

Co-prime/Relatively prime number

A pair of numbers which H.C.F. (Highest common factor) is 1, is called co-prime number. Ex. (2, 3), (3, 4), (3, 5), (6, 7), (8, 11).

Twin-prime number

97 A pair of prime numbers in which the difference is two is called twin prime number. Ex. (3, 5), (5, 7), (11, 13).

The probability of 2

$$2^{1} - 2$$
 Last digit
The probability of 4
 $2^{2} - 4$ Last 2 digits
The probability of 8
 $2^{5} - 8$ Last 3 digits
The probability of 16
 $2^{2} - 16$ Last 4 digits

Divisibility of 3 and 9

■ **Divisibility of 3** –: If the sum of its all digits of a number is divisible by 3, then the number is divisible by 3.

Ex. 78141

$$\Rightarrow \frac{7+8+1+4+1}{3} = \frac{21}{3} = 7 \text{ (divisible)}$$

Hence, the number 78141 will be divisible by 3 **Ex. 246753**

$$\Rightarrow \frac{2+4+6+7+5+3}{3} = \frac{27}{3} = 9 \text{ (divisible)}$$

Hence, the number 246753 will be divisible by 3

■ Divisibility of 9 -: If the sum of its all digits of a number is divisible by 9, then the number is divisible by 9)

Ex. 764352

$$\Rightarrow \frac{7+6+4+3+5+2}{9} \quad \frac{27}{9} = 3 \text{ (divisible)}$$

Hence, the number 764352 will be divisible by 9

Ex. 432432

$$\Rightarrow \frac{4 \quad 3 \quad 2 \quad 4 \quad 3 \quad 2}{9} \quad \frac{18}{9} \quad 2 \text{ (divisible)}$$

Hence, the number 432432 will be divisible by 9

In divisibility of 3 and 9, we can use 'digital sum' in place of sum.

Digital sum –: It is just a position of remainder when it is divided by 9. That is, the sum of the digits should be 9. If it is more than 9 then add the digits together.

- Ex. 10 Digitialsum 1 0 1 11 Digitialsum 1 1 2
 - 84 Digitial sum 8 4 12 1 2 3
 - 786 ^{Digtital sum} 7 8 6 21 2 1 3
- Cut all digits whose sum is 9
- Digital sum of a perfect square number 0 or 9, 1, 4, 7

To calculate digital sum in fraction number, then always make digital sum 1 in denominator.

Denominator	Multiply	Digital sum
4	$4 \times 7 = 28$	1
7	$7 \times 4 = 28$	1
5	$5 \times 2 = 10$	1
2	$2 \times 5 = 10$	1
8	$8 \times 8 = 64$	1

Note– If the denominator of a number is 3, 6 or 9 then 1 can not be made for the digital sum.

- Divisibility of 5 -: If the digit at unit place of a number is either 0 or 5 then the number is divisible by 5.
 - Ex. 24520, 28735
- Divisibility of 10) -: If the digit at unit place of a number is 0 then the number is divisible by 10.
 Ex. 570120, 4567890
- Divisibility of 25 -: If the last two digits (ten's, unit's place) of a number either 25, 50, 75 or 00, then the number is divisible by 25.
 Ex. 8725, 68750, 931275, 8600
- Divisibility of 100 -: If the last two digits (ten's, unit's place) of a number 00, then the number is divisible by 100.
 Example 100.

Ex. 689200

■ **Divisibility of 7** –: If the number obtained by subtracting twice the unit digit from the remaining number excluding the unit digit, is divisible by 7, then that number will be divisible by 7. Repeat this process again and again for larger numbers.

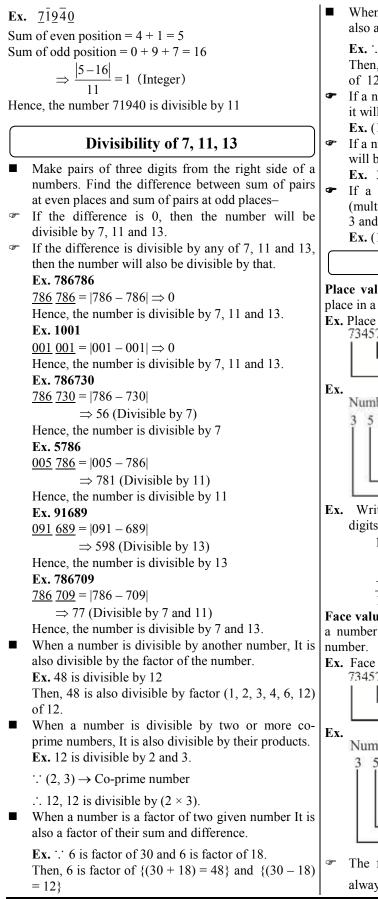
Integer

Ex. 343
$$\begin{array}{c} 343 \\ -62 \\ 28 \end{array} \xrightarrow{28} 28 = 28 \\ -82 \\$$

Hence, 343 is divisible by 7 Ex. 383838

$$\begin{array}{c}
38383 \\
\underline{16} \\ \underline{2} \\
3836 \\
7 \\
\underline{14} \\ 2 \\
382 \\
\underline{2} \\
4 \\
2 \\
\underline{37} \\ 8 \\
\underline{-16} \\
21 \Rightarrow \underline{21} \\
7 \\
= 3 \text{ Integen}
\end{array}$$

Hence, 383838 is divisible by 7

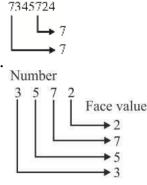

■ Divisibility of 11 -: If the difference of the sum of the digits in even position and the sum of the digits in odd position is zero or multiple of 11.

Ex. $\overline{352143}$ Sum of even position = 4 + 2 + 3 = 9

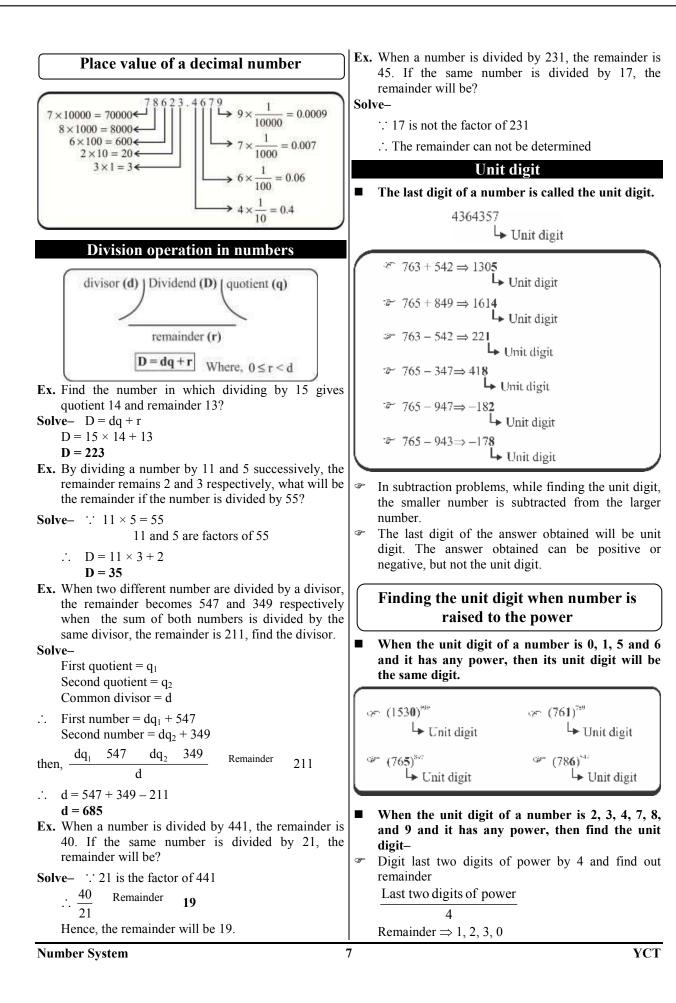
Sum of odd position = 3 + 1 + 5 = 9

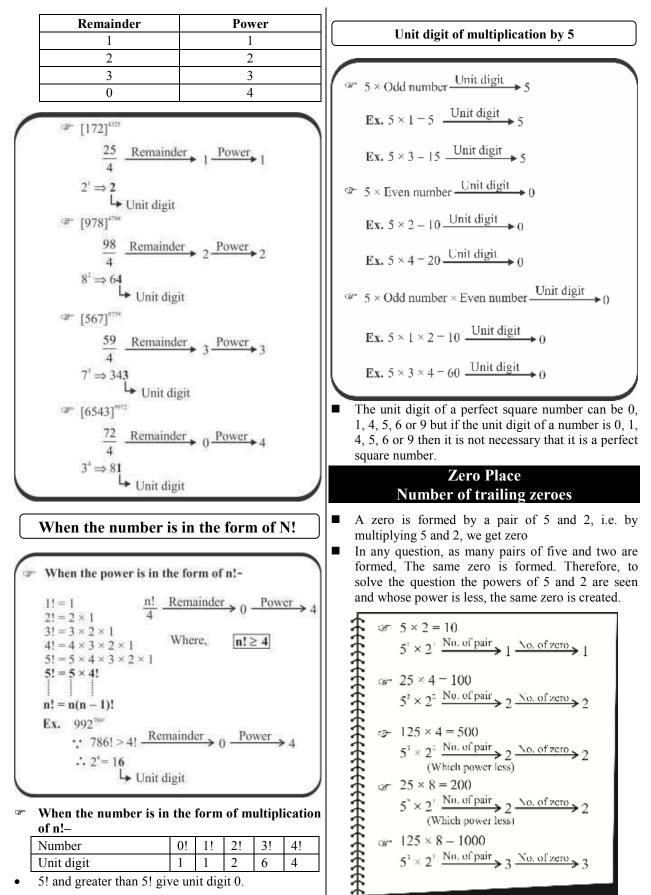
$$\Rightarrow |9-9|=0$$

Hence, the number 352143 is divisible by 11


When a number is a factor of another number, It is also a factor of any multiple of that number.
Ex. \therefore 4 is factor of 12 Then, 4 is also factor of multiple (12, 24, 36,) of 12.
If a number is formed by repeating a digit six times, it will be divisible by 3, 7, 11, 13, 37. Ex. (111111), (222222), (333333)
If a number is formed by repeating 2 digit 3 times, it will be divisible by 3, 7, 13, 37. Ex. 383838, 171717, 595959
If a number repeats the same digit 3, 6, 9, 12 (multiple of 3), then that number will be divisible by 3 and 37.
Ex. (111), (22222), (33333333), (444444444444)
Place value and face value
ice value –: The place value of a digit describes its ce in a given number.
ce value -: The place value of a digit describes its
ace value –: The place value of a digit describes its ce in a given number. Place value of 7 in number 7345724–
ce value -: The place value of a digit describes its ce in a given number. . Place value of 7 in number 7345724– 7345724
the value -: The place value of a digit describes its ce in a given number. . Place value of 7 in number 7345724– 7345724 $7 \times 100 - 700$
ice value -: The place value of a digit describes its ce in a given number. Place value of 7 in number $7345724 - 7345724$ 7345724 $7 \times 100 - 700$ $7 \times 1000000 = 7000000$
ace value -: The place value of a digit describes its ce in a given number. Place value of 7 in number 7345724- 7345724 $7 \times 100 - 700$ $7 \times 1000000 = 7000000$ Number $3 \ 5 \ 7 \ 2$ $1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$

Ex. Write 'Eleven thousand eleven hundred eleven' in digits-


110	11000				
11	00				
+	11				
12	111				
huo	• Ea				


Face value –: Face value is the value of the digit itself in a number. It does not depend upon its position in the number.

Ex. Face value of 7 in number 7345724–

The face value as well as place value of zero is always zero.

5! and greater than 5! give unit digit 0.

