MCQs)	character
63. Electromagnetic radiation has electric and	h
magnetic field components. These two	$\lambda = \frac{\Pi}{(\text{de - Broglie equation})}$
components	mv
(a) Have same wavelength (λ), same frequency	Water, λ = Wavelength
(v), same speed (c) and same amplitude	h = Planck's constant
(b) Have same wavelength (λ) , same frequency	m = mass of particle
(v), same speed (c) and different amplitude	v = v electry of particle
 (c) Have same wavelength (λ), same frequency (v), same amplitude and different speed 	to show the wave character of electrons. They observed when a beam of electrons is allowed to fall on the
(d) Have same frequency (v), same speed (c),	surface of nickel crystal are received on photographic
same amplitude and different wavelength (λ)	plate, a diffraction pattern similar to that of X-rays is
I elangita SUIE- 07.05.2024 Shift-I	obtained. Since, X-rays are electromagnetic rays, it
Ans. (a) : Electromagnetic radiation has electric and magnetic field components these components are have	means electrons have wave character also.
same wavelength (λ) same frequency (v) same speed (c)	(d) Heisenberg's uncertainty principle It states that
and same amplitude.	position and momentum of an electron cannot be measured accurately and simultaneously
64. Incorrect set of quantum numbers from the	\therefore Correct answer is (c) because wave nature of electron
following is	is demonstrated by Davission and Germer.