Objective Chapterwise & Subtopicwise OLUME-I

Chief Editor A.K. Mahajan

Complied & Written By YCT Expert Team

Computer Graphics by Balkrishna Tripathi & Charan Singh

Editorial Office 12, Church Lane Prayagraj-211002

SMob. : 9415650134 Email : yctap12@gmail.com website : www.yctbooks.com / www.yctfastbooks.com © All rights reserved with Publisher

Publisher Declaration Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and printed by R.A. Security Printers In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

INDEX

Periodic Table of the Elements Some Basic Concepts of Chemistry	5-12
• Significant figures, Units for Measurement	
• Atomic, Molecular and Equivalent Masses	
Mole Concept and Molar Mass	
Laws of Chemical Combinations	
Percentage Composition and Molecular Formula	
Stoichiometry Calculation.	
Empirical Formula for Molecular Formula.	
Structure of Atom	
Atomic Number, Mass Number, Atomic Species	
Atomic Models	
Dual Nature of Electron	
Uncertainty Principle	
Schrodinger Wave Equation	
Electronic Configuration and Shape of Orbital's.	
Quantum Number	
Bohr's Model for Hydrogen Atom	
Isobars and Isotopes	
Line Spectrum of Hydrogen	
Filling of Orbital's in atom	
Classification of Elements and Periodicity in Properties	234-28
Valency and Oxidation State.	
Periodic Laws	
Atomic and Ionic Radii	
Electro negativity	
Ionization Energy	
Electron Affinity	
Nomenclature of Elements with Atomic Number > 100	
Chemical Bonding and Molecular Structure	
Hybridization	
VSEPR theory	
Magnetic behavior of Molecules	
Bond order, Bond Length, Bond Angle, Bond Energy	
Fajan's Rule	
Dipole moment	
Hydrogen Bonding	
Ionic, Covalent and Coordinate Bonding	
Molecular Orbital Theory	
Formal Charge	
Valence Bond Theory.	
Types of Overlapping and Nature of Covalent Bonds	
Application of Molecular orbital Theory	
States of Matter	
The Gas Laws	
Ideal Gas Equation and Related Gas Laws	
Real Gases	
Kinetics Molecular Theory of Gases and Molecular Collisions	
Molecular Speeds.	
Liquefaction of Gases	
Intermolecular Forces	
Behavior of Real Gases : Deviation From ideal Gas Behavior	
Chermodynamics	
Thermodynamics Terms	
First Law of Thermodynamics and Application	
Second Law of Thermodynamics and Entropy	
Heat of Reaction	
Bond Energy	
Gibbs Energy Change and Equilibrium	61
Enthalpy and standard Enthalpies For Different Types of Reaction	62

Chemical Equilibrium	625-705
Law of Chemical Equilibrium and Equilibrium Constant.	
Law of Mass Action	
Activation Energy, Standard free Energy	
Degree of Dissociation	
• Vapour Density	
Le-Chatelier Principle and It's Application	
• Application of K_p and K_c	
• Relation Between Equilibrium Constant (K), Reaction Quient (Q) and Gibb's Energy	
Ionic Equilibrium	
Arrhenius Theory	
Solubility and Solubility Product Constant	
Acid, Bases and Salts	
Buffer Solution	
Hydrogen Ion Concentration - pH Scale	
Common Ion Effect	
Redox Reactions	
Oxidation Number and Oxidation State	
Redox Reaction, Types of Redox Reaction	
 Method for Balancing Redox Reaction 	
 Oxidising and Reducing Agent 	
Hydrogen	
 Heavy water	
 Hydrogen peroxide 	
 Properties of Hydrogen 	
 Hardness of Water 	
The Main Group Elements	
 Alkali Metals 	
 Alkaline Earth Metals 	
 Boron Family Carbon Family 	
Carbon Family	
 Allotropes of Carbon Nitescen Familie 	
Nitrogen Family	
Oxygen Family	
Halogen Family	
Noble Gases	
Hydrocarbons	
• Alkanes	
• Alkenes	
Alkynes	
Hybridisation	
• Structure of Benzene	
Environmental Chemistry	
Water Pollution	
Air Pollution	
Types of Pollution and Pollutants	
Layer of Atmosphere	
Green Chemistry	
The Solid State	1170-1232
Amorphous and Crystalline Solids	
Crystal Structure	
Classification of Crystalline Solid	
Packing Efficiency	
• Defects in Crystal	
Bragg's Equation	
• Density of Unit Cell	
Closed Packed structure	
Electrical Properties	
1	

Periodic Table of the Elements

1																17	18
IA																VIIA	VIIIA
1																1	2
Η	2											13	14	15	16	Η	He
1.0079	IIA											IIIA	IVA	VA	VIA	1.0079	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	Ο	F	Ne
6.941	9.012											10.81	12.011	14.007	15.999	18.998	20.179
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Р	S	Cl	Ar
22.990	24.305	IIIB	IVB	VB	VIB	VIIB	←	VIIIB	\rightarrow	IB	IIB	26.982	28.086	30.974	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.08	44.956	47.90	50.941	51.996	54.938	55.847	58.933	58.70	63.546	65.38	69.72	72.59	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.22	92.906	95.94	[97.91]	101.07	102.905	106.4	107.868	112.41	114.82	118.69	121.75	127.60	126.904	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.33		178.49	180.948	183.85	186.21	190.2	192.22	195.05	196.966	200.59	204.37	207.2	208.98	[209]	[210]	[222]
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
[223.02]	[226.03]		[265.12]	[268.13]	[271.13]	[270]	[277.15]	[276.15]	[281.16]	[280.16]		[284.18]	[289.19]	[288.19]	[293]	[294]	[294]
		67	50	50	(0)	(1	()	(2)	()	(5		(7	(0	(0)	70	71]
T (1	• 1	57	58	59	60	61	62 C	63	64	65	66	67	68	69	70	71	
Lantha	anides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		138.905	140.12	140.907	144.24	[145]	150.4	151.96	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	1																
Actini		Ac	Th	Pa 231.035	U	Np	Pu	Am	Cm	Bk	Cf	Es [252.08]	Fm	Md [258.10]	No	Lr	

4

01.