Ex. Multiplying $25 \times 16 \times 2 \times 5$ will be how many Ex. Multiplying all even numbers up to 80, How many zeros on the right side. zeros will come to right side. **Sol.** $25 \times 16 \times 2 \times 5$ Sol. $2 \times 4 \times 6 \times \dots \times 80$ \Rightarrow 5 × 5 × 2 × 2 × 2 × 2 × 5 $\frac{80}{10} = 8$ $\Rightarrow 5^3 \times 2^4$ $5^{3} \times 2^{4} \xrightarrow{\text{No. of pair}} 3 \xrightarrow{\text{No. of zero}} 3$ $\frac{8}{5} = 1$ 8+1=9 (Zeroes) (Which power less) **Ex.** Multiplying $300 \times 400 \times 24 \times 25$ will be how many zeros on right side. In multiplication of even number, first divide by 10, P Sol. $300 \times 400 \times 24 \times 25$ then by 5 \Rightarrow 3 × 4 × 24 × 25 × 10000 **Ex.** Multiplying all the numbers 51 to 100, How many $\Rightarrow 3 \times 4 \times 2 \times 2 \times 2 \times 3 \times 5 \times 5 \times 10000$ zeros will come to right side. $\Rightarrow 2^5 \times 5^2 \times 3^2 \times 10000$ **Sol.** 51 × 52 × 53 100 $2^{5} \times 5^{2} \times 3^{2} \times 10000$ $\Rightarrow [1 \times 2 \times 3 \dots 100] - [1 \times 2 \times 3 \dots 50]$ $\Rightarrow \frac{100}{5} = 20$ $\frac{50}{5} = 10$ (00)(0000)Number of zeroes = 6Ex. Multiplying all natural numbers from 1 to 60, how $\frac{20}{5} = 4$ $\frac{10}{5} = 2$ many zeros will come to the right side. **Sol.** $1 \times 2 \times 3 \times \dots \times 25 \times \dots \times 50 \times \dots \times 60$ [10 + 2 = 12] $\Rightarrow [20 + 4 = 24]$ $\frac{60}{5} = 12$ \Rightarrow [24] – [12] = 12 (Zeroes) $\frac{12}{5} = 2$ 12 + 2 = 14 (Zeroes) Ex. On solving 96! how many zeros will come to right side. **Sol.** $96! = 96 \times 95 \times 94 \times \dots \times 1$ In the given question it is clear that on multiplying, the power of five is less than that of 2. 96 19 5 Stop dividing when the quotient is less than 5. Ex. Multiplying all natural number from 1 to 100, How 19 19 + 3 = 22 (Zeroes) 3 many zeros will come to right side. **Sol.** $1 \times 2 \times 3 \times \dots \times 25 \times \dots \times 50 \times \dots \times 75 \times \dots \times 100$ Ex. On solving 9860!, How many zeros will come to $\Rightarrow \frac{100}{5} = 20$ right side. **Sol.** 9860! = 9860 × 9859 × 1 $\frac{100}{25} = 4$ 20 + 4 = 24 (Zeroes) $\therefore \frac{9860}{5} = 1972$ Ex. Multiplying all natural numbers from 1 to 500, how many zeros will come to right side. $\frac{1972}{5} = 394$ **Sol.** $1 \times 2 \times 3 \times \dots \times 25 \times \dots \times 50 \times \dots \times 100 \times \dots \times 500$ $\frac{500}{5} = 100$ $\frac{394}{5} = 78$ $\frac{100}{5} = 20$ $\frac{78}{5} = 15$ $\frac{20}{5} = 44$ 100 + 20 + 4 = 124 (Zeroes) $\frac{15}{5} = 3$ Ex. Multiplying all natural numbers 1 to 1000, How \Rightarrow 1972 + 394 + 78 + 15 + 3 = 2462 (Zeroes) many zeros will come to right side. **Ex.** $1 \times 2 \times 3 \times \dots \times 25 \times \dots \times 50 \times \dots \times 100 \times \dots \times 1000$ **Ex.** Multiplying all the odd numbers 1 to 100, how many $\frac{1000}{5} = 200$ zeros will come to right side. $\frac{200}{200} = 40$ "Number of zeroes is zero" The given question all the numbers are odd, no $\frac{40}{5} = 8$ number will be divisible by 2. Hence no digit of two will appear in the product of these numbers. Hence $\frac{8}{5} = 1$ not a single zero will be obtained at the end of the 200 + 40 + 8 = 249 (Zeroes) product of the given question.

	Ex. If 123! is divisible by 12^n then find the maximum
zeros will come to right side. Sol. $2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times \dots \times 10^{10}$	value of n : 123! 123 123 123 123 (1
97	Sol. $\frac{123!}{12^n} = \frac{123}{32^2} = \frac{123}{3} = 41 = \frac{123}{2} = 61$
$\Rightarrow 2 \times 5$	
$\Rightarrow 2^1 \times 5^1$	$\frac{123!}{3^{59} \ 2^{117}} \qquad \frac{41}{3} \ 13 \qquad \frac{61}{2} \ 30$
= Number of zero = 1	
Ex. How many zeroes on the right end of the product of $(1 + 2) = 5 = 7$	$\frac{123!}{3^{59} 2^{2} 2^{58} 2^{1}} = \frac{13}{3} 4 = \frac{30}{2} 15$
$(1 \times 3 \times 5 \times 7 \times \dots \times 99) \times 8.$ Sol. $(1 \times 3 \times 5 \times 7 \times \dots \times 99) \times 8$	
$(5 \times 15 \times 25 \times 35 \times \dots \times 95) \times 8$	$\frac{123!}{3^{59} \ 4^{58} \ 2^1} \qquad \frac{4}{3} \ 1 \qquad \frac{15}{2} \ 7$
{For pair of 5 and 2}	3^{39} 4^{30} 2^{1} 3 2
$\Rightarrow 5^{12} \times 2^3$	Hence $n = 58$ Sum = 59 $\frac{7}{2}$ 3
$5^{2} \times 2^{3} \xrightarrow{\text{No. of pair}} 3 \xrightarrow{\text{No. of zero}} 3$	
(Which power less)	$\frac{3}{2}$ 1
Ex. Find the number of zeroes. $(2^{123}, 2^{122}, 2^{121}, 2^{121}, 2^{120}, 2^{119})$	_
$(3^{123} - 3^{122} - 3^{121}) (2^{121} - 2^{120} - 2^{119})$ Sol. $(3^{123} - 3^{122} - 3^{121}) (2^{121} - 2^{120} - 2^{119})$	Sum = 117
$3^{121} (3^2 - 3^1 - 3^0) 2^{119} (2^2 - 2^1 - 2^0)$	Number of factors
$3^{121}(9-3-1)2119(4-2-1)$	
$3^{121} (5) 2^{119} (1) 2^{119} \times 3^{121} \times 5^{1}$	Factors
	Factors are positive integers that can divide a number exactly.
$2^{119} \times 5^{1} \times 3^{121}$	Ex. Factors of 12
↓	1, 2, 3, 4, 6, 12
No. of pair $1 \rightarrow no.$ of zero -1	Multiple of 12
Ex. If 100! divisible by 3^n then find the maximum value of n :	12, 24, 36, 48,
Sol. $100! = 100 \times 99 \times 98 \times \dots \times 1$	How to find factors
100	
$\frac{100}{3}$ 33	Writing any numbers as its prime factors. Ex. $12 = 2^2 \times 3^1$
33 11	$\mathbf{EX.} 12 = 2 \times 3$ $72 = 2^3 \times 3^2$
$\frac{33}{3}$ 11	$90 = 2^1 \times 3^2 \times 5^1$
$\frac{11}{2}$ 3	
$\begin{array}{ccc} \frac{11}{3} & 3\\ \frac{3}{3} & 1 \end{array}$	
$\frac{3}{2}$ 1	$\mathbf{m} = \mathbf{x}^{a} \cdot \mathbf{y}^{b} \cdot \mathbf{z}^{c}$
-	Where,
$\Rightarrow 33 + 11 + 3 + 1 = 48$	$m \Rightarrow Composite number$
Hence $n = 48$ Ex. If 122! is divisible by 6^n then find the maximum	$a, b, c \Rightarrow Natural number$
value of n :	x, y, $z \Rightarrow$ Prime number
1221 1221	Even \longrightarrow Odd
Sol. $\frac{122}{6}$ $\frac{122}{2}$	
To make a pair of 2 and 3, the power of 3 will be	
reduced.	The number of total factors-: $(a + 1) (b + 1) (c + 1)$
$\frac{122}{40}$	The number of odd factors-: $(b + 1) (c + 1)$
3	The number of even factors $-: a (b + 1) (c + 1)$
$\frac{40}{3}$ 13	The sum of all factors-:
	$(x^{0} + x^{1} + x^{2} \dots x^{a}) \times (y^{0} + y^{1} + y^{2} \dots y^{b}) \times (z^{0} + y^{1} + y^{2} \dots y^{b})$
$\begin{array}{ccc} \frac{13}{3} & 4\\ \frac{4}{3} & 1 \end{array}$	$z^{1} + z^{2} \dots z^{c})$ The sum of odd factors-: $(y^{0} + y^{1} + \dots y^{b}) \times (z^{0} + y^{c})$
3 4	The sum of odd factors-: $(y^{\circ} + y^{\circ} +, y^{\circ}) \times (z^{\circ} + z^{1} + z^{2} z^{\circ})$
$\frac{4}{2}$ 1	The sum of even factors-: $(x^1 + x^2 + x^3 \dots x^a) \times$
-	
$\Rightarrow 40 + 13 + 4 + 1 = 58$ Hence n = 58	The product of factors $-:$ (x.y.z) ^{Total no. of factors/2}
	r · · · · · · · · · · · · · · · · · · ·

sum of factors Sum of reciprocal of factors of n) = n Sum of factors Average No. of factors For the factors of 12 $12 = 2^2 \times 3^1$ ■ The number of total factors- $12 = 2^2_1 \times 3^1_1$ $(2+1) \times (1+1)$ $3 \times 2 = 6$ The number of odd factors- $12 = 2^2 \times 3^1$ (1+1) = 2The number of even factors- $12 = 2^2 \times 3^1$ $\frac{2}{4} \times (2^{1}_{4} \times 3^{1}_{4})$ Even $(1 + 1) \times (1 + 1)$ $(2) \times (2) = 4$ The sum of factors- $12 = 2^2 \times 3^1$ $= (2^{0} + 2^{1} + 2^{2}) (3^{0} + 3^{1})$ =(1+2+4)(1+3) $= 7 \times 4 \Rightarrow 28$ The sum of odd factors- $12 = 2^2 \times 3^1$ $\Rightarrow (3^0 + 3^1)$ $1+3 \Rightarrow 4$ For the sum of odd factors, leave out even factors. ■ The sum of even factors- $12 = 2^2 \times 3^1$ $\Rightarrow (2^1 + 2^2) (3^0 + 3^1)$ \Rightarrow (2 + 4) (1 + 3) $\Rightarrow 6 \times 4$ $\Rightarrow 24$ For sum of even factors, don't start from 2° . ■ The product of all factors- $12 = 2^2 \times 3^1$ Product of all factors of $N = N^{Total no. of factors/2}$ $= 12^{\overline{2}}$ $= 12^{3}$ $(2+1) \times (1+1)$ $3 \times 2 = 6$ How many factors of 864 which are multiple of 6? **Sol.** $864 = 2^5 \times 3^3$ $864 = 2 \times 3 [2^4 \times 3^2]$ {For the multiple of 6} $= 6 \left[2_{|}^{4} \times 3_{|}^{2} \right]$ (4 ± 1) (2 ± 1) $\Rightarrow 5 \times 3$ $\Rightarrow 15$

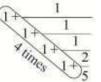
How many factors of $2^7 \times 3^8 \times 5^9 \times 7^{10}$ which are completely square? **Sol.** $2^7 \times 3^8 \times 5^9 \times 7^{10}$ $\Rightarrow [(2^2)^3 \ 2 \times (3^2)^4 \times (5^2)^4 \ 5 \times (7^2)^5]$ {For the complete square } $= 2 \times 5 \left[(2^{2})^{1} \times (3^{2})^{4} \times (5^{2})^{4} \right] \times (7^{2})^{5}$ $(3+1)\times(4+1)\times(4+1)\times(5+1)$ \Rightarrow No. of factors = $4 \times 5 \times 5 \times 6 \Rightarrow 600$ How many factors of $2^6 \times 3^8 \times 5^{10} \times 7^{12}$ which are completely cube? **Sol.** $2^6 \times 3^8 \times 5^{10} \times 7^{12}$ $\Rightarrow (2^3)^2 \times (3^3)^2 \times (5^3)^3 \times 5 \times (7^3)^3 \times$ $\Rightarrow \underbrace{(2,1)}_{3^2} \times \underbrace{(2^3)}_{1^2} \times \underbrace{(3^3)}_{1^2} \times \underbrace{(5^3)}_{1^3} \times \underbrace{(7^3)}_{1^3}$ $(2+1)\times(2+1)\times(3+1)\times(4+1)$ $\Rightarrow 3 \times 3 \times 4 \times 5 \Rightarrow 180$ How many factors of $2^6 \times 3^{15} \times 5^{35} \times 7^{42}$ which are completely square as well as completely cube? **Sol.** $2^6 \times 3^{15} \times 5^{35} \times 7^{42}$ Power for square = 2Power for cube = 3LCM = 6 $\Rightarrow [(2^6)^1 \times (3^6)^2 \times 3^3 \times (5^6)^5 \times 5^5 \times (7^6)^7]$ $\Rightarrow \overline{3}^{3} \times 5^{5} [(2^{\circ})]^{1} \times (3^{\circ})^{2}] \times (5^{\circ})^{5}] \times (7^{\circ})^{7}]$ $(1+1)\times(2+1)\times(5+1)\times(7+1)$ \Rightarrow $\Rightarrow [2 \times 3 \times 6 \times 8] \Rightarrow [6 \times 6 \times 8]$ $\Rightarrow [36 \times 8]$ $\Rightarrow 288$ Find the sum of all factors of $2^5 \times 3^6 \times 5^4$ that are completely square. **Sol.** $2^5 \times 3^6 \times 5^4$ $\Rightarrow [2^{0} + 2^{2} + 2^{4}] [3^{0} + 3^{2} + 3^{4} + 3^{6}] [5^{0} + 5^{2} + 5^{4}]$ \Rightarrow [1 + 4 + 16] [1 + 9 + 81 + 729] [1 + 25 + 625] \Rightarrow [21] × [820] × [651] \Rightarrow 11210220 Find the sum of all factors of $2^5 \times 3^6 \times 5^4$ that are completely cube. **Sol.** $2^5 \times 3^6 \times 5^4$ $\Rightarrow [2^{0} + 2^{3}] [3^{0} + 3^{3} + 3^{6}] [5^{0} + 5^{3}]$ $\Rightarrow [1+8] [1+24+729] [1+125]$ \Rightarrow [9] [757] [126] \Rightarrow 858438 Find the sum of reciprocal of factors of 90. **Sol.** Sum of reciprocal of factors of n) = $\frac{\text{sum of factors}}{\text{sum of factors}}$ $90 = 21 \times 32 \times 51$ $\frac{2^{0} \ 2^{1} \ 3^{0} \ 3^{1} \ 3^{2} \ 5^{0} \ 5^{1}}{90}$ $\Rightarrow \frac{1 \quad 2 \quad 1 \quad 3 \quad 9 \quad 1 \quad 5}{90}$ $\Rightarrow \frac{3 \quad 13 \quad 6}{90} \Rightarrow \frac{39 \quad 6}{90}$ $\Rightarrow \frac{234}{90} \Rightarrow 2.6$