Some Basic Concepts of Chemistry

1. Significant figures, Units for Measurement	(c) 3, 3 and 3 respectively (d) 3, 4 and 4 respectively BITSAT 2009 NEET 1998
1. Using the rules for significant figures, the correct answer for the expression $\frac{0.02858 \times 0.112}{0.5702}$ will be (a) 0.005613 (b) 0.00561 (c) 0.0056 (d) 0.006	 Ans. (c) : Each has three significant figures. All non-zero number are significant 161 has 3 significant and leading zero are not significant they are nothing more then place holder, the number 0.161 and 0.0161 has 3 significant figure. 5. The prefix 10¹⁸ is (a) giga (b) kilo
JEE Main-29.06.2022, Shift-II	(c) Exa (d) nano
Ans. (b) : $\frac{0.00285 \times 0.112}{0.5702} = \frac{0.003200}{0.5702}$ $= 0.00561$ 2. Manganese (VI) has ability to disproportionate in acidic solution. The difference in oxidation	BITSAT 2015, 2006 Ans. (c) : Exa is a decimal unit prefix in the matric system. Exa = 10^{18} , Giga = 10^{9} Kilo = 10^{3} , Nano = 10^{-9}
states of two ions it forms in acidic solution	6. Match List-I with List-II List-I List-II
is	(Parameter) (Unit)
JEE Main-27.06.2022, Shift-I	A. Cell constant 1. $[S \text{ cm}^2 \text{ mol}^{-1}]$
Ans. (3) : Disproportionation reaction of manganese in acidic solution –	B. Molar conductivity 2. Dimension less
+7	C. Conductivity 3. m^{-1}
$3MnO_4^{2-}(aq) + 4H^+(aq) \longrightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	D. Degree of 4 Sm ⁻¹ dissociation of
So, difference in oxidation state of product ions of- Mn = (+7) - (+4) = 3	electrolyte
3. The units of surface tension and viscosity of a	Choose the most appropriate answer from the options given below
liquid respectively are (a) kg m ⁻¹ s ⁻¹ , N m ⁻¹ (b) N m ⁻¹ , kg m ⁻¹ s ⁻¹ (c) kg m ² s ⁻¹ , N m ⁻² (d) N m ⁻¹ , kg m ² s ⁻¹ TS-EAMCET 09.08.2021, Shift-I WB-JEE-2015	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ans. (b)	[JEE Main 2021, 31 Aug Shift-II]
Surface tension (γ) = $\frac{F}{L} \operatorname{or} \frac{W}{A}$ = Nm ⁻¹	Ans. (a) : Cell Constant = $\frac{\text{Length}}{\text{Area}} = \frac{\text{m}}{\text{m}^2} = \text{m}^{-1}$
Coefficient of viscosity(n) = $\frac{F}{N} = \frac{N}{N}$	Conductivity (K)= $\frac{1}{\rho}$ = Sm ⁻¹ or ohm ⁻¹ Molar conductivity (Am) =
$A\frac{dV}{dx} = m^2 \frac{ms^{-1}}{m}$ $\eta = N m^{-2} s$	$\frac{K}{C} = \frac{Sm^{-1}}{Mol. \ liter^{-1}} = \frac{Sm^{-1}}{Mol \ m^{-3}}$
$\eta = kg ms^{-2} m^{-2}s$	= Sm ² mol ⁻¹
	= Sm ⁻ mol ⁻ Or
$\eta = kg m^{-1} s^{-1}$ 4. Given the numbers : 161 cm, 0.161 cm, 0.0161	= Scm ² mol ⁻¹
4. Given the numbers : 161 cm, 0.161 cm, 0.0161 cm. The number of significant figures for the	Degree of dissociation
three numbers are	= amount of dissociated substance
(a) 3, 4 and 5 respectively	Total amount of Substance
(b) 3, 3 and 4 respectively	So, dimensionless quantity.
Objective Chemistry Volume I	