Find the average of all the factors of 144. Find the total number of prime factors of 144. **Sol.** $144 = 2^4 \times 3^2$ Sum of factors Sol. Average No. of prime factors $= 4 + 2 \Longrightarrow 6$ No. of factors Find the total number of prime factor of $2^5 \times 3^6$ For sum of factors- $\times 7^{12}$. $144 = 2^4 \times 3^2$ **Sol.** $2^5 \times 3^6 \times 7^{12}$ $\Rightarrow [(2^{0} + 2^{1} + 2^{2} + 2^{3} + 2^{4}) (3^{0} + 3^{1} + 3^{2})]$ No. of prime factors = $5 + 6 + 12 \Rightarrow 23$ $\Rightarrow [(1+2+4+8+16)(1+3+9)]$ Find the total number of prime factor of $6^6 \times$ \Rightarrow [(31) (13)] \Rightarrow 403 $10^{10} \times 35^3$. For no. of factors-**Sol.** $6^6 \times 10^{10} \times 35^3$ \Rightarrow (4 + 1) (2 + 1) \Rightarrow 5 × 3 $\Rightarrow (2 \times 3)^6 \times (2 \times 5)^{10} \times (5 \times 7)^3$ $\Rightarrow 15$ $\Rightarrow 2^6 \times 3^6 \times 2^{10} \times 5^{10} \times 5^3 \times 7^3$ Average = $\frac{403}{15} \Rightarrow 26.86$ No. of prime factors = (6+6+10+10++3) $\Rightarrow (12 + 20 + 6)$ Only a perfect square number has odd number of factors. $\Rightarrow (18 + 20) \Rightarrow 38$ ٥r Find sum of all the prime factors of $2^3 \times 3^4 \times 5^6$. If a number has odd number of factors that means number **Sol.** $2^3 \times 3^4 \times 5^6$ is a perfect square. \Rightarrow (2 + 2 + 3 times) + (3 + 3 + 4 times) +(5+5+.....6 times) Square of a prime number has only 3 factors. $\Rightarrow (2 \times 3) + (3 \times 4) + (5 \times 6)$ $\Rightarrow 6 + 12 + 30 \Rightarrow 48$ The total number of 2 digit no's which have only **BODMAS Rule 3** factors? BODMAS **Sol.** : Square of a prime number has only 3 factor. → Bracket $(5^{\circ}) = 25 \xrightarrow{\text{Factors}} 1, 5, 25$ of $(7^2) = 49 \xrightarrow{\text{Factors}} 1, 7, 49$ Division 5, 7 \rightarrow Prime number Multiplication Hence, 2, two digit no. will have 3 factors. Addition The total number of 3 digit no's which have only Subtraction **3 factors?** P Solve the brackets from inside to outside. Sol. Types of brackets : $(1D^2 = 12) \xrightarrow{\text{Factors}} 1, 11, 121$ Line/Bar bracket \rightarrow – \geq $(13)^2 = 169 \xrightarrow{\text{Factors}} 1.13,169$ ≻ Circular/Small/Open bracket \rightarrow () Curly/Braces bracket $\rightarrow \{ \}$ ≻ $(17)^2 = 289 \xrightarrow{\text{Factors}} 1, 17, 289$ Square/Closed bracket \rightarrow [] \triangleright $(19)^2 = 361 \xrightarrow{\text{Factors}} 1, 19, 361$ To solve : $(23)^2 = 529 \xrightarrow{\text{Factors}} 1, 23, 529$ $222 - \frac{1}{3}$ of $42 + 56 = \overline{8+9} + 108$ $(29)^2 = 841 \xrightarrow{\text{Factors}} 1, 29, 841$ **Sol.** $222 - \frac{1}{3}$ of $42 + 56 \overline{8+9} + 108$ $(31)^2 = 961 \xrightarrow{\text{Factors}} 1, 31, 961$ Hence, 7, three digit no. will have 3 factors. $222 - \frac{1}{2}$ of 42 + 56 + 17 + 108How to find prime factor $\Rightarrow 222 \quad \frac{1}{3} \text{ of } 42 \quad 39 \quad 108$ $m = x^a . y^b . z^c$ $\Rightarrow 222 \quad \frac{1}{3} \text{ of } 81 \quad 108$ Where, $m \Rightarrow$ Composite number $x, y, z \Rightarrow$ Prime number $\Rightarrow 222 \quad \frac{1}{2} \text{ of } 81 \quad 108$ a, b, c ⇒ Natural number Number of prime factors = a + b + c Sum of prime factors = ax + by + cz $\Rightarrow 222 - [27 + 108]$ $\Rightarrow 222 - 135 \Rightarrow 87$

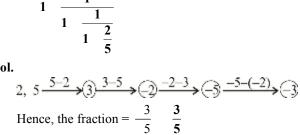
■ To solve : **Sol.** $\frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} + \frac{1}{72} + \frac{1}{90}$ a b c a b c $\Rightarrow \frac{1}{45} \frac{1}{56} \frac{1}{67} \frac{1}{78} \frac{1}{89} \frac{1}{910}$ Sol. a b c a $\overline{b c}$ $\Rightarrow \frac{1}{4} \quad \frac{1}{5} \quad \frac{1}{5} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{7} \quad \frac{1}{7} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{9} \quad \frac{1}{9} \quad \frac{1}{10}$ \Rightarrow a b c a b c a b c a b c \Rightarrow $=\frac{1}{4}\quad\frac{1}{10}$ a b b a \Rightarrow $=\frac{5}{20}\frac{2}{20}$ $\frac{30}{20}$ a b b a \Rightarrow \Rightarrow a a ■ Find the value : \Rightarrow 0 $\frac{1}{1 \times 4} + \frac{1}{4 \times 7} + \frac{1}{7 \times 10} + \frac{1}{10 \times 13} + \frac{1}{13 \times 16} = ?$ ■ To solve : $19170 \div 54 \div 5$ **Sol.** $\frac{1}{1 \times 4} + \frac{1}{4 \times 7} + \frac{1}{7 \times 10} + \frac{1}{10 \times 13} + \frac{1}{13 \times 16}$ **Sol.** 19170 ÷ 54 ÷ 5 \Rightarrow 19170 $\frac{1}{54}$ $\frac{1}{5}$ $\Rightarrow \frac{1}{3} \frac{3}{1 \ 4} \frac{3}{4 \ 7} \frac{3}{7 \ 10} \frac{3}{10 \ 13} \frac{3}{13 \ 16}$ $\Rightarrow \frac{355}{5}$ $\Rightarrow \frac{1}{3} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{7} \frac{1}{7} \frac{7}{7} \frac{1}{10} \frac{1}{10} \frac{1}{13} \frac{1}{13} \frac{1}{16}$ \Rightarrow 71 ■ To solve : $\Rightarrow \frac{1}{3} \frac{1}{1} \frac{1}{16}$ $\frac{9}{13} \div \frac{18}{26} \div \frac{90}{52}$ $\Rightarrow \frac{1}{3} \frac{16}{16} \frac{1}{3} \frac{1}{3} \frac{15}{16} \frac{5}{16}$ **Sol.** $\frac{9}{13} \div \frac{18}{26} \div \frac{90}{52}$ ■ Find the value : $\Rightarrow \frac{9}{13} \times \frac{26}{28} \times \frac{52}{90}$ $\frac{2}{15} + \frac{4}{45} + \frac{7}{144} + \frac{9}{400} = ?$ $\Rightarrow \frac{26}{45}$ **Sol.** $\frac{2}{15} + \frac{4}{45} + \frac{7}{144} + \frac{9}{400}$ ■ To solve : $5.8 + (7.4 \div 3.7 \times 5) - 6 \times 2 \div 2.5$ $\Rightarrow \frac{2}{3 \ 5} \ \frac{4}{5 \ 9} \ \frac{7}{9 \ 16} \ \frac{9}{16 \ 25}$ **Sol.** $5.8 + (7.4 \div 3.7 \times 5) - 6 \times 2 \div 2.5$ $\Rightarrow \ \frac{1}{3} \ \frac{1}{5} \ \frac{1}{5} \ \frac{1}{9} \ \frac{1}{9} \ \frac{1}{16} \ \frac{1}{16} \ \frac{1}{25}$ $\Rightarrow 5.8 + (2 \times 5) - 6 \times \frac{2}{25}$ $\frac{\frac{1}{3}}{\frac{1}{25}}
\frac{\frac{1}{25}}{\frac{25}{75}}
\frac{22}{75}$ \Rightarrow 5.8 + 10 - 4.8 $\Rightarrow 15.8 - 4.8$ \Rightarrow 11 **Question based on series** ■ Find the value : \succ $\frac{1}{a \times b}$ $\frac{1}{b a}$ $\frac{1}{a}$ $\frac{1}{b}$ $\frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2} + \frac{9}{4^2 \cdot 5^2} \dots \frac{19}{9^2 \cdot 10^2}$ $\succ \quad \frac{1}{a \times b \times c} \quad \frac{1}{c} \quad \frac{1}{ab} \quad \frac{1}{bc}$ **Sol.** $\frac{3}{1^2 2^2} + \frac{5}{2^2 3^2} + \frac{7}{3^2 4^2} + \frac{9}{4^2 5^2} \dots \frac{19}{9^2 10^2}$ $\frac{3}{1 \ 4} \ \frac{5}{4 \ 9} \ \frac{7}{9 \ 16} \ \frac{9}{16 \ 25} \dots \frac{19}{81 \ 100}$ $\frac{1}{a \times b \times c \times d} \quad \frac{1}{d a} \quad \frac{1}{abc} \quad \frac{1}{bcd}$ $\Rightarrow \frac{1}{1} \quad \frac{1}{4} \quad \frac{1}{4} \quad \frac{1}{9} \quad \frac{1}{9} \quad \frac{1}{16} \quad \frac{1}{16} \quad \frac{1}{25} \dots \frac{1}{81} \quad \frac{1}{100}$ > $1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + \dots + n(n+1)$ <u>n n 1 n 2</u> 3 $\frac{1}{1}$ $\frac{1}{100}$ \Rightarrow ■ Find the value : $\frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} + \frac{1}{72} + \frac{1}{90}$ 99 100

■ Find the value : $\Rightarrow 16^{\frac{1}{4}}$ $1 \quad \frac{1}{2} \quad 1 \quad \frac{1}{3} \quad 1 \quad \frac{1}{4} \quad \dots \quad 1 \quad \frac{1}{n} = ?$ $2^4 \frac{1}{4}$ 2 **Sol.** 1 $\frac{1}{2}$ 1 $\frac{1}{3}$ 1 $\frac{1}{4}$ 1 $\frac{1}{n}$ Find the value : $\frac{1.2.4 + 2.4.8 + 3.6.12 + \dots}{1.3.9 + 2.6.18 + 3.9.27 + \dots}^{\frac{1}{3}}$ $\frac{3}{2} + \frac{4}{3} + \frac{5}{4} + \frac{(n-1)}{n}$ Sol. $\frac{1.2.4 + 2.4.8 + 3.6.12 + \dots}{1.3.9 + 2.6.18 + 3.9.27 + \dots}^{\frac{1}{3}}$ ■ Find the value : $\Rightarrow \frac{8}{27}^{\frac{1}{3}}$ $1 \frac{1}{2} 1 \frac{1}{3} 1 \frac{1}{4} \dots 1 \frac{1}{n} = ?$ $=\frac{2}{2}$ **Sol.** 1 $\frac{1}{2}$ 1 $\frac{1}{3}$ 1 $\frac{1}{4}$ 1 $\frac{1}{n}$ $\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} = \frac{(n-1)}{n}$ **Exponential Series** $\Rightarrow \frac{1}{n}$ $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots 2.71828$ ■ Find the value : ■ Find the value : 1 $\frac{1}{2^2}$ 1 $\frac{1}{4^2}$ 1 $\frac{1}{5^2}$ 1 $\frac{1}{11^2}$ 1 $\frac{1}{12^2}$ $\frac{1}{1.2.3} + \frac{1}{1.2.3.4} + \frac{1}{1.2.3.4.5} + \dots$ **Sol.** 1 $\frac{1}{3^2}$ 1 $\frac{1}{4^2}$ 1 $\frac{1}{5^2}$ 1 $\frac{1}{11^2}$ 1 $\frac{1}{12^2}$ **Sol.** $\frac{1}{3!}$ $\frac{1}{4!}$ $\frac{1}{5!}$ $a^2 - b^2 = (a + b) (a - b)$ $1 \frac{1}{1!} \frac{1}{2!} \frac{1}{3!} \frac{1}{4!} \dots 1 \frac{1}{1!} \frac{1}{2!}$ $1 + \frac{1}{3}$ 1 $\frac{1}{3}$ 1 $+ \frac{1}{4}$ 1 $\frac{1}{4}$ = (2.71828) - (1 + 1 + 0.5)..... $1 + \frac{1}{11}$ 1 $\frac{1}{11}$ 1 $\frac{1}{11}$ 1 $\frac{1}{12}$ 1 $\frac{1}{12}$ = 0.21828Find the value : \Rightarrow 1+ $\frac{1}{2}$ 1 $\frac{1}{4}$ 1+ $\frac{1}{5}$ 1 $\frac{1}{12}$ × $\frac{8! \times 7! \times 6!}{9! \times 5! \times 3!} = ?$ $1 \frac{1}{3} 1 \frac{1}{4} 1 \frac{1}{5} \dots 1 \frac{1}{12}$ Sol. $\frac{8! \ 7 \ 6 \ 5! \ 6 \ 5 \ 4 \ 3!}{9 \ 8! \ 5! \ 3!}$ $\begin{bmatrix} \frac{4}{3} \times \frac{5}{4} \times \frac{6}{5} & \frac{13}{12} \end{bmatrix} \begin{bmatrix} \frac{2}{3} \times \frac{3}{4} \times \frac{11}{12} \end{bmatrix}$ $\Rightarrow 28 \times 20$ \Rightarrow 560 Find the value in the form of 6! : $\Rightarrow \frac{13}{3} \frac{2}{12}$ 8! - 7! - 6! **Sol.** 8! - 7! - 6! $\Rightarrow \frac{13}{3} \frac{1}{6}$ $\Rightarrow [8 \times 7 \times 6! - 7 \times 6! - 6]$ $\Rightarrow \frac{13}{7}$ $\Rightarrow 6! [8 \times 7 - 7 - 1]$ $\Rightarrow 6! [56-8]$ 18 \Rightarrow 6![48] ■ Find the value : If a * b = 2(a + b) then find the value 1 * [2 * 3] $2 \times 8 + 8 \times 32 + 18 \times 72 + \dots \frac{1}{4} = 2$ **Sol.** 1 * [2 * 3] 1+16+81+..... \Rightarrow 1 * [2 (2 + 3)] Sol. $\frac{2 \times 8 + 8 \times 32 + 18 \times 72 + \dots}{1 + 16 + 81 + \dots} \stackrel{\frac{1}{4}}{\longrightarrow}$ \Rightarrow 1 * [2 × 5] \Rightarrow 1 * 10 $\Rightarrow 2[1+10]$ $\Rightarrow 16 \frac{1}{1} \frac{16}{16} \frac{81}{81} \dots$ $\Rightarrow 2 \times 11$ = 22