Ans. (c): Alkali metal reacts with water to give metal hydroxide and hydrogen.	21. Which of the following represents the smallest quantity?
$2M + 2H_2O \longrightarrow 2MOH + H_2(g).$	1
alkali metal	(a) 1230 ng (b) 1.230×10^{-4} g (c) 1.230×10^{-6} kg (d) 1.230×10^{4} µg
17. Which of the following has the dimension if	UPTU/UPSEE-2011
$[\mathbf{M}\mathbf{L}^{0}\mathbf{T}^{-2}]?$	Ans. (a) : (a) 1230 ng = 1230×10^{-9} g = 1.230×10^{-6} g
(a) Coefficient of viscosity (b) Surface tension	(b) 1.230×10^{-4} g = 1.230×10^{-4} g.
(c) Vapour pressure (d) Kinetic energy	(c) 1.230×10^{-6} kg = $1.230 \times 10^{-6} \times 10^{3}$ g
WB-JEE-2017	$= 1.230 \times 10^{-3} g$
Ans. (b) : Surface tension is the tendency of liquid surface at rest to shrink into the minimum surface area	(d) $1.230 \times 10^4 \mu g = 1.230 \times 10^4 \times 10^{-6} g$ = $1.230 \times 10^{-2} g$
possible. The surface tension is given as:	$= 1.230 \times 10^{\circ} \text{g}$ Thus, 1230 ng is the smallest quantity.
	22. How is 0.0120 written as a scientific notation?
Surface tension = $\frac{\text{Force}}{\text{Length}}$	
	(a) 120×10^{-4} (b) 1.2×10^{-2} (c) 12×10^{-3} (d) 12.0×10^{-3}
$= \frac{MLT^{-2}}{L}$ $= [ML^0T^{-2}]$	UPTU/UPSEE-2011
L - INT ⁰ T ⁻² 1	Ans. (b) : 0.0120 is written as 1.2×10^{-2} , ie. decimal is
	moved two places towards the right so that there is only
18. Which one of the following is not a unit of	one non-zero digit before the decimal point and the
energy? (a) lit-atm (b) kg m ² s ⁻²	exponent of 10 is -2 in the scientific notation.
(c) Nm (d) $kg.ms^{-2}$	Scientific notation is a form of representing in simpler form.
UPTU/UPSEE-2016	23. For a reaction of type $A + B \rightarrow$ products, it is
Ans. (d): Kg. ms ⁻² is a unit of force and other three	observed that doubling concentration of A
options are the units of energy.	causes the reaction rate to be four times as
19. Consider following unit values of energy	great, but doubling amount of B does not affect
I. 1 L atm II. 1 erg	the rate. The unit of rate constant is (a) s^{-1} (b) s^{-1} mol I^{-1}
III. 1 J IV. 1 kcal Increasing order of these values is–	(a) s^{-1} (b) $s^{-1} \mod L^{-1}$ (c) $s^{-1} \mod^{-1} L$ (d) $s s^{-1} \mod^{-2} L^2$
(a) $I = II = III = IV$ (b) $I < II < III < IV$	VITEEE- 2010
(a) $I = II = III = IV$ (b) $I < II < III < IV$ (c) $II < III < I < IV$ (d) $IV < I < III < II$	
	Ans. (c) : For a reaction -
(c) $II < III < I < IV$ (d) $IV < I < III < II BCECE-2013$ Ans. (c):	Ans. (c) : For a reaction - $A + B \rightarrow \text{product}$ Let the initial rate be R
(c) $II < III < I < IV$ (d) $IV < I < III < II$ BCECE-2013 Ans. (c): • Energy is the capacity to do work.	Ans. (c) : For a reaction - $A + B \rightarrow \text{product}$ Let the initial rate be R And order with respect to A be x and B be y. Thus, rate
(c) $II < III < I < IV$ (d) $IV < I < III < II$ BCECE-2013 Ans. (c): • Energy is the capacity to do work. R = 0.0821 L atm mol ⁻¹ k ⁻¹	Ans. (c) : For a reaction - $A + B \rightarrow \text{product}$ Let the initial rate be R And order with respect to A be x and B be y. Thus, rate law can be written as,
(c) $II < III < I < IV$ (d) $IV < I < III < II$ BCECE-2013 Ans. (c): • Energy is the capacity to do work. R = 0.0821 L atm mol ⁻¹ k ⁻¹	Ans. (c) : For a reaction - $A + B \rightarrow \text{product}$ Let the initial rate be R And order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i)
(c) $II < III < I < IV$ (d) $IV < I < III < II$ BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$	Ans. (c) : For a reaction - $A + B \rightarrow \text{product}$ Let the initial rate be R And order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i) After doubling the concentration of A, rate becomes 4R,
(c) II < III < I < IV (d) IV < I < III < II BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$	Ans. (c) : For a reaction - A + B \rightarrow productLet the initial rate be RAnd order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i)After doubling the concentration of A, rate becomes 4R, 4R = [2A] ^x [B] ^y (ii)
(c) II < III < I < IV (d) IV < I < III < II BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$	Ans. (c) : For a reaction - A + B \rightarrow productLet the initial rate be RAnd order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i)After doubling the concentration of A, rate becomes 4R, 4R = [2A] ^x [B] ^y (ii)After doubling the concentration of B, rate remains R, R = [A] ^x [2B] ^y (iii)
(c) II < III < I < IV (d) IV < I < III < II BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 \text{ L atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$ $\therefore 1 \text{ L atm} = \frac{R}{0.0821} \text{ mol K}$	Ans. (c) : For a reaction - A + B \rightarrow productLet the initial rate be RAnd order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i)After doubling the concentration of A, rate becomes 4R, 4R = [2A] ^x [B] ^y (ii)After doubling the concentration of B, rate remains R,
(c) II < III < I < IV (d) IV < I < III < II BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$	Ans. (c) : For a reaction - $A + B \rightarrow \text{product}$ Let the initial rate be RAnd order with respect to A be x and B be y. Thus, rate law can be written as, Rate, $R = [A]^x [B]^y$ (i)After doubling the concentration of A, rate becomes 4R, $4R = [2A]^x [B]^y$ (ii)After doubling the concentration of B, rate remains R, $R = [A]^x [2B]^y$ (iii)From equation (i) and (ii), we get
(c) II < III < I < IV (d) IV < I < III < II BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$ $\therefore 1 L \text{ atm} = \frac{R}{0.0821} \text{ mol K}$ • 1 $\text{ erg} = \frac{R}{8.314 \times 10^7} \text{ mol K}$	Ans. (c) : For a reaction - A + B \rightarrow productLet the initial rate be RAnd order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i)After doubling the concentration of A, rate becomes 4R, 4R = [2A] ^x [B] ^y (ii)After doubling the concentration of B, rate remains R, R = [A] ^x [2B] ^y (iii)
(c) II < III < I < IV (d) IV < I < III < II BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 \text{ L atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$ $\therefore 1 \text{ L atm} = \frac{R}{0.0821} \text{ mol K}$	Ans. (c) : For a reaction - $A + B \rightarrow \text{product}$ Let the initial rate be R And order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i) After doubling the concentration of A, rate becomes 4R, $4R = [2A]^x [B]^y$ (ii) After doubling the concentration of B, rate remains R, $R = [A]^x [2B]^y$ (iii) From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$ So, $x = 2$
(c) $II < III < I < IV$ (d) $IV < I < III < II$ BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$ $\therefore 1 L \text{ atm} = \frac{R}{0.0821} \text{ mol K}$ • $1 \text{ erg} = \frac{R}{8.314 \times 10^7} \text{ mol K}$ • $1 \text{ J} = \frac{R}{8.314} \text{ mol K}$	Ans. (c) : For a reaction - A + B \rightarrow productLet the initial rate be RAnd order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A]^x [B]^y(i)After doubling the concentration of A, rate becomes 4R, 4R = [2A]^x [B]^y(ii)After doubling the concentration of B, rate remains R, R = [A]^x [2B]^y(iii)After doubling the concentration of B, rate remains R, R = [A]^x [2B]^y(iii)From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$
(c) II < III < I < IV (d) IV < I < III < II BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$ $\therefore 1 L \text{ atm} = \frac{R}{0.0821} \text{ mol K}$ • 1 $\text{ erg} = \frac{R}{8.314 \times 10^7} \text{ mol K}$	Ans. (c) : For a reaction - $A + B \rightarrow \text{product}$ Let the initial rate be R And order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i) After doubling the concentration of A, rate becomes 4R, $4R = [2A]^x [B]^y$ (ii) After doubling the concentration of B, rate remains R, $R = [A]^x [2B]^y$ (iii) From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$ So, $x = 2$ From equation (i) and (iii), we get
(c) $II < III < I < IV$ (d) $IV < I < III < II BCECE-2013 Ans. (c): • Energy is the capacity to do work. R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}\therefore 1 L \text{ atm} = \frac{R}{0.0821} \text{ mol K}• 1 \text{ erg} = \frac{R}{8.314 \times 10^7} \text{ mol K}• 1 \text{ J} = \frac{R}{8.314} \text{ mol K}• 1 \text{ kcal} = \frac{R}{0.002} \text{ mol K}Hence, option (c) is correct answer.$	Ans. (c) : For a reaction - $A + B \rightarrow \text{product}$ Let the initial rate be R And order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i) After doubling the concentration of A, rate becomes 4R, $4R = [2A]^x [B]^y$ (ii) After doubling the concentration of B, rate remains R, $R = [A]^x [2B]^y$ (iii) From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$ So, $x = 2$
(c) $II < III < I < IV$ (d) $IV < I < III < II BCECE-2013 Ans. (c): • Energy is the capacity to do work. R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}R = 0.002 \text{ K cal mol}^{-1} \text{ k}^{-1}\therefore 1 L \text{ atm} = \frac{R}{0.0821} \text{ mol K}• 1 \text{ erg} = \frac{R}{8.314 \times 10^7} \text{ mol K}• 1 \text{ J} = \frac{R}{8.314} \text{ mol K}• 1 \text{ kcal} = \frac{R}{0.002} \text{ mol K}Hence, option (c) is correct answer.20. Dimension of universal gas constant (R) is$	Ans. (c) : For a reaction - $A + B \rightarrow \text{product}$ Let the initial rate be R And order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i) After doubling the concentration of A, rate becomes 4R, $4R = [2A]^x [B]^y$ (ii) After doubling the concentration of B, rate remains R, $R = [A]^x [2B]^y$ (iii) From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$ So, $x = 2$ From equation (i) and (iii), we get
(c) $II < III < I < IV$ (d) $IV < I < III < II$ BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$ $\therefore 1 L \text{ atm} = \frac{R}{0.0821} \text{ mol K}$ • $1 \text{ erg} = \frac{R}{8.314 \times 10^7} \text{ mol K}$ • $1 J = \frac{R}{8.314} \text{ mol K}$ • $1 \text{ kcal} = \frac{R}{0.002} \text{ mol K}$ Hence, option (c) is correct answer. 20. Dimension of universal gas constant (R) is (a) $[VPT^{-1}n^{-1}]$ (b) $[VP^{-1}Tn^{-1}]$	Ans. (c) : For a reaction - $A + B \rightarrow \text{product}$ Let the initial rate be R And order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i) After doubling the concentration of A, rate becomes 4R, $4R = [2A]^x [B]^y$ (ii) After doubling the concentration of B, rate remains R, $R = [A]^x [2B]^y$ (iii) From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$ So, $x = 2$ From equation (i) and (iii), we get $\frac{R}{R} = \left[\frac{1}{2}\right]^y \Rightarrow \left(\frac{1}{1}\right)^0 = \left(\frac{1}{2}\right)^y$ So, $Y = 0$ Hence, the rate law is, rate $R = [A]^2[B]^0$
(c) $II < III < I < IV$ (d) $IV < I < III < II$ BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$ $\therefore 1 L \text{ atm} = \frac{R}{0.0821} \text{ mol K}$ • $1 \text{ erg} = \frac{R}{8.314 \times 10^7} \text{ mol K}$ • $1 \text{ J} = \frac{R}{8.314} \text{ mol K}$ • $1 \text{ kcal} = \frac{R}{0.002} \text{ mol K}$ Hence, option (c) is correct answer. 20. Dimension of universal gas constant (R) is (a) $[VPT^{-1}n^{-1}]$ (b) $[VP^{-1}Tn^{-1}]$ (c) $[VPTn^{-1}]$ (d) $[VPT^{-1}n]$	Ans. (c) : For a reaction - A + B \rightarrow productLet the initial rate be RAnd order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A]^x [B]^y(i)After doubling the concentration of A, rate becomes 4R, 4R = [2A]^x [B]^y(ii)After doubling the concentration of B, rate remains R, R = [A]^x [2B]^y(iii)From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$ So, x = 2From equation (i) and (iii), we get $\frac{R}{R} = \left[\frac{1}{2}\right]^y \Rightarrow \left(\frac{1}{1}\right)^0 = \left(\frac{1}{2}\right)^y$ So, Y = 0Hence, the rate law is, rate R = [A]^2[B]^0This clearly shows that the order of this reaction is 2
(c) $II < III < I < IV$ (d) $IV < I < III < II$ BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L atm mol^{-1} k^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} k^{-1}$ $R = 8.314 \text{ mol}^{-1} k^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} k^{-1}$ $\therefore 1 L atm = \frac{R}{0.0821} \text{ mol K}$ • $1 \text{ erg} = \frac{R}{8.314 \times 10^7} \text{ mol K}$ • $1 \text{ scal} = \frac{R}{0.002} \text{ mol K}$ Hence, option (c) is correct answer. 20. Dimension of universal gas constant (R) is (a) $[VPT^{-1}n^{-1}]$ (b) $[VPT^{-1}n^{-1}]$ (c) $[VPTn^{-1}]$ (d) $[VPT^{-1}n]$	Ans. (c) : For a reaction - A + B \rightarrow productLet the initial rate be RAnd order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A]^x [B]^y(i)After doubling the concentration of A, rate becomes 4R, 4R = [2A]^x [B]^y(ii)After doubling the concentration of B, rate remains R, R = [A]^x [2B]^y(iii)From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$ So, x = 2From equation (i) and (iii), we get $\frac{R}{R} = \left[\frac{1}{2}\right]^y \Rightarrow \left(\frac{1}{1}\right)^0 = \left(\frac{1}{2}\right)^y$ So, Y = 0Hence, the rate law is, rate R = [A]^2[B]^0This clearly shows that the order of this reaction is 2 and for second order reaction units of rate constant are
(c) $II < III < I < IV$ (d) $IV < I < III < II$ BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L \text{ atm mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ k}^{-1}$ $R = 8.314 \text{ mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$ $R = 0.002 \text{ Kcal mol}^{-1} \text{ k}^{-1}$ $\therefore 1 L \text{ atm} = \frac{R}{0.0821} \text{ mol K}$ • $1 \text{ erg} = \frac{R}{8.314 \times 10^7} \text{ mol K}$ • $1 \text{ J} = \frac{R}{8.314} \text{ mol K}$ • $1 \text{ kcal} = \frac{R}{0.002} \text{ mol K}$ Hence, option (c) is correct answer. 20. Dimension of universal gas constant (R) is (a) $[VPT^{-1}n^{-1}]$ (b) $[VP^{-1}Tn^{-1}]$ (c) $[VPTn^{-1}]$ (d) $[VPT^{-1}n]$	Ans. (c) : For a reaction - A + B \rightarrow product Let the initial rate be R And order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A] ^x [B] ^y (i) After doubling the concentration of A, rate becomes 4R, 4R = [2A] ^x [B] ^y (ii) After doubling the concentration of B, rate remains R, R = [A] ^x [2B] ^y (iii) From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$ So, x = 2 From equation (i) and (iii), we get $\frac{R}{R} = \left[\frac{1}{2}\right]^y \Rightarrow \left(\frac{1}{1}\right)^0 = \left(\frac{1}{2}\right)^y$ So, Y = 0 Hence, the rate law is, rate R = [A] ² [B] ⁰ This clearly shows that the order of this reaction is 2 and for second order reaction units of rate constant are mol ⁻¹ Ls ⁻¹ .
(c) $II < III < I < IV$ (d) $IV < I < III < II$ BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L atm mol^{-1} k^{-1}$ $R = 8.314 \times 10^{7} ergs mol^{-1} k^{-1}$ $R = 8.314 mol^{-1} k^{-1}$ $R = 0.002 K cal mol^{-1} k^{-1}$ $\therefore 1 L atm = \frac{R}{0.0821} mol K$ • $1 erg = \frac{R}{8.314 \times 10^{7}} mol K$ • $1 J = \frac{R}{8.314} mol K$ • $1 k cal = \frac{R}{0.002} mol K$ Hence, option (c) is correct answer. 20. Dimension of universal gas constant (R) is (a) $[VPT^{-1}n^{-1}]$ (b) $[VP^{-1}Tn^{-1}]$ (c) $[VPTn^{-1}]$ (d) $[VPT^{-1}n]$ J & K CET-(2012) Ans. (a) : From the gas equation, PV = nRT	Ans. (c) : For a reaction - A + B \rightarrow productLet the initial rate be RAnd order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A]^x [B]^y(i)After doubling the concentration of A, rate becomes 4R, 4R = [2A]^x [B]^y(ii)After doubling the concentration of B, rate remains R, R = [A]^x [2B]^y(ii)After doubling the concentration of B, rate remains R, R = [A]^x [2B]^y(iii)From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$ So, $x = 2$ From equation (i) and (iii), we get $\frac{R}{R} = \left[\frac{1}{2}\right]^y \Rightarrow \left(\frac{1}{1}\right)^0 = \left(\frac{1}{2}\right)^y$ So, $Y = 0$ Hence, the rate law is, rate R = [A]^2[B]^0This clearly shows that the order of this reaction is 2 and for second order reaction units of rate constant are mol ⁻¹ Ls ⁻¹ .24. The charge on an electron in Coulombs is-
(c) $II < III < I < IV$ (d) $IV < I < III < II BCECE-2013 Ans. (c): • Energy is the capacity to do work. R = 0.0821 L atm mol^{-1} k^{-1}R = 8.314 \times 10^{7} ergs mol^{-1} k^{-1}R = 8.314 mol^{-1} k^{-1}R = 0.002 K cal mol^{-1} k^{-1}\therefore 1 L atm = \frac{R}{0.0821} mol K• 1 erg = \frac{R}{8.314 \times 10^{7}} mol K• 1 J = \frac{R}{8.314 \times 10^{7}} mol K• 1 kcal = \frac{R}{0.002} mol KHence, option (c) is correct answer.20. Dimension of universal gas constant (R) is(a) [VPT^{-1}n^{-1}] (b) [VPT^{-1}n^{-1}](c) [VPTn^{-1}] (d) [VPT^{-1}n]J & K CET-(2012)Ans. (a) : From the gas equation,PV = nRTR = \frac{P \times V}{n \times T}$	Ans. (c) : For a reaction - A + B \rightarrow productLet the initial rate be RAnd order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A]^x [B]^y(i)After doubling the concentration of A, rate becomes 4R, 4R = [2A]^x [B]^y(ii)After doubling the concentration of B, rate remains R, R = [A]^x [2B]^y(ii)After doubling the concentration of B, rate remains R, R = [A]^x [2B]^y(iii)From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$ So, x = 2From equation (i) and (iii), we get $\frac{R}{R} = \left[\frac{1}{2}\right]^y \Rightarrow \left(\frac{1}{1}\right)^0 = \left(\frac{1}{2}\right)^y$ So, Y = 0Hence, the rate law is, rate R = [A]^2[B]^0This clearly shows that the order of this reaction is 2 and for second order reaction units of rate constant are mol ⁻¹ Ls ⁻¹ .24. The charge on an electron in Coulombs is- (a) 1.602×10^{-19}
(c) $II < III < I < IV$ (d) $IV < I < III < II$ BCECE-2013 Ans. (c): • Energy is the capacity to do work. $R = 0.0821 L atm mol^{-1} k^{-1}$ $R = 8.314 \times 10^{7} ergs mol^{-1} k^{-1}$ $R = 8.314 mol^{-1} k^{-1}$ $R = 0.002 K cal mol^{-1} k^{-1}$ $\therefore 1 L atm = \frac{R}{0.0821} mol K$ • $1 erg = \frac{R}{8.314 \times 10^{7}} mol K$ • $1 J = \frac{R}{8.314} mol K$ • $1 k cal = \frac{R}{0.002} mol K$ Hence, option (c) is correct answer. 20. Dimension of universal gas constant (R) is (a) $[VPT^{-1}n^{-1}]$ (b) $[VPT^{-1}n^{-1}]$ (c) $[VPTn^{-1}]$ (d) $[VPT^{-1}n]$ J & K CET-(2012) Ans. (a) : From the gas equation,	Ans. (c) : For a reaction - A + B \rightarrow productLet the initial rate be RAnd order with respect to A be x and B be y. Thus, rate law can be written as, Rate, R = [A]^x [B]^y(i)After doubling the concentration of A, rate becomes 4R, 4R = [2A]^x [B]^y(ii)After doubling the concentration of B, rate remains R, R = [A]^x [2B]^y(ii)After doubling the concentration of B, rate remains R, R = [A]^x [2B]^y(iii)From equation (i) and (ii), we get $\frac{R}{4R} = \left(\frac{1}{2}\right)^x \Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^x$ So, $x = 2$ From equation (i) and (iii), we get $\frac{R}{R} = \left[\frac{1}{2}\right]^y \Rightarrow \left(\frac{1}{1}\right)^0 = \left(\frac{1}{2}\right)^y$ So, $Y = 0$ Hence, the rate law is, rate R = [A]^2[B]^0This clearly shows that the order of this reaction is 2 and for second order reaction units of rate constant are mol ⁻¹ Ls ⁻¹ .24. The charge on an electron in Coulombs is-

Ans. (a) : Coulomb is the SI unit of electric charge	1 12
which is define as the amount of charge delivered by an	$1 \text{ amu} = \frac{1}{12} \frac{12}{N_A} g$
electric current of one ampere in one second.	
The charge on an electron is	1
1 ne charge on an electron is $1 (0217662 - 10^{-19})$	$1 \text{ amu} = \frac{1}{6.023 \times 10^{23}} \text{ g}$
$= -1.60217663 \times 10^{-19}$ coulomb.	6.023×10^{-27}
25. In colloid particles, range of diameter is	$1 \text{ amu} = 1.6 \times 10^{-27} \text{ kg}$
(a) 1 to 1000 nm (b) 1 to 1000 cm	30. The radius of an atomic nucleus is generally
(c) 1 to 1000 mm (d) 1 to 1000 mm (d) (d) 1 to 100 km	expressed in units of:
	(a) Debye (b) Coulomb
BCECE-2008	
UPTU/UPSEE-2006	(c) Fermi (d) Tesla
Ans. (a) : Colloid is a mixture, in which insoluble	AP-EAMCET (Medical), 2001
particles of one substance suspended in another	Ans. (c) : The radius of atomic nucleus is expressed in
substance, range of diameter in colloid particles is 1 to	fermi.
1000 nm.	1 Fermi = 10^{-13} cm
Colloidal particle range in diameter from 1 to 1000	31. A colloidal system has particles of which of the
nanometers and can be solid, liquid, or gases.	following size?
26. In which of the following number all zeros are	(a) 10^{-9} m to 10^{-12} m (b) 10^{-6} m to 10^{-9} m
significant?	
	(c) 10^{-4} m to 10^{-10} m (d) 10^{-5} m to 10^{-7} m
(a) 0.0005 (b) 0.0500 (c) 50.000	(NEET-1996)
(c) 50.000 (d) 0.0050	Ans. (b) : A colloidal system has particles of 10^{-6} m to
BITSAT-2008	
Ans. (c) : If zero is used to locate the decimal point it is	10^{-9} m size. Colloidal system consist of dispersed of
considered as a significant figure. In 50.000, all zero are	dispersed phase and dispersion medium.
significant.	So, option B is correct.
	32. The dimensions of pressure are the same as
27. Which one of the following set of units	that of
represents the smallest and largest amount of	(a) force per unit volume
energy respectively?	
(a) J and erg (b) erg and cal	(b) energy per unit volume
(c) cal and eV (d) lit-atom and J	(c) force
(e) eV and lit-atom	(d) energy
	NEET-1995
Kerala-CEE-2007	
Ans. (e) : SI unit of energy is Joule.	Ans. (b): Pressure = $\frac{\text{Force}}{\text{Area}} = \frac{\text{Mass} \times \text{acceleration}}{\text{Area}}$
Converting other units of energy into joule, we find-	Area Area
$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$	Dimensional formula,
1 cal = 4.186 J	
	$=\frac{M \times LT^{-2}}{L^2} = ML^{-1}T^{-2}$
$1 \text{ erg} = 10^{-7} \text{ J}$	$-\frac{1}{L^2}$
1 lit - atom = 101.3 J	En anger anorte fanos dignla com out
Smallest and largest amount of energy are eV and lit-	$Energy = work = force \times displacement$
atom respectively.	ML^2T^{-2}
28. Which of the following, is not a unit of	Energy per unit volume = $\frac{ML}{r^3}$
8/	L
pressure?	$= ML^{-1}T^{-2}$
(a) Atmosphere (b) Torr	Dimension of pressure is $ML^{-1}T^{-2}$ which is same as the
(c) Pascal (d) Newton	dimension of energy per unit volume.
JIPMER-2004	
Ans. (d) : • The force per unit area is called pressure it	2 Atomia Molecular and
is denoted by P. Here, Atmosphere, Torr and Pascal,	2. Atomic, Molecular and
	Equivalent Masses
these three are unit of pressure.	
• Newton is not the unit of pressure. It is the unit of	
	33. Arrange the following in the order increasing
• Newton is not the unit of pressure. It is the unit of force.	mass (atomic mass $O = 16$, $Cu = 63$, $N = 14$)
• Newton is not the unit of pressure. It is the unit of force. So, the correct option is Newton.	
 Newton is not the unit of pressure. It is the unit of force. So, the correct option is Newton. 29. The value of amu is which of the following? 	mass (atomic mass O = 16, Cu = 63, N = 14) I. One molecule of oxygen II. One atom of nitrogen
 Newton is not the unit of pressure. It is the unit of force. So, the correct option is Newton. 29. The value of amu is which of the following? (a) 1.57×10⁻²⁴ kg (b) 1.66×10⁻²⁴ kg 	mass (atomic mass O = 16, Cu = 63, N = 14) I. One molecule of oxygen II. One atom of nitrogen
 Newton is not the unit of pressure. It is the unit of force. So, the correct option is Newton. 29. The value of amu is which of the following? (a) 1.57×10⁻²⁴ kg (b) 1.66×10⁻²⁴ kg (c) 1.99×10⁻²³ kg (d) 1.66×10⁻²⁷ kg 	mass (atomic mass O = 16, Cu = 63, N = 14) I. One molecule of oxygen II. One atom of nitrogen
 Newton is not the unit of pressure. It is the unit of force. So, the correct option is Newton. 29. The value of amu is which of the following? (a) 1.57×10⁻²⁴ kg (b) 1.66×10⁻²⁴ kg (c) 1.99×10⁻²³ kg (d) 1.66×10⁻²⁷ kg 	mass (atomic mass $O = 16$, $Cu = 63$, $N = 14$) I. One molecule of oxygen II. One atom of nitrogen III. 1×10^{-10} gram molecule of oxygen IV. 1×10^{-10} g of copper
 Newton is not the unit of pressure. It is the unit of force. So, the correct option is Newton. 29. The value of amu is which of the following? (a) 1.57×10⁻²⁴ kg (b) 1.66×10⁻²⁴ kg (c) 1.99×10⁻²³ kg (d) 1.66×10⁻²⁷ kg 	mass (atomic mass $O = 16$, $Cu = 63$, $N = 14$) I. One molecule of oxygen II. One atom of nitrogen III. 1×10^{-10} gram molecule of oxygen IV. 1×10^{-10} g of copper (a) $II < I < IV < III$ (b) $I < II < III < IV$
 Newton is not the unit of pressure. It is the unit of force. So, the correct option is Newton. 29. The value of amu is which of the following? (a) 1.57×10⁻²⁴ kg (b) 1.66×10⁻²⁴ kg (c) 1.99×10⁻²³ kg (d) 1.66×10⁻²⁷ kg UP CPMT-2003 	mass (atomic mass $O = 16$, $Cu = 63$, $N = 14$) I. One molecule of oxygen II. One atom of nitrogen III. 1×10^{-10} gram molecule of oxygen IV. 1×10^{-10} g of copper (a) II < I < IV < III (b) I < II < III < IV (c) III < II < IV < I (d) IV < II < III < I
 Newton is not the unit of pressure. It is the unit of force. So, the correct option is Newton. 29. The value of amu is which of the following? (a) 1.57×10⁻²⁴ kg (b) 1.66×10⁻²⁴ kg (c) 1.99×10⁻²³ kg (d) 1.66×10⁻²⁷ kg UP CPMT-2003 	mass (atomic mass $O = 16$, $Cu = 63$, $N = 14$) I. One molecule of oxygen II. One atom of nitrogen III. 1×10^{-10} gram molecule of oxygen IV. 1×10^{-10} g of copper (a) $II < I < IV < III$ (b) $I < II < III < IV$
• Newton is not the unit of pressure. It is the unit of force. So, the correct option is Newton. 29. The value of amu is which of the following? (a) 1.57×10^{-24} kg (b) 1.66×10^{-24} kg (c) 1.99×10^{-23} kg (d) 1.66×10^{-27} kg UP CPMT-2003 Ans. (d) : 1 amu is defined as $\left(\frac{1}{12}\right)^{\text{th}}$ of the mass one	mass (atomic mass $O = 16$, $Cu = 63$, $N = 14$) I. One molecule of oxygen II. One atom of nitrogen III. 1×10^{-10} gram molecule of oxygen IV. 1×10^{-10} g of copper (a) II < I < IV < III (b) I < II < III < IV (c) III < II < IV < I (d) IV < II < III < I (e) II < IV < I < III
 Newton is not the unit of pressure. It is the unit of force. So, the correct option is Newton. 29. The value of amu is which of the following? (a) 1.57×10⁻²⁴ kg (b) 1.66×10⁻²⁴ kg (c) 1.99×10⁻²³ kg (d) 1.66×10⁻²⁷ kg UP CPMT-2003 Ans. (d) : 1 amu is defined as (1/12)th of the mass one carbon-12 isotope atom. As per the definition of atomic 	mass (atomic mass $O = 16$, $Cu = 63$, $N = 14$) I. One molecule of oxygen II. One atom of nitrogen III. 1×10^{-10} gram molecule of oxygen IV. 1×10^{-10} g of copper (a) II < I < IV < III (b) I < II < III < IV (c) III < II < IV < I (d) IV < II < III < I (e) II < IV < I < III AIIMS-2016
• Newton is not the unit of pressure. It is the unit of force. So, the correct option is Newton. 29. The value of amu is which of the following? (a) 1.57×10^{-24} kg (b) 1.66×10^{-24} kg (c) 1.99×10^{-23} kg (d) 1.66×10^{-27} kg UP CPMT-2003 Ans. (d) : 1 amu is defined as $\left(\frac{1}{12}\right)^{\text{th}}$ of the mass one	mass (atomic mass $O = 16$, $Cu = 63$, $N = 14$) I. One molecule of oxygen II. One atom of nitrogen III. 1×10^{-10} gram molecule of oxygen IV. 1×10^{-10} g of copper (a) II < I < IV < III (b) I < II < III < IV (c) III < II < IV < I (d) IV < II < III < I (e) II < IV < I < III

Ans. (a) : Comparing the masses, we get correct order of increasing mass is (II) < (I) < (IV) < (III) (I) 1 molecule of oxygen = O ₂ \therefore Mass of O ₂ = $\frac{16 \times 2}{N_A} = \frac{32g}{6.22 \times 10^{23}} = 5.3 \times 10^{-23} \text{ g}$ (II) Mass of 1 atom of Nitrogen = $1.66 \times 10^{-24} \times 14$ = $23.2 \times 10^{-24} \text{ g}$ (III) $1 \times 10^{-24} \text{ gm}$ molecule of oxygen = 1×10^{-10} moles of O ₂ Mass of 1×10^{-10} gm molecule of oxygen $1 \times 10^{-10} \times 32$ = $3.2 \times 10^{-9} \text{ g}$ (IV) Mass of copper = $1 \times 10^{-10} \text{ g}$ Comparing the masses in (I), (II), (III) and (IV)	 solution of H₃PO₃ is equal to 0.6N. Reason: Equivalent weight of H₃PO₃ = Molecular weight of H₃PO₃ (a) If both Assertion and Reason are correct and the Reason is the correct explanation of Assertion. (b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion. (c) If Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are are incorrect. AIIMS-2018, 2013, 2011
 We get, (II), < (I), < (IV), < (III) Therefore, answer is (II) < (I) < (IV) < (III) 34. 1.520 g of hydroxide of a metal on ignition gave 0.995 g of oxide. The equivalent weight of metal 	ionizable hydrogen atoms bonded to two oxygen atom and one non-ionizable hydrogen atom bonded directly to phosphorus. ∴ Equivalent weight = $\frac{\text{Molecular weight}}{\text{Valency factor}}$
is: (a) 1.52 (b) 0.995 (c) 19.00 (d) 9.00 BITSAT-2011 BCECE-2008	(Where, valency factor = no. of replaceable H ⁺ ions) equivalent weight = $\frac{M}{q}$, since, no. of replaceable H ⁺ ions in H ₃ PO ₃ = 2
Ans. (d) : Let E be the equivalent weight of the metal So, $\frac{E+17}{E+8} = \frac{1.52}{0.995}$ [17 is equivalent weight of OH and 8 is equivalent weight of oxygen] $\Rightarrow 0.995 E + 17 \times 0.995 = E \times 1.52 + 8 \times 1.52$ $\Rightarrow 0.525 E = 16.915 - 12.16 = 4.755$ $\therefore E = \frac{4.755}{0.525} = 9$	 37. 0.79 gm of a metal oxide is obtained from 0.5 gm of the same metal upon oxidation. Equivalent weight of the metal will be which of the following? (a) 10 (b) 13.8 (c) 20 (d) 40 Tripura JEE-2022 Ans. (b) : Mass of metal + mass of oxygen = mass of metal oxide Mass of oxygen = 0.79 - 0.5
35. In acidic medium, the equivalent weight of $K_2Cr_2O_7$ (Mol. wt. = M) is (a) M (b) $\frac{M}{2}$	$= 0.29$ $= 0.29$ $\frac{\text{Mass of oxygen}}{\text{Mass of oxygen}} = \frac{\text{Eq. wt. of metal}}{\text{Eq. wt. of oxygen}}$ $= \frac{0.5}{0.29} \times 8$
(c) $\frac{M}{3}$ (d) $\frac{M}{6}$ WBJEE-2012 UPTU/UPSEE-2009 Ans. (d) : An equivalent weight of a solution is defined as the molecular weight of the solute divided by the	 Eq.wt.of metal = 13.79 ≈ 13.8 38. What amount of conc. H₂SO₄ solution should be used to prepare 500 m/ of 0.5 M H₂SO₄? (The concentration of H₂SO₄ solution being
as the molecular weight of the solute divided by the valence of the solute. Equivalent weight is used for predicting the mass of substance that react with one atom of hydrogen is acid –base analysis. Balanced chemical reaction of $K_2Cr_2O_7$ in acidic medium will be-	used is 90% and molecular mass of $H_2SO_4 =$ 98.079 g. mol ⁻¹) (a) 22.06 g (b) 24.52 g (c) 11.03 g (d) 27.24 g AP-EAPCET-23.08.2021, Shift-I
$K_2Cr_2O_7 + 14H^+ + 6e^- \rightarrow 2K^+ + 2Cr^{3+} + 7H_2O$ In the above reaction, oxidation state of chromate ion is changing from +6 to +3, i.e. the transfer of 6 electrons is taking place. ∴ Equivalent weight = $\frac{M}{6}$	Ans. (a) : Given that- V = 500 ml C = 0.5 M Concentration of H ₂ SO ₄ solution being used is 90% So, C = $\frac{0.5 \times 90}{100}$ = 0.45 M
Chicativa Chamistry Valuma I	Molecular weight of $H_2SO_4 = 98.079 \text{ g/mol}$

$\begin{array}{llllllllllllllllllllllllllllllllllll$	uct of tht of
Putting the value we get- $0.45 = \frac{\text{weight} / \text{amount}}{98.079 \times 0.5}$ Amount of $H_2SO_4 = 0.45 \times 0.5 \times 98.079 = 22.06 \text{ gm.}$ 39. When 1 : 2 equivalence ratio of the gases X and Y are heated to 573 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. Here, the gases X and Y are <u>and</u> respectively. (a) $\overline{CO_2 \& H_2}$ (b) $CO \& H_2$ (c) $CH_4 \& O_2$ (d) $CH_4 \& H_2O_{(g)}$ AP EAPCET 24.08.2021, Shift-1 Ans. (b) : $CO + 2H_2 \frac{260 + CL_3O_1}{27108 - 4718} \rightarrow CH_3OH$ CO and H ₂ are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. This process is used to prepare methanolog an industrial scale. 40. 3.7 gm of a gas at 25°C occupies some volume Mat 17°C, 0.184 gm bydrogen gas occupies same volume when pressures of both gases are same. Nas we know, PV = nRT P and V are same for both gases. So, n; n; 1 = n; 1'2 $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T$	uct of tht of
Putting the value we get- $0.45 = \frac{\text{weight}/\text{amount}}{98.079 \times 0.5}$ Amount of $H_2SO_4 = 0.45 \times 0.5 \times 98.079 = 22.06 \text{ gm.}$ 39. When 1 : 2 equivalence ratio of the gases X and Y are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. Here, the gases X and Y are	uct of tht of
$\begin{bmatrix} 0.45 &= \frac{\text{weight}/\text{amount}}{98.079 \times 0.5} \\ \text{Amount of } H_2SO_4 &= 0.45 \times 0.5 \times 98.079 &= 22.06 \text{ gm.} \\ 39. \text{ When I : 2 equivalence ratio of the gases X and Y are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr_2O_3 catalyst, methanol is formed. Here, the gases X and Y (a) CO2 & H2 (b) CO & H2 (c) CH4 & O2 (d) CH4 & H2O(6) \\ \hline \text{AP EAPCET 24.08.2021, Shift-I (c) CO + 2H2 \xrightarrow{220 \times C_{2O}} \oplus CH_3 \oplus $	ght of till, it
$ \begin{vmatrix} 0.45 = \frac{\text{m} \text{Og}}{98.079 \times 0.5} \\ \text{Amount of } \text{H}_2\text{SO}_4 = 0.45 \times 0.5 \times 98.079 = 22.06 \text{ gm}. \\ \hline \textbf{39. When 1 : 2 equivalence ratio of the gases X and Y are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr_0_3 catalyst, methanol is formed. Here, the gases X and Y are \frac{\text{and}}{\text{CO}_2 \& \text{H}_2} (b) CO & H2 (c) CH4 & O2 (d) CH4 & H2O(2) (c) CH_4 & O_2 (d) CH4 & H2O(2) (c) CH_4 & O_2 (d) CH4 & H2O(2) (c) CH_4 & O_2 (d) CH4 & H2O(2) (c) CO_4 + CO_4, \frac{700-CC_0}{5738-6738} \rightarrow \text{CH}_3\text{OH} \\ \hline \textbf{CO} and H_2 are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr_0_3 catalyst, methanol is formed. This process is used to prepare methanol on an industrial scale. \\ \hline \textbf{40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same volume when pressures of both gases are same. What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 \\ \hline \textbf{Tripura JEE-2021} \\ \text{Ars. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases are same. As we know, PV = nRT P and V are same for both gases. So, n1T1 = \frac{m_2}{M_1}T_2 = \frac{m_2}{M_2}T_2 \\ \frac{m_1}{M_1}T_1 = \frac{m_2}{M_2}T_2 \\ \frac{m_1}{M_1}T_1 = \frac{m_2}{M_2}T_2 \\ \frac{m_1}{M_1}T_1 = \frac{m_2}{M_2}T_2 \\ \frac{m_1}{M_1} = \frac{12}{M_2} \\ \frac{m_2}{M_1} = 41.33 \text{ g} \\ 41. 12.3 g of 1-bromopropane is treated with a locholic KOH. What mass of propene is treated with a locholic KOH. What mass of propene is treated with a locholic KOH. What mass of propene is treated with a locholic KOH. What mass of propene is treated with a locholic KOH. What mass of propene is treated with a locholic KOH. What mass of propene is treated with a locholic