If x * y = 3x + 2y, then find the value 2 * 3 + 3 * 4 Find the value : Sol. 2*3+3*4x ý $\Rightarrow (3 \times 2 + 2 \times 3) + (3 \times 3 + 2 \times 4)$ \Rightarrow (6+6)+(9+8) = 12 + 17 = **29** If *(a)* is an operation such that 2a यदि > b $\mathbf{a} (\mathbf{a}) \mathbf{b} = \mathbf{a} + \mathbf{b} \operatorname{dr} \mathbf{a} < \mathbf{b}$ a^2 यदि = b then, $\frac{5@7 + 4@4}{35@5 15@11 3} = ?$ To solve : **Sol.** $\frac{5}{3} \frac{7}{5^2} \frac{4}{2} \frac{4}{15} \frac{3}{3}$ $1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{2}{1 + \frac{2}{2}}}}}$ $\Rightarrow \frac{12 \ 16}{75 \ 30 \ 3}$ $\Rightarrow \frac{28}{75 \quad 33}$ $\Rightarrow \frac{28}{42} = \frac{2}{3}$ ■ Find the value : denominator (5). $999 \frac{995}{999} \times 999$ **Sol.** 999 $\frac{995}{999} \times 999$ that number. $\Rightarrow 999 + \frac{995}{999} 999$ $\Rightarrow \quad 1000 \quad 1 \quad \frac{995}{999} \quad 999$ 1000 1 999 995 999 \Rightarrow 999 $\Rightarrow 999000 - 999 + 995$ = 999000 - 4 = 998996■ Find the value : $999\frac{1}{9} + 999\frac{2}{7} + 999\frac{3}{7} + 999\frac{4}{7} + 999\frac{5}{7} + 999\frac{6}{7}$ ■ To solve : **Sol.** $999\frac{1}{9} + 999\frac{2}{7} + 999\frac{3}{7} + 999\frac{4}{7} + 999\frac{5}{7} + 999\frac{6}{7}$ \Rightarrow 999 6 $\frac{1}{7}$ $\frac{2}{7}$ $\frac{3}{7}$ $\frac{4}{7}$ $\frac{5}{7}$ $\frac{6}{7}$ Sol. \Rightarrow 1000 1 6 $\frac{21}{-}$ = 6000 - 6 + 3= 6000 - 3 = 5997


 $3\frac{1}{2} + 33\frac{1}{2} + 333\frac{1}{2} + 3333\frac{1}{2} + 3333\frac{1}{2} + 33333\frac{1}{2}$ **Sol.** $3\frac{1}{3} + 33\frac{1}{3} + 333\frac{1}{3} + 3333\frac{1}{3} + 3333\frac{1}{3} + 33333\frac{1}{3}$ \Rightarrow (3 + 33 + 333 + 3333 + 33333) + $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ = 37035 + $\frac{5}{3}$ \Rightarrow 37035 $1\frac{2}{3}$ = 37036 $\frac{2}{2} \Rightarrow$ 37036 $\frac{2}{3}$

Continuous fraction


Sol. Step-1 : Write the last fraction $\frac{2}{5}$ first

Step-2 : Write the numerator (2) first then the

Step-3 : Next number will appear as many times as one is given in the question and to find the next number, immediately add the previous number to

$$2, 5 \xrightarrow{5+2} (7) \xrightarrow{7+5} (2) \xrightarrow{12+7} (19) \xrightarrow{19+12} (3)$$
$$\Rightarrow \frac{31}{19}$$

To solve : $1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}}$ $\mathbf{Sol.}\,1,\;4\xrightarrow{\times3+1}33\xrightarrow{\times2+4}30\xrightarrow{\times1\pm13}43$ Hence, the fraction = $\frac{43}{30}$ To solve : $1 \quad \frac{1}{2 \quad \frac{1}{3 \quad \frac{1}{4}}}$ $\mathbf{Sol.} 1, \ 4 \xrightarrow{\times 3 - 1} (1) \xrightarrow{\times 2 - 4} (18) \xrightarrow{\times 1 - 11} (7)$ ■ Find the value a+ b + c : $\frac{1}{a + \frac{1}{b + \frac{1}{a}}} = \frac{13}{29}$ Sol. a + b + c = 2 + 4 + 3 $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{9}$ Find the value **a**+ **b** + **c** : $\frac{1}{a - \frac{1}{b + \frac{1}{c + \frac{1}{2}}}} = \frac{16}{23}$ Sol. $16) \frac{23}{16} (1 = a)$ $7) \frac{16}{14} (2 = b)$ 14 $16) \frac{23}{14} (1 = a)$ $\frac{1}{14} \frac{2}{14} \frac{7}{16} (3 = c)$ $12 \frac{2}{14} \frac{7}{16} (3 = c)$ \therefore a + b + c = 1 + 2 + 3 \Rightarrow 6 **Recurring decimal :** $0.\overline{a} = \frac{a}{9}$ $\succ 0.\overline{ab} = \frac{ab}{99}$ $0.\overline{abc} = \frac{abc}{999} \qquad > 0.a\overline{b} = \frac{ab}{90} ab$ $0.ab\overline{c} = \frac{abc \quad ab}{900} \qquad \gg \ 0.a\overline{bc} = \frac{abc \quad a}{990}$

Find the value $8.3\overline{1} + 0.\overline{6} + 0.00\overline{2} = ?$ Sol. Without bar = 2With bar = 1, 1, 1 LCM = 1Without bar With bar 8.31 1 1 1 1 0.66 6 6 6 6 6 0.00 2 2 2 2 8.97 9 999 $\Rightarrow 8.97\overline{9}$ Find the value : $22.\overline{4} + 11.5\overline{67}$ $33.5\overline{9} = ?$ Sol. Without bar = 1 With bar = 1, 2, 1 LCM = 2Without bar With bar - ↓ 22.4 4 4 4 4 111.5 67 67 -33.5 99 99 0.4 12 12 **Surds and Indies** Surds: Va $\sqrt{\rightarrow}$ Radical $n \rightarrow Order of surd$ $a \rightarrow Radicand$ ľ Entire surds : \sqrt{a} , $(\sqrt{a} + \sqrt{b})$ Mixed surds : a√b ☞ Like & Similar surds : $x\sqrt{b}$, $y\sqrt{b}$, $z\sqrt{b}$ Unlike & unsimilar surds : $x\sqrt{b}$, $y\sqrt{c}$, $z\sqrt{d}$ · Conjugate surds : $\sqrt{7} + \sqrt{5} \xrightarrow{\text{Conjugate}} \sqrt{7} - \sqrt{5}$ $\sqrt{4} - \sqrt{3} \xrightarrow{\text{Conjugate}} \sqrt{4} + \sqrt{3}$ Product of conjugate surds is a rational number. **Ouadratic** surds : $a + \sqrt{b}$, $\sqrt{a} + \sqrt{b} + c$ Equation involving surds-Ŧ If the surds, a \sqrt{b} c \sqrt{d} a c b d then, d

Hence, the rational part of one side is equal to the rational part of other side and the irrational part of one side is equal to the irrational part of other side.

Rationalization-	
Surds	Rationalization factor
\sqrt{a} \sqrt{b}	\sqrt{a} \sqrt{b}
\sqrt{a} \sqrt{b}	\sqrt{a} \sqrt{b}
a √b	a √b
a √b	a √b
$a^{2/3}$ $b^{2/3}$ $a^{1/3}b^{1/3}$	$a^{1/3}$ $b^{1/3}$
$a^{2/3} b^{2/3} a^{1/3} b^{1/3}$	a ^{1/3} b ^{1/3}

Law of surds and indices

 \blacktriangleright a × a × a × m term = a^m $a \times a \times a \times \dots n$ term = a^n $\blacktriangleright \quad (a \times a \times \dots m \text{ term}) \times (a \times a \times \dots n \text{ term})$ $= a^m \times a^n$ $\Rightarrow a^{m+n}$ $\frac{a^{m}}{a^{n}} \Rightarrow \boxed{a^{m-n}}$ a a am terms \geq a a an terms If a > 0, $a \neq 1$ and m, n, p are integers then, $a^m \times a^n = a^{m+n}$ ۶ $a^m \times a^n \times a^p = a^{m + n + p}$ \triangleright a^{m n} a^{mn} \triangleright $\frac{a^m}{a^n}$ a^{m n} ⋟ $a^0 = 1$ $a^{-m} = -\frac{1}{2}$ a^{m^n} \geq а a^{m^{n^p}} a^m \triangleright а ab " $a^n b^n$ ⋟ $abc^{n} a^{n}b^{n}c^{n}$ \geq > If a^n y then $a = y^{1/n}$ If $a^x = b^y$ then $a = b^{y/x}$ If $a^x = b^y$ then $a^{1/y} = b^{1/x}$ \succ $x^n = a \Rightarrow x$ $\sqrt[n]{a}$, $(a \in R, a \ge 0)$ > If n is an odd positive integer and a > 0 then, ⁿ√a ⁿ√a If m, $n \ge 2$, and a, b > 0 then– $\succ \sqrt[n]{a} a^{1/n}$ $\sqrt[n]{a}^{m} a^{m/n}$ \triangleright ⁿ√a.ⁿ√b ⁿ√ab ab 1/n \triangleright $\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ $\sqrt[n]{\frac{a}{b}}$ ≻ $\sqrt[n]{m/a}$ $a^{1/m}$ $a^{1/m}$ $a^{1/mn}$ \triangleright

$$\begin{array}{l} & \sqrt[n]{a} . \sqrt[n]{a} & a^{1/n} . a^{1/m} \\ \Rightarrow & a^{1/n - 1/m} \\ & \Rightarrow & a^{\frac{m - n}{mn}} & \sqrt[m]{m} \sqrt{a^{m - n}} \\ & \Rightarrow & \frac{\sqrt[n]{a}}{\sqrt[m]{a}} & \frac{a^{1/n}}{a^{1/m}} & a^{\frac{1}{n} - \frac{1}{m}} & a^{\frac{m - n}{mn}} \\ & \Rightarrow & \sqrt[m]{m} \sqrt{a^{m - n}} \\ & \Rightarrow & \sqrt[n]{\sqrt[n]{x} \sqrt{a^{-p}}} & a^{r} & a^{\frac{pqr}{xyz}} \end{array}$$

Find square root

 $11 + 2\sqrt{30}$ Sol.

$$\sqrt{11 + 2\sqrt{30}} \\
 5 + 6 5 \times 6
 \sqrt{\sqrt{5}^{2} \sqrt{6}^{2} \sqrt{6}^{2} 2\sqrt{5} \sqrt{6}} \\
 \sqrt{\sqrt{5} \sqrt{6}^{2}} \\
 \sqrt{\sqrt{5} \sqrt{6}^{2}} \\
 \sqrt{5} + \sqrt{6}$$

■ Find the square root- $13 + 2\sqrt{30}$

Sol.

$$\frac{\sqrt{13} + 2\sqrt{30}}{\sqrt{10} + 3}
\frac{\sqrt{10} + 3}{\sqrt{\sqrt{10} + \sqrt{3}}^{2}}
\sqrt{10} + \sqrt{3}$$

■ Find the square root-17 $2\sqrt{30}$

Sol.

$$\sqrt{17 - 2\sqrt{30}}$$

$$15 + 2 \quad 15 \times 2$$

$$\sqrt{\sqrt{15}} \quad \sqrt{2}^{2}$$

$$\sqrt{15} \quad \sqrt{2}$$

Find the square root-
8
$$2\sqrt{7}$$
Sol.
Find the square root-
1 $\sqrt{\sqrt{7}} - \sqrt{1}^{2}$
 $\sqrt{7} - \sqrt{5}^{2}$
 $\sqrt{7} - \sqrt{5}$

	Some important results
	If, $x = \sqrt{a\sqrt{a\sqrt{a\sqrt{a}}}}$
	then, $\mathbf{x} = \mathbf{a}$
۶	If, $x = \sqrt{a\sqrt{a\sqrt{an times}}}$
	then, $\mathbf{x} = \mathbf{a}^{\frac{2^n}{2^n}}$
۶	If, $x = \sqrt[n]{a \times \sqrt[n]{a \times \sqrt[n]{a \dots \dots$
	then, $\mathbf{x} = \sqrt[n]{\sqrt{a}}$
۶	If, $x = \sqrt[n]{a} \sqrt[n]{a} \sqrt[n]{a} \dots$
	then, $\mathbf{x} = \sqrt[n]{1}{\mathbf{x}}$
۶	If, $x = \sqrt{a + b\sqrt{a + b\sqrt{a + \dots}}}$
	then, $\mathbf{x} = \frac{\sqrt{4\mathbf{a} + \mathbf{b}^2} + \mathbf{b}}{2}$
۶	If, $x = \sqrt{a + \sqrt{a}} \sqrt{a}$
	then, $\mathbf{x} = \frac{\sqrt{4a+1}+1}{2}$
۶	If, $x = \sqrt{a} b\sqrt{a} b\sqrt{a}$
	then, $\mathbf{x} = \frac{\sqrt{4\mathbf{a} + \mathbf{b}^2} \mathbf{b}}{2}$
۶	If, $x = \sqrt{a} \sqrt{a} \sqrt{a} \sqrt{a}$
	then, $\mathbf{x} = \frac{\sqrt{4a+1} 1}{2}$
۶	If, $x = \sqrt{a + b\sqrt{a} b\sqrt{a + b\sqrt{a} \dots \dots}}$
	then, $\mathbf{x} = \frac{\sqrt{4\mathbf{a} + 3\mathbf{b}^2}}{2}$
	If, $x = \sqrt{a + \sqrt{a} - \sqrt{a + \sqrt{a} - \dots}}$
	then, $\mathbf{x} = \frac{\sqrt{4\mathbf{a} + 3} + 1}{2}$
۶	If, x $\sqrt{a} b\sqrt{a} b\sqrt{a} b\sqrt{a} b\sqrt{a} \dots$
	then, $\mathbf{x} = \frac{\sqrt{4\mathbf{a} + 3\mathbf{b}^2 + \mathbf{b}}}{2}$
۶	If, x $\sqrt{a} \sqrt{a} \sqrt{a} \sqrt{a} \sqrt{a} \sqrt{a}$
	then, $\mathbf{x} = \frac{\sqrt{4\mathbf{a} + 3\mathbf{a} + 1\mathbf{a}}}{2\mathbf{a}}$

LCM and H.C.F.

Difference between multiple and factor

S. N.	Multiple	Factor		
1.	The multiples are defined as the numbers obtained when multiplied by other numbers	Factors are defined as the exact divisors of the given number		
2.	The number of multiples is infinite	The number of factors is finite		
3.	The operation used to find the multiples is a multiplication.	The operation used to find the factors is a division		
4.	The outcome of the multiples should be greater than or equal to the given number	The outcome of the factors should be less than or equal to the given number.		

L.C.M.

L.C.M. : Least common multiple

- s> L.C.M. is the smallest number which is completely divided by two or more numbers.
- so The LCM of x, y and z is completely divisible by x, y, and z.

■ L.C.M. of 12 and 16–:

12 Multiple = 12, 24, 36, **48**, 60, 72, 84, **96**, 16 Multiple = 16, 32, **48**, 64, 80, **96**, 112, 128, Common multiple = 48, 96 Least common multiple = 48

L.C.M. = 48

Methods of finding L.C.M.

In this method, divide the given numbers by common prime number until the remainder is 1.

Ex. Finding the L.C.M. of 9, 12 and 15 Sol.

2 3 3

5

$$\frac{9, 12, 15}{9, 6, 15} \\ \overline{9, 3, 15} \\ \overline{3, 1, 5} \\ \overline{1, 1, 5} \\ \overline{1, 1, 1}$$
(L.C.M.) $= 2 \times 2 \times 3 \times 3 \times 5$
 $= 180$

Prime Factor Method-: First express the given numbers in the form of prime factors. The product of factors with highest power will be the L.C.M.

Ex. Finding the L.C.M. of 9, 12 and 15 Sol. $9 = 3 \times 3$ $12 = 2 \times 2 \times 3$ $15 = 3 \times 5$ L.C.M. $= 2 \times 2 \times 3 \times 3 \times 5$ = 180

Types of questions

>	Find the smallest no. which is exactly divisible by x, y, z.	L.C.M. of (x, y, z)
A	Find the smallest no. which when divided by x, y, z leaves remainder 't' in each case.	L.C.M. of (x, y, z) + r
A	Find the smallest no. which when divided by x, y, z leaves remainder a, b, c respectively.	L.C.M. of (x, y, z) - k Where, k = (x - a) = (y - b) = (z - c)

H.C.F.

H.C.F. : Highest common factor (Greatest common divider)

- # II.C.F is the largest number, which can divide two or more numbers completely.
- The IICF of x, y and z will divide x, y, and z completely.

H.C.F. of 12 and 16-:

12 Factor = 1, 2, 3, 4, 6, 12 16 Factor = 1, 2, 4, 8, 16

Common factor = 1, 2, 4 Highest common factor = 4

H, C, F, = 4

Methods of finding H.C.F.

- Division Method–Find the H.C.F. of two number x and y. (Where, y > x)
 On dividing y by x remainder is r₁. Then on dividing x by r₁ the remainder is r₂. Then r₁ is divided by r₂. This process will be repeated until the remainder
 - becomes zero. Last divisor will be the H.C.F. of x and y.

Ex. Finding the H.C.F. of 12 and 16 : Sol. 12, 16 of H.C.F.

 $\begin{array}{r} 12 \\ 12 \\ 12 \\ \hline 4 \\ 12 \\ 12 \\ \hline 4 \\ 12 \\ \hline 0 \end{array}$

$$H.C.F. = 4$$

Ex. Finding the H.C.F. of 25, 35 and 40 : Sol. 25, 35 and 40 of H.C.F.

Prime factor method-: First, write each given numbers in the form of product of their prime factors. The product of common factors with least power will be the H.C.F. of given numbers.

Ex. Finding the H.C.F. of 12 and 16 :

Sol. 12, 16 of H.C.F.

 $12 = 2 \times 2 \times 3 \Longrightarrow 2^2 \times 3$ $16 = 2 \times 2 \times 2 \times 2 \Longrightarrow 2^4$

H.C.F. =
$$2^2 \Rightarrow 4$$

Ex. Finding the H.C.F. of 25, 35 and 40 :

Sol. 25, 35 and 40 of H.C.F.

 $25 = 5 \times 5 \Longrightarrow 5^{2}$ $35 = 5 \times 7 \Longrightarrow 5^{1} \times 7^{1}$ $40 = 2 \times 2 \times 2 \times 5 \Longrightarrow 2^{3} \times 5^{1}$ H.C.F. = 5

Difference method-

Let, H.C.F. of two numbers = h then, numbers = hx, hy

Where, x, $y \rightarrow \text{Co-prime}$

Difference = hx - hy

$$\Rightarrow$$
 h (x – y)

- F (x y) = 1 → H.C.F. is a difference between numbers.

H.C.F. of two numbers never greater than difference of these numbers.

Hence, H.C.F. can be either difference of these number or factor of difference.

Ex. Finding the H.C.F. of 30 and 45 :

Sol. 30, 45 of H.C.F.

30, 45

difference = $45 - 30 \Rightarrow 15$

 $H.C.F. = 15 \quad \text{or} \quad \text{factor of } 15$

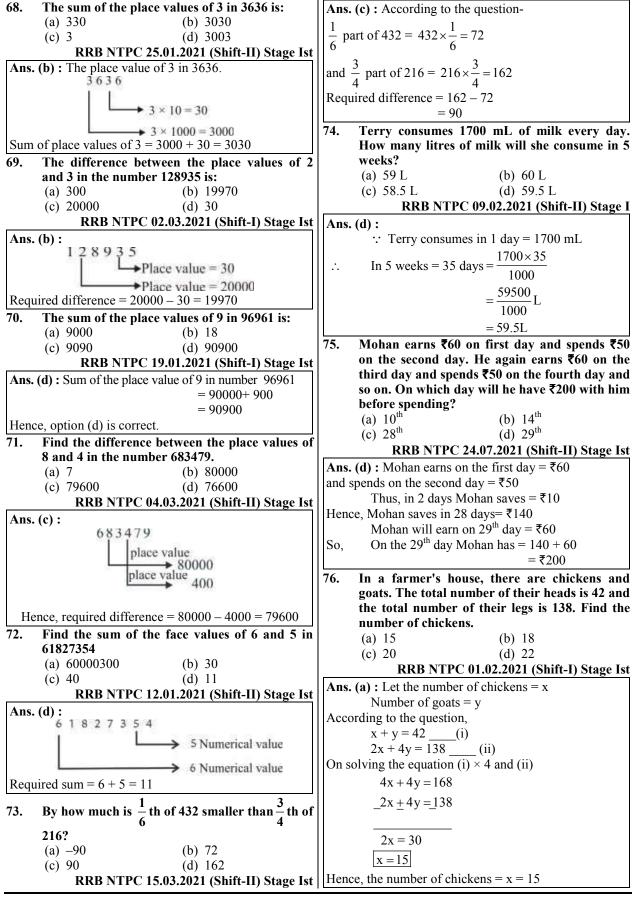
 \therefore 30 and 45 are completely divisible by 15

Hence, H.C.F. = 15

Types of questions	L.C.M. and H.C.F. of indices
 ➢ Find the largest no. which can divide x, y, z. exactly ➢ Find the largest no. which can H.C.F. of (x, y, z) 	 When the base of the given numbers are same, then the number with highest power will be the LCM of the given numbers. Ex. 7², 7⁴, 7⁹ of L.C.M. = 7⁹
 a find the largest ho, which can divide x, y, z and leaves same (x− y), (y − remainder in each case. b Find the largest no. which can H.C.F. of 	When the base is not same and there is no common factors in the base, then the product of given numbers will be the LCM.
divide x, y, z and leaves $(x-r)$, $(y-r)$, remainder 'r' in each case. $(z-r)$	 Ex. 2², 3⁵, 5⁴ of L.C.M. = 2² × 3⁵ × 5⁴ ■ When the base of the given number are same, then the number with least power will be the H.C.F. of
Find the largest number which can divide x, y, z and leaves remainder a, b, c respectively. (x - a), (y - b), (z - c)	given numbers. Ex. 7^2 , 7^4 , 7^9 of H.C.F. = 7^2
 If two numbers are divided by their difference or factors of difference then leaves same remainder. A two digit number can divide 225 and 147, leaves same remainder in each case. How many such two digit numbers would be possible? 	 When the base is not same and there is no common factor in the base, then the required H.C.F. of given numbers will be 1. Ex. 2², 3⁵, 5⁴ of H.C.F. = 1
Sol. 225 147	$(p^{1CF(p,b)} + 1) = (p^{1CF(p,b)} + 1)$
difference factor (two digit) 78 78 78 78 26 13	Where, power (a, b) should be odd multiple of HCF. $(p^{4}-1), (p^{5}-1)$
 Total numbers = 4 The two numbers 875 and 2272 are divided by a three digit number. Then there is same remainder left in each case what will be the sum of the digits of such three digits? 	H.Ć.F. L.Č.M. (p ^{FCFfa, b)} – 1) (p ^{LCM(a,b)} – 1) Questions asked in previous Exams
Sol. 875 2272	1. Which of the following numbers is divisible completely by both 9 and 11 ? (a) 277218 (b) 10098
Difference \rightarrow 1397 11 × 127 \rightarrow Prime number	(c) 12345 (d) 181998 RRB NTPC (Stage-II) 17/06/2022 (Shift-II)
HCF – 127	Ans. (b) : Divisibility rule of 9 - When the sum of the digits of a number is divisible by 9 then the number is also divisible by 9.
Sum of digits $-1 + 2 + 7 \Rightarrow 10$ Relation between L.C.M. and H.C.F.	Divisibility rule of 11 - When the difference between the sum of the digit in
First no. \times second no. = L.C.M \times H.C.F. If H.C.F. = h	even and odd place of a number is 0 (zero) or a multiple of 11, then the number will also be divisible by 11. From option (b),
First no. = hx Second no. = hy	1 + 0 + 0 + 9 + 8 = 18 i.e. 18 is divisible by 9
then, L.C.M. = hxy	\therefore Option (d) us divisible by 9. And
L.C.M. and H.C.F. of fraction	10098 = (9+0) - (8+0+1) = 9-9 = 0
	Hence option (b) 10098, is divisible by both 9 and 11.
• L.C.M. of fraction= $\frac{\text{L.C.M. of numerator}}{\text{H.C.F. of denominator}}$	2. Which of the following numbers is NOT divisible by 9 ?
■ L.C.M. of fraction=	2. Which of the following numbers is NOT

Ans. (d): Divisibility rule of 9 : A number whose sum **Divisibility rule of 8–** If the last three digit of the number are divisible by 8, then the number will be of its digit is exactly divisible by 9 then the number is divisible by 8. always divisible by 9. Divisibility rule of 9- If the sum of the all digits of a from options given number is divisible by 9, then number will be (a) $49104 \rightarrow 4 + 9 + 1 + 0 + 4 = 18$, divisible by 9. divisible by 9. (b) $77832 \rightarrow 7 + 7 + 8 + 3 + 2 = 27$, divisible by 9. (c) $35253 \rightarrow 3 + 5 + 2 + 5 + 3 = 18$, divisible by 9. (d) $45390 \rightarrow 4 + 5 + 3 + 9 + 0 = 21$, not divisible by 9. 3. Which of the following number is NOT divisible by 8? (a) 35792 (b) 35112 88p554085k6 (c) 35412 (d) 35552 On putting, k = 3RRB NTPC (Stage-II) 15/06/2022 (Shift-III) $\frac{536}{8} = 67$ (Completely divisible by 8) Ans. (c) : Divisibility rule of 8- If the last three digits of a number are divisible by 8, then the number is On putting p = 2and completely divisible by 8. 8 + 8 + 2 + 5 + 5 + 4 + 0 + 8 + 5 + 3 + 6from the given options -0 (a) 35 <u>792</u> $\frac{792}{8} = 99$ (Completely divisible) $\frac{54}{9} = 6$ (Completely divisible) Then, (3k + 2p)(b) 35 112 = 3 × 3 + 2 × 2 $\frac{112}{8} = 14$ (Completely divisible) = 13Find the remainder, when $171 \times 172 \times 173$ is 6. (c) 35 412 divided by 17. $\frac{412}{8} = 51.5$ (Not completely divisible) (a) 9 (b) 8 (c) 6 (d) 7 (d) 35 552 RRB Group-D 29/08/2022 (Shift-III) $\frac{552}{8} = 69$ (Completely divisible) Ans. (c) : According to the question, 171×172×173 Hence, option (c) is not divisible by 8. 17 If the 7 digit number 504x5y3 is divisible by 11, 4. $(170+1) \times (170+2)(170+3)$ then one of the values of the sum of x and y is: 17 (a) 11 (b) 5 $1 \times 2 \times 3$ (c) 17 (d) 7 17 RRB NTPC (Stage-II) -13/06/2022 (Shift-II) **Ans. (c) :** Given, 504x5y3 17 Divisibility rule of 11:- If the difference of the sum of digits at even place and at odd place is zero or divisible \Rightarrow 6 (Remainder) by 11 then the given number will be divisible by 11. Hence option (c) is correct. 504x5v3 7. When a number is divided by a divisor, the (0 + x + y) - (5 + 4 + 5 + 3)remainder is 16. When twice the original x + y - 17 = 0number is divided by the same divisor, the x + y = 17remainder is 3. Find the value of that divisor Hence, Sum of x + y = 17(a) 29 (b) 51 (d) 53 (c) 23 If 11-digit number 88p554085k6, $k \neq p$, is 5. **RRB Group-D 30/08/2022 (Shift-II)** divisible by 72, then what is the value of (3k +2p)? Ans. (a) : Let, the original number be N, the divisor be (a) 12 (b) 7 d, quotient be q. N = dq + 16(c) 13 (d) 23 RRB NTPC (Stage-II) -13/06/2022 (Shift-II) $\therefore 2 N = 2(dq + 16)$ Ans. (c) : Given, 2 N = 2dq + 32When (2dq + 32) is divided d then remainder is 3. 88p554085k6 Where, $k \neq p$ 2dq is completely divisible by d, then Note- The number which is divisible by 72 is also \therefore Required number = 32 - 3 = 29divisible by 8 and 9.

8. If the number 6484y6 is divisible by 8, then find	
the least value of y? $(x) = 2$	to each odd digit in the number 4723361, what
(a) 3 (b) 4 (c) 1 (d) 7	will be the sum of the largest and the smallest digits thus formed?
RRB Group-D 02/09/2022 (Shift-II)	(a) 12 (b) 10 (c) 11 (d) 9
Ans. (c) : Divisibility rule of 8 - If the last three digits	$\frac{(a)}{12} = \frac{(b)}{10} = \frac{(b)}{11} = \frac{(a)}{10} = ($
of the given number are divisible by 8 then it will be	Ans. (b) : Given, 4723361
divisible by 8.	According to the question,
On putting Least value of $y = 1$	New number obtained by dividing each even digit by 2
Number = 648416	and adding 2 to each odd digit.
Divided by $416 - 52$	4(7+2)(2)(2+2)(2+2)(3+2)(1+2)
Divided by $=$ $\frac{416}{8} = 52$	$\left \frac{4}{2}(7+2),\left(\frac{2}{2}\right)(3+2)(3+2),\frac{6}{2}(1+2)\Rightarrow 2915533\right $
9. If the 15 digit number 4a5124356789734 is	Hence Sum of largest digit and smallest digit = $9 + 1$
divisible by 9, then the value of "a" is	= 10
(a) 1 (b) 4	12. If 3 is added to each odd digit and 1 is
(c) 5 (d) 3	subtracted from each even digit in the number
RRB GROUP-D – 22/09/2022 (Shift-III)	42514563, what will be difference between the
Ans. (b) : Divisibility rule of 9 - If the sum of the digits	highest and lowest digits thus formed?
are divisible by 9, then the number is divisible by 9.	(a) 2 (b) 7
Number - 4a5124356789734	(c) 5 (d) 8
On divided by 9 -	RRB GROUP-D – 17/08/2022 (Shift-I)
$\frac{4 + a + 5 + 1 + 2 + 4 + 3 + 5 + 6 + 7 + 8 + 9 + 7 + 3 + 4}{2}$	Ans. (b) : Given number = 42514563
9	According to the question, the number obtained by
$=\frac{a+68}{9} \Rightarrow \text{On putting } a=4 \Rightarrow \frac{4+68}{9} = \frac{72}{9} = 8$	adding 3 to the odd digit and subtracting 1 from the even digit of the number is $= 31843856$
	Hence required difference $= 8 - 1 = 7$
Hence the value of $a = 4$	13. If 3 is added to each odd digit and 2 is
10. If the 8 digit number 3x5479y4 is divisible by	subtracted from each even digit in the number
88 and the 8 digit number 425139z2 is divisible	6452851, what will be difference between the
by 9, then find the maximum possible value of $(3x + 2y - z)$.	largest and smallest digits thus formed?
(a) 33 (b) 37	(a) 8 (b) 6
(c) 25 (d) 35	(c) 4 (d) 2
RRB Group-D 09/09/2022 (Shift-III)	RRB GROUP-D – 27/09/2022 (Shift-I)
Ans. (a) : On dividing 3x5479y4 by 88 i.e. 8 and 11	Ans. (a) : The number obtained by adding 3 to the odd
Divisibility rule of 8 - If the last three digits of the given	digit and subtracting 2 from the even digit of the
number are divisible by 8, then it will be divisible by 8.	number is 6 4 5 2 8 5 1
Maximum possible value = 8	-2 -2 +3 -2 -2 +3 +3
$\frac{984}{8} = 123$	$\frac{2}{4} \frac{2}{2} \frac{8}{8} \frac{2}{6} \frac{2}{8} \frac{2}{8} \frac{1}{8} \frac{1}$
0	Hence the difference of largest and smallest digits
Divisibility rule of 11 - The given number can only be	
	= 8-0
completely divided by 11 if the difference of the sum of	= 8-0 = 8
digits at odd place and sum of digits at even place in a	= 8
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11.	= 8
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$	= 8 14. If 1 is subtracted from each odd digit and 1 is
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$ $17+x \sim 23 = 0$	 = 8 14. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$ $17+x \sim 23 = 0$ x = 6	 = 8 14. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from the right?
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$ $17+x \sim 23 = 0$ x = 6 On dividing 425139z2 by 9	 = 8 14. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from the right? (a) 6 (b) 8
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$ $17+x \sim 23 = 0$ x = 6 On dividing 425139z2 by 9 Divisibility rule of 9 :- If the sum of the digits of a	 = 8 14. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from the right? (a) 6 (b) 8 (c) 10 (d) 5
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$ $17+x \sim 23 = 0$ x = 6 On dividing 425139z2 by 9	= 8 14. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from the right? (a) 6 (b) 8 (c) 10 (d) 5 RRB GROUP-D - 18/09/2022 (Shift-II)
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$ $17+x \sim 23 = 0$ x = 6 On dividing 425139z2 by 9 Divisibility rule of 9 :- If the sum of the digits of a number are divisible by 9, then the number is divisible by 9.	 = 8 14. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from the right? (a) 6 (b) 8 (c) 10 (d) 5 RRB GROUP-D - 18/09/2022 (Shift-II) Ans. (c) : The number obtained by adding 1 to the even
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$ $17+x \sim 23 = 0$ x = 6 On dividing 425139z2 by 9 Divisibility rule of 9 :- If the sum of the digits of a number are divisible by 9, then the number is divisible	 = 8 14. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from the right? (a) 6 (b) 8 (c) 10 (d) 5 RRB GROUP-D – 18/09/2022 (Shift-II) Ans. (c) : The number obtained by adding 1 to the even digit and subtracting 1 from the odd digit of the number
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$ $17+x \sim 23 = 0$ x = 6 On dividing 425139z2 by 9 Divisibility rule of 9 :- If the sum of the digits of a number are divisible by 9, then the number is divisible by 9. $\frac{4+2+5+1+3+9+z+2}{9} = \frac{26+z}{9}$	 = 8 14. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from the right? (a) 6 (b) 8 (c) 10 (d) 5 RRB GROUP-D - 18/09/2022 (Shift-II) Ans. (c) : The number obtained by adding 1 to the even digit and subtracting 1 from the odd digit of the number is 92379654
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$ $17+x \sim 23 = 0$ x = 6 On dividing 425139z2 by 9 Divisibility rule of 9 :- If the sum of the digits of a number are divisible by 9, then the number is divisible by 9. $\frac{4+2+5+1+3+9+z+2}{9} = \frac{26+z}{9}$ On putting $z = 1$	= 8 14. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from the right? (a) 6 (b) 8 (c) 10 (d) 5 RRB GROUP-D - 18/09/2022 (Shift-II) Ans. (c) : The number obtained by adding 1 to the even digit and subtracting 1 from the odd digit of the number is 92379654 9 2 3 7 9 6 5 4 -1+1-1-1+1-1+1
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$ $17+x \sim 23 = 0$ x = 6 On dividing 425139z2 by 9 Divisibility rule of 9 :- If the sum of the digits of a number are divisible by 9, then the number is divisible by 9. $\frac{4+2+5+1+3+9+z+2}{9} = \frac{26+z}{9}$ On putting $z = 1$	 = 8 14. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from the right? (a) 6 (b) 8 (c) 10 (d) 5 RRB GROUP-D - 18/09/2022 (Shift-II) Ans. (c) : The number obtained by adding 1 to the even digit and subtracting 1 from the odd digit of the number
digits at odd place and sum of digits at even place in a number is 0 or multiple of 11. $3x547984 \Rightarrow (4+9+4+x) \sim (8+7+5+3)$ $17+x \sim 23 = 0$ x = 6 On dividing 425139z2 by 9 Divisibility rule of 9 :- If the sum of the digits of a number are divisible by 9, then the number is divisible by 9. $\frac{4+2+5+1+3+9+z+2}{9} = \frac{26+z}{9}$	= 8 14. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number 92379654, what will be the sum of the digits which are second from the left and third from the right? (a) 6 (b) 8 (c) 10 (d) 5 RRB GROUP-D - 18/09/2022 (Shift-II) Ans. (c) : The number obtained by adding 1 to the even digit and subtracting 1 from the odd digit of the number is 92379654 9 2 3 7 9 6 5 4 -1+1-1-1+1-1+1


15. The sum of the digits of a two-digit number is	RRB NTPC 04.02.2021 (Shift-I) Stage Ist
12. The number obtained by interchanging its	Ans. (d) : Largest 5 digit number = 99999
digits exceeds the given number by 18. The	Smallest 5 digit number = 10000
number is:	The smallest five digit number that can be formed from
(a) 76 (b) 67 (c) 27 (d) 57	the digits 2, 3, 4, 0, 5 is $= 20345$
	19. Find sum of the smallest and the largest
RRB GROUP-D – 16/09/2022 (Shift-II)	positive numbers of 6 digits which contains
Ans. (d) : Let the two digit number be $10x + y$	only digits 0, 4, 6 and each of these digits
Number obtained by interchanging the digits = $10y + x$	appears at least once.
According to the question, x + y = 12 (i)	(a) 666444 (b) 604604
And, On reversing the digits, (1)	(c) 6666666 (d) 1066646
(10y + x) - (10x + y) = 18	RRB NTPC 09.02.2021 (Shift-II) Stage Ist
y - x = 2 (ii)	Ans. (d) : According to the question-
On adding eq. (i) and (ii)	\therefore Smallest 6 digit no = 400006
x + y = 12	Greatest 6 digit no = 666640
-	\therefore Required sum = 400006 + 666640 = 1066646
-x + y = 2	20. How many times is digit 3 comes in counting
2y = 14	from 301 to 399?
y = 7	(a) 119 (b) 11
x = 5	(c) 121 (d) 21
x = 5 Hence, number = $10x + y = 10 \times 5 + 7 = 57$	RRB NTPC 10.01.2021 (Shift-II) Stage Ist
16. In a five digit number, the digit in the hundred's	Ans. (a) : In Counting from 301 to 399, the digit 3
place is 2 and the digit in the unit's place is twice	comes a total of 119 times.
the digit in the hundred's place. The digit at	21. Find the two-digit number such that the sum of
thousands place is zero. The digit in the ten	its digits is 8 and the digits of the number get
thousand's place is the sum of the digit in the	reversed when 36 is added to it.
hundred's place and the digit in the unit's place.	(a) 71 (b) 35
The digit in the ten's place is the digit in the ten	(c) 62 (d) 26
thousand's place minus 1. The number is:	RRB NTPC 15.02.2021 (Shift-II) Stage Ist
(a) 60234 (b) 60224	Ans. (d) : Let number = $10x+y$
(c) 60254 (d) 60264	According to the question,
RRB NTPC 09.02.2021 (Shift-I) Stage Ist	x+y=8(i)
Ans. (c) : Let us assume the number = a b c d e	(10x+y) + 36 = 10y + x
As per question,	9y - 9x = 36
c = 2	y - x = 4(ii)
$e = 2 \times c$	On solving equation (i) and equation (ii)
$e = 2 \times 2$	x = 2
e = 4	y = 6
b = 0	Hence, required number = $10x + y = 10 \times 2 + 6 = 26$
a = 2 + 4	22. Find the total number of prime numbers less
a = 6 $d = 6 - 1$	than 50.
d = 0 - 1 $d = 5$	(a) 13 (b) 15
Putting all values, then the required number = 60254	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	RRB Group-D 06/09/2022 (Shift-III)
17. What is the smallest four digit number formed	
by using the digits 3, 5, 0, 6? (a) 3056 (b) 0356	Ans. (b) : Total number of prime number less than 50 is 15 which is as follows -
(c) 0536 (d) 3506	
RRB NTPC 08.02.2021 (Shift-I) Stage Ist	2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
	23. What is the positive difference between the sum
And (a) The amplicat four digit number formed had	of all prime numbers between 11 and 20 (both
	-
3,5,0,6 = 3056	included) and the sum of all prime numbers
3,5,0,6 = 3056 18. What is the smallest five-digit number formed	included) and the sum of all prime numbers between 30 and 50 (both included)?
by using the digits 2, 3, 4, 0, 5?	included) and the sum of all prime numbers between 30 and 50 (both included)? (a) 139 (b) 141
3,5,0,6 = 305618. What is the smallest five-digit number formed	included) and the sum of all prime numbers between 30 and 50 (both included)?

			1.20	F' 14	c •	1 (50	1.60
	The sum of all prime included) = $(11 + 13 + 13)$		30.		um of prime	no. between 50 :	and 60.
	all prime number betv			(a) 118 (c) 110		(b) 114 (d) 112	
	(31 + 37 + 41 + 43 + 4)				D NTDC 21	(d) 112	
,	positive difference = 1					01.2021 (Shift-I)	-
1	reatest prime number			· · ·	rime number	between 50 and 6	50-
(a) 19	-	193	53 ar				
(c) 19		191	Requ	ired Sum =	53 + 59 = 11	2	
	RRB NTPC 21.01.202		31.	Find the	number of	all prime num	bers less
	he greatest prime nun			than 55.			
199.				(a) 18		(b) 17	
25. Which	ı of the following nun	nbers is prime?		(c) 16		(d) 15	
(a) 32		571		RR	B NTPC 30.	12.2020 (Shift-I)	Stage Ist
(c) 51	l3 (d)	715	Ans.	(c): The nu	mber of all p	orime numbers les	s than 55
	RRB NTPC 02.03.202	21 (Shift-II) Stage Ist			Ĩ		
	ccording to option,		i.e. =	⇒ (2. 3. 5. 7	. 11. 13. 17.	19, 23, 29, 31, 3	7. 41. 43.
	ne number. Whereas 3		47, 5		,,,,		,,,.,
	ble by 3 and 715 is div		32.	,	or of pairs	of twin primes b	atwaan 1
	he smallest three digi	-	52.	and 100 ar	-	or twin princes o	
(a) 10		109		(a) 7		(b) 8	
(c) 10) 101		(a) 7 (c) 10		(d) 9	
	RRB NTPC 23.07.202				R NTDC 26	07.2021 (Shift-I)	Stogo Ist
	he smallest three-digit						
	1 of the following pa	airs of numbers are			umber of pai	irs of twin primes	between
co-pri		12 27		1 100 are 8.			
(a) 28 (c) 21) 12, 27) 36, 20		numbers are			
	RRB NTPC 23.07.202	· · · · · · · · · · · · · · · · · · ·	{(3,5)),(5,7),(11,13),(17,19),(29,3	31),(41,43),(59,61)	,(71,73)}
	Co-prime numbers are		Note	- Twins pri	me numbers	are that number	rs whose
common fac				rence is 2.			
Hence, in	the given option (28	8, 81) are co-prime	33.	If each p	acket contai	ins the same nu	umber of
numbers.				-		e 96 pencils in	
	hird of the sum of all			-		oackets will one	
0	er than 5 but less than	-		• ·	• •	es 304 pencils?	
(a) 3) 5		(a) 39	-	(b) 38	
(c) 6	(d)			(c) 33		(d) 36	
A (1) 1		21 (Shift-I) Stage Ist			TPC (Stage	e-II) –16/06/2022	(Shift-II)
Ans. (d) : 1 than $18 = 7$,	Prime numbers greate	r than 5 but smaller	Ans			n 12 packets = 96	
	the question-				-	-	
-	-		: Pe	ncils presen	t in 1 packet	$=\frac{96}{12}=8$ Pencils	
$=\frac{7+11+13}{2}$	$\frac{+17}{2} = \frac{48}{3} = 16 = (4)^2$					12	
5	5		Num	-	-	or 304 pencils	
· •	ired number $= 4$				$=\frac{304}{8}=381$	Packets.	
	n of the following is a	-			8		
(a) 14		173	34.	From 3/4	l of a nu	ımber P, Ram	akrishna
(c) 12		213		subtracts	2/3 of anoth	er number Q ar	nd obtain
		21 (Shift-I) Stage Ist		5/8 as th	e difference	e. What is the	e answer
	Prime number are the	numbers, which are		Ramakris	hna should	obtain if he	subtracts
•	e by 1 and itself.			eight time	s of Q from	nine times of P?	
From the giv (a) 142 is di	-	ot a mine a second as		(2) 15		(b) 25	
	visible by 11, so it is n	-		(a) $\frac{15}{2}$		$(0) - \frac{1}{4}$	
	livisible by 1 and its	en, so it is a prime				(b) $\frac{25}{4}$ (d) $\frac{25}{3}$	
number.	visible by 3, so it is no	t a prime number		(c) $\frac{20}{3}$		(d) $\frac{-1}{3}$	
	visible by 3, so it is no			5	ITPC (Stage	e-II) –12/06/2022	(Shift_II)
	-	-		NND I	TTC (Stage	-11) -12/00/2022	
Number Sys	tem	2	25				YCT

Ans. (d) :	43. Find the least number which when added to
Let three digit number = $100 \times 3x + 10 \times 2x + x$	1780 makes the sum a perfect square.
= 300x + 20x + x = 321x	(a) 46 (b) 49
New number obtained by reversing the digits	(c) 69 (d) 72
$= 100 \times x + 10 \times 2x + 3x$	RRB JE - 27/05/2019 (Shift-II)
= 100x + 20x + 3x = 123x	Ans : (c) On adding 69 to the number 1780 it will be
According to the question,	1849, which is a perfect square number.
321x + 123x = 1332	Thus-
444x = 1332	1780 + 69 = 1849
X = 3	$1849 = 43 \times 43$
Hence number = $100 \times 3 + 10 \times 2 \times 3 + 3 \times 3$ = $300 + 60 + 9 = 369$	$(43)^2 = 1849$
40. A man plants 21,025 mango trees in his garder in such a way that there are as many rows as	
there are mango trees in each row. Find the	
number of rows.	(c) 1 (d) 0
(a) 135 (b) 125	RRB JE - 22/05/2019 (Shift-I)
(c) 145 (d) 130	Ans : (a) -1 and 1 are such integers whose cube is equal
RRB Group-D 30/08/2022 (Shift-II	to itself.
Ans. (c) : Let the number of rows in garden = x	Hence, the smallest integer = -1
And number of tree in each row = x	$(\cdot, (-1)^3 = -1)$
According to the question,	45. If the cube of a number is subtracted from
$\mathbf{x} \times \mathbf{x} = 21025$	$(153)^2$ the result gives 1457. Find the number.
$\mathbf{x} = \sqrt{21025}$	(a) 18 (b) 16
x = 145	(c) 28 (d) 24
Hence, Number of rows in garden = 145	DDD IE 24/05/2010 (Shift D
41. The sum of two numbers is 27. Five times one	
number is equal to 4 times the other. The smaller of the two numbers is :	According to the question,
(a) 12 (b) 11 (c) 13 (d) 15	$(153)^2 - x^3 = 1457$
RRB Group-D 30/08/2022 (Shift-II	
Ans. (a) : Let the numbers be x and y	$x^3 = 23409 - 1457$
According to the question :	$x^3 = 21952$
$\therefore \rightarrow x + y = 27$ —(i)	$\therefore x = \sqrt[3]{21952} = \sqrt[3]{28 \times 28 \times 28} = 28$
$\therefore \rightarrow 5x = 4y$	46. Five times of a positive integer is 3 less than
	twice of its square. Find the integer.
5x - 4y = 0 (ii)	(a) 3 (b) 8
On solving equation (i) and (ii) : y = 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
x = 12	RRB RPF Constable -19/01/2019 (Shift-I)
Hence, the smaller number is 12.	Ans : (a) Let the positive integer is x.
42. There are two consecutive natural numbers	
such that the sum of their squares is 313. Find	
smaller of these two numbers.	$2x^2 - 5x - 3 = 0$
(a) 12 (b) 14 (c) 15 (d) 13	$2x^{2} - 6x + x - 3 = 0$
RRB Group-D 24/08/2022 (Shift-I	2x(x-3) + 1(x-3) = 0
Ans. (a) :	(x-3)(2x+1) = 0
Let two consecutive natural numbers are x and $(x + 1)$	x - 3 = 0
According to the question. $2 \times (2 \times 1)^2 = 212$	2x + 1 = 0
$x^{2} + (x + 1)^{2} = 313$	$x = 3 \text{ or } x = -\frac{1}{2}$ (Invalid)
$x^{2} + x^{2} + 1 + 2x = 313$ $2x^{2} + 2x = 312$	47. Which of these square numbers cannot be
2x + 2x = 312 $x^2 + x = 156$	expressed as the sum of two prime numbers?
x + x - 130 $x (x + 1) = 13 \times 12$	(a) 81 (b) 49
$\frac{x(x+1) - 13 \land 12}{x = 12}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Hence, smaller of these two numbers = 12	RRB JE - 30/05/2019 (Shift-II)
Number System	27 VCT

	52. If the last digit of the square of a number is 1.
Ans : (c)	52. If the last digit of the square of a number is 1. Find the last digit of its cube.
$81 \rightarrow 2 + 79$ (both of which are prime number)	(a) Only 9 (b) 1 or 9
$49 \rightarrow 2 + 47$ (both of which are prime number)	(c) Any odd number (d) Only 1
$144 \rightarrow 3 + 141$ (both of which are prime number)	RRB JE - 27/06/2019 (Shift-I)
$121 \rightarrow 2 + 119$ (but 119 is not prime number)	Ans : (b) Let the number be 9. The last digit of whose
Hence, option (c) cannot be expressed as the sum of two	square is 1. Which is as follows-
prime numbers.	$9^2 = 81$
48. Three times the square of a number	Last digit of 729 which is cube of $9 = 9$
subtracting by 4 times the number is equal to	Let the number be 11. The last digit of whose square is 1.
50 more than the number. Find the number.	Which is as follows-
(a) 5 (b) 4	$11^2 = 121$
(c) 6 (d) 10	The last digit of the cube of 11-
RRB JE - 28/05/2019 (Shift-II)	$11^3 = 1331$
Ans : (a) Let the number $be = x$	Hence the last digit $= 1$
According to the question,	Hence the number will be 1 or 9.
$3x^2 - x \times 4 = x + 50$	53. Find the sum of prime factors of $9^6 \times 12^4 \times 7^7$
$3x^2 - 4x - x - 50 = 0$	(a) 13 (b) 12
$3x^2 - 5x - 50 = 0$	(c) 14 (d) 11
$3x^2 - 15x + 10x - 50 = 0$	RRB Group-D 26/08/2022 (Shift-III)
3x (x - 5) + 10 (x - 5) = 0	Ans. (b) : $9^6 \times 12^4 \times 7^7$
(x-5)(3x+10) = 0	$=3^{12}\times3^4\times2^8\times7^7$
x-5=0	$=3^{16} \times 2^8 \times 7^7$
x = 5	Sum of prime factors = $3+2+7 = 12$
49. Which of the following is not a perfect square?	54. For any natural number n, $6^n - 5^n$ always ends
(a) 2025 (b) 16641	with;
(c) 1250 (d) 9801	(a) 7 (b) 1
RRB RPF Constable -20/01/2019 (Shift-I)	(c) 5 (d) 3
Ans : (c) From options-	RRB NTPC 28.12.2020 (Shift-II) Stage Ist
$1250 = (35.36)^2$ is not a perfect square	Ans. (b) : The unit value of $6^n - 5^n$ for any natural
$2025 = (45)^2$	number 'n' will always be 1 because 6 can be any
$16641 = (129)^2$	natural number in the power that units number in the
$9801 = (99)^2$	power of 5 has its unit digit as 5.
Hence 1250 is not a perfect square, while others are	55. What is the total number of odd and even
perfect squares.	divisors of 120, respectively?
50. Which of these numbers is not a sum of two	(a) 12,4 (b) 16,0
squares?	(c) $4,12$ (d) $8,8$
(a) 41 (b) 13	RRB NTPC 01.02.2021 (Shift-II) Stage I
(c) 23 (d) 37	Ans. (c) : Divisors of 120–
RRB JE - 26/06/2019 (Shift-I)	1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24 30, 40, 60, 120
Ans : (c) From options-	Number of even divisors – 12,
(a) $41 = 5^2 + 4^2$ (b) $13 = 2^2 + 3^2$	Number of odd divisors -4
(c) 23 (d) $37 = 6^2 + 1^2$	56. If the sum of five consecutive multiples of 2 is
Hence the number 23 is not the sum of two squares.	660, then find the largest number.
51. Which of these is a perfect square?	(a) 162 (b) 130
(a) 9801 (b) 9887	(c) 125 (d) 136
(c) 9013 (d) 9016	RRB NTPC 15.02.2021 (Shift-II) Stage Ist
RRB JE - 01/06/2019 (Shift-III)	Ans. (d) : Let five consecutive multiple of 2 –
Ans. (a) From option (a),	2x, 2x+2, 2x+4, 2x+6, 2x+8
99	According to the question,
9 98 01	2x + 2x + 2 + 2x + 4 + 2x + 6 + 2x + 8 = 660
9 81	10x+20=660
189 17 01	10x=640
9 17 01	x = 64
××××	Hence, largest number = $2x + 8 = 2 \times 64 + 8 = 128 + 8$
	= 136
Hence, 9801 is a perfect square of 99.	

How many factors of $2^7 \times 3^4 \times 5^3 \times 7$ are even ? 57. Ans. (c) : Required positive number (a) 40 (b) 280 = 5K+3 (:: K = 0,1,2....) (c) 320 (d) 84 $= 5 \times 0 + 3 = 3$ (On putting K = 0) RRB NTPC 31.01.2021 (Shift-I) Stage Ist $= 5 \times 1 + 3 = 8$ (On putting K = 1) RRB NTPC 14.03.2021 (Shift-I) Stage Ist Hence, unit digit of N = 3 or 8 Ans. (b): $2^7 \times 3^4 \times 5^3 \times 7$ Number of factors. What is the place value of 5 in the number 63. = (7+1)(4+1)(3+1)(1+1)56789214? $= 8 \times 5 \times 4 \times 2 = 320$ (a) 5×10^6 (b) 5×10^4 \therefore Number of even factors = 320 - total no. of odd (c) 5×10^7 (d) 5×10^5 factors. RRB NTPC 29.01.2021 (Shift-II) Stage I $= 320 - \{(4+1)(3+1)(1+1)\}$ $= 320 - \{5 \times 4 \times 2\}$ Ans. (c) : The place value of 5 in 56789214 -56789214 = 320 - 40 = 280Find the digit in the unit's place of 124^{n} + 58. 124⁽ⁿ⁺¹⁾, where n is any whole number. → 5×10 (a) 4 (b) 8 64. Find the sum of the place value and the face (c) 2(d) 0value of 7 in the number 53736. RRB NTPC 17.02.2021 (Shift-II) Stage Ist (b) 707 (a) 77 **Ans. (d) :** $124^{n} + 124^{(n+1)}$ (c) 770 (d) 777 On putting n = 1RRB NTPC 29.01.2021 (Shift-II) Stage Ist $= 124 + (124)^{2}$ Ans. (b) : The place value and the face value of 7 in the For unit digit 4 + 6 = 10number 53736. Hence. It is clear that the digit come in the unit place Place value of 7 = 700will be '0'. Face value of 7 = 7What is the unit digit in the following product? 59. Required sum = 700 + 7 = 70791×92×93×.....×99 65. In the number 76897, what is the place value of (a) 2 (b) 1 (d) 0(c) 48? RRB NTPC 09.02.2021 (Shift-II) Stage Ist (a) 8 (b) 8000 Ans. (d) : $:: 91 \times 92 \times 93 \times 94 \times 95 \times 96 \times 97 \times 98 \times 99$ (c) 800 (d) 80 It is clear that multiplying by taking unit digits of all the RRB NTPC 09.03.2021 (Shift-II) Stage Ist numbers will give '0' i.e. where 2×5 comes then its unit Ans. (c) : digit is always zero. Find the number of factors of 4200. 60. Place value (a) 48 (b) 56 (c) 64 (d) 46 > 90 RRB NTPC 26.07.2021 (Shift-II) Stage Ist > 800 **Ans. (a) :** $4200 = 2 \times 2 \times 2 \times 5 \times 5 \times 3 \times 7$ > 6000 $=2^3 \times 5^2 \times 3^1 \times 7^1$ > 70000 Hence, place value of 8 in 76897 will be 800. The number of factors = $(3+1) \times (2+1) \times (1+1) \times (1+1)$ 66. The face value of 8 in 758639 is : $= 4 \times 3 \times 2 \times 2$ = 48(a) 8000 (b) 80 (c) 800 (d) 8 61. How many factors does the number 12288 have? RRB NTPC 25.01.2021 (Shift-II) Stage Ist (a) 24 (b) 26 Ans. (d) : In the given number = 758639(c) 28(d) 22 The face value of 8 = 8RRB NTPC 23.07.2021 (Shift-I) Stage Ist 67. Find the difference of the place and face values of 6 in 516372 $\times 2 \times 2 \times 3 = 2^{12} \times 3^1$ (a) 5998 (b) 6698 Hence numbers of factors = $(12 + 1) \times (1 + 1)$ (d) 5994 (c) 5394 $= 13 \times 2$ RRB NTPC 25.01.2021 (Shift-II) Stage Ist = 26 Ans. (d): The place values of 6 in 516372-If a positive number N, when divided by 5 62. 516372 leaves a remainder 3, then the unit's place digit of N is? → 6 × 1000 = 6000 (a) 0 or 5 (b) 0 or 2 the face values of 6 = 6(c) 3 or 8 (d) 1 or 5 Required difference = 6000 - 6 = 5994RRB NTPC 25.01.2021 (Shift-I) Stage Ist

77. Two bus tickets from city P to Q and three 80. Find the value of (919+9.019+0.919+9.0019) tickets from city P to R cost ₹99, but three (a) 937.3999 (b) 973.9399 tickets from city P to Q and two tickets from (c) 937.9399 (d) 973.9939 city P to R cost ₹91. What are the respective RRB NTPC (Stage-2) 14/06/2022 (Shift-I) fares from city P to Q and from city P to R. Ans. (c): 919 + 9.019 + 0.919 + 9.0019(a) ₹23. ₹15 (b) ₹51, ₹32 = 919 + 18.9399(c) ₹15, ₹23 (d) ₹32, ₹51 = 937.9399RRB NTPC 31.01.2021 (Shift-I) Stage Ist 81. 484.71 + 285.33 - 827.38 + 73.9 = ?Ans. (c) : Let the fares from city P to $Q = \overline{\mathbf{x}}$ (a) 19.78 (b) 36.54 and the fares from city P to $R = \overline{\xi}y$ (c) 16.56 (d) 15.78 According to the question, RRB NTPC (Stage-2) 17/06/2022 (Shift-I) 2x + 3y = 99...(i) **Ans.** (c): 484.71 + 285.33 - 827.38 + 73.9 = ?3x + 2y = 91...(ii) =484.71+285.33+73.9-827.38On multiplying by 3 in equation (i) and 2 in equation = 843.94 - 827.38(ii) 6x + 9y = 297= 16.56...(iii) ...(iv) 6x + 4y = 18282. Which of the following options is the closest approximate value which will come in place of From equation (iii) & (iv) we have -5y = 115question mark (?) in the following equation? $67.69 + 5.12 - 0.89 \div 31.88 = ?$ y =₹23 (a) 150 (b) 35 On putting the value of y in equation (i), (c) 73 (d) 48 $2x + 3 \times 23 = 99$ RRB NTPC (Stage-2) 12/06/2022 (Shift-I) 2x + 69 = 99Ans. (c): $67.69 + 5.12 - 0.89 \div 31.88 = ?$ 2x = 99 - 69Assuming approximately $x = \frac{30}{2}$ $= 68 + 5 - \frac{1}{32}$ x =₹15 $= 73 - 0.031 \times 73$ Hence the fares from city P to Q and the fares from city 83. Which of the following options is the closest P to R are ₹15, ₹23 respectively. approximate value which will come in place of There are 40 persons in a palace. If every 78. question mark (?) in the following equation? person shakes hands with every other person, 895.98 + 185.01 + 851.86 + 524.09 = ?what will be the total number of handshakes? (a) 2460 (b) 1490 (a) 750 (b) 780 (c) 2010 (d) 3540 (c) 800 (d) 790 RRB NTPC (Stage-2) 16/06/2022 (Shift-III) RRB NTPC 21.01.2021 (Shift-I) Stage Ist Ans. (a): 895.98 + 185.01 + 851.86 + 524.09 **Ans. (b) :** Total number of handshakes = $\frac{n(n-1)}{2}$ Almost assuming = 896 + 185 + 852 + 52440(40-1) $= 2457 \approx 2460$ 2 84. $19 \times 19 = 361$. What will be the value of 190×10^{-10} $=\frac{40\times39}{2}$ 0.0019? (a) 0.00361 (b) 0.361 (c) 3.61 (d) 0.0361 $= 20 \times 39$ RRB NTPC 17.02.2021 (Shift-II) Stage I = 780In a group of 35 persons, 20 are young and 18 **Ans. (b)** : $19 \times 19 = 361$ 79. are girls. How many young girls are there in $\Rightarrow 190 \times 0.0019$ the group ? = 0.361(a) 1 (b) 3 85. Find the quotient of $0.5 \div 0.71$ (correct to three (d) 2 (c) 18 decimal places) RRB NTPC 17.01.2021 (Shift-II) Stage Ist (a) 0.706 (b) 0.714 Ans. (b) : According to the question, (d) 0.704 (c) 0.705 RRB NTPC 03.02.2021 (Shift-II) Stage I Girls 15 (3 17 Young Ans. (d) : Given that, $\frac{0.5}{0.71} = \frac{500}{710} = 0.704$ Number of young girls in the group = (20+18) - 35= 38 - 35 = 3

86. What will the value of the following be (corr	rect 91. Find the value of 84÷32×8–15÷8×(19–35)
to three decimal points)?	(a) 38 (b) 45
160.342 - 32.124	(c) 51 (d) 42
(a) 128.340 (b) 128.242	RRB NTPC (Stage-2) 14/06/2022 (Shift-I)
(c) 128.218 (d) 128.337	Ans. (c) : $84 \div 32 \times 8 - 15 \div 8 \times (19 - 35)$
RRB NTPC 01.02.2021 (Shift-II) Stag	$= 84 \div 32 \times 8 - 15 \div 8 \times (-16)$
Ans. (c) : Given that,	84 0 15 (16) 01 00 51
160.342 - 32.124 = 128.218	$= \frac{84}{32} \times 8 - \frac{15}{8} \times (-16) = 21 + 30 = 51$
87. Simplify the following.	92. Find the value of $72 \div 4 \times \{8 \times 4 - (14 - 19)\}$
$5 \times 0.5 \times 0.05 \times 0.005 \times 500$	(a) 666 (b) 444
(a) 3125 (b) 0.3125	(d) 000 (d) 111 (c) 222 (d) 1296
(c) 0.003125 (d) 31.25	RRB NTPC (Stage-2) 14/06/2022 (Shift-I)
RRB NTPC 28.01.2021 (Shift-I) Stag	$[Ans. (a): 72 \div 4 \times \{8 \times 4 - (14 - 19)\}]$
Ans. (b) : $5 \times 0.5 \times 0.05 \times 0.005 \times 500$	$= 72 \div 4\{8 \times 4 - (-5)\}$
$= 5 \times \frac{5}{10} \times \frac{5}{100} \times \frac{5}{1000} \times 500$	$= 72 \div 4\{8 \times 4 + 5\}$
$-3 \times \frac{10}{10} \times \frac{100}{1000} \times \frac{1000}{1000} \times \frac{1000}{1000}$	$= 72 \div 4 \{32 + 5\}$
$=\frac{5\times5\times5\times5\times5}{3125}$	$=72 \div 4 \times 37$
$=\frac{1}{10000}=\frac{1}{10000}$	$= 18 \times 37 = 666$
= 0.3125	93. Find the value of 529 ÷ 23 × 61 – 1403
88. The value of 80.6 ÷ 4030 = ?	(a) 0 (b) 2
$80.6 \div 4030 = ?$	(c) 3 (d) 1
(a) 0.2 (b) 2	RRB Group-D 01/09/2022 (Shift-III)
$\begin{array}{c} (a) & 0.12 \\ (b) & 0.02 \\ (c) & 0.02 $	Ans. (a) : $529 \div 23 \times 61 - 1403$
RRB NTPC 18.01.2021 (Shift-II) Stage	Ist = $23 \times 61 - 1403$
Ans. (c) : 80.6 ÷ 4030	= 1403 - 1403 = 0
$=\frac{80.6}{80.6}=\frac{806}{800}$	94. Simplify the given expression using BODMAS :
$=\frac{1}{4030}=\frac{1}{40300}$	$4 \times 121 \times 24(75^2 - 55^2) \times 1$
	$\frac{4}{11} \times \frac{121}{16} \times 24(75^2 - 55^2) \times \frac{1}{100}$
$=\frac{2}{100}$	(a) 1736 (b) 1726
100	(c) 1746 (d) 1716
= 0.02	RRB NTPC 30.01.2021 (Shift-I) Stage Ist
89. How many one-thirds are in 72? (a) 24 (b) 288	$4 121 24(75^2 55^2)$ 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ans. (d) : $\frac{4}{11} \times \frac{121}{16} \times 24(75^2 - 55^2) \frac{1}{100}$
RRB NTPC 21.01.2021 (Shift-II) Stage	Ist From BODMAS,
Ans. (d) : From question,	
70	$= \frac{11}{4} \times 24 [(75+55)(75-55)] \times \frac{1}{100}$ We know that, $[\because a^2 - b^2 = (a+b)(a-b)]$
No. of one-third in $72 = \frac{72}{1} = 216$	We know that $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
$\frac{1}{2}$	$\begin{bmatrix} \cdots & a & -b & = (a+b)(a-b) \end{bmatrix}$
5 00 Simulify the following comparison :	$= 66 \times (130 \times 20) \times \frac{1}{100}$ = 66 \times 2600 \times \frac{1}{100}
90. Simplify the following expression : $(15 + 2) = [((10 - 1) + 2) - (5 \times 20) - (7 \times 0)]$	100
$(15 \div 3) - [\{(19 - 1) \div 2\} - \{5 \times 20 - (7 \times 9 - 2)\}]$	
2))}] (a) 21 (b) 31	$= 66 \times 2600 \times \frac{100}{100}$
(a) 21 (b) 31 (c) -21 (d) 35	= 1716
RRB NTPC (Stage-2) 16/06/2022 (Shif	
Ans. (b) :	(a) 3 (b) 9
$(15 \div 3) - [\{(19 - 1) \div 2\} - \{5 \times 20 - (7 \times 9 - (-2))\}]$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$= 5 - [\{(19-1) \div 2\} - \{5 \times 20 - (7 \times 9 - (-2))\}]$	RRB NTPC 13.03.2021 (Shift-I) Stage I
$= 5 - [\{18 \div 2\} - \{100 - (63 + 2)\}]$	Ans. (b) : The value of $3 + [3 \times \{3 - (3 + 3) \div 6\}]$
$= 5 - [9 - \{100 - 65\}]$	$ =3+[3\times\{3-6\div6\}] $
= 5 - [9 - 35]	$ =3+[3\times \{3-1\}]$
= 5 + 26	$= 3 + [3 \times \{3 - 6 \div 6\}]$ = 3 + [3 \times \{3 - 1\}] = 3 + [3 \times 2]
= 31	= 3 + 6 = 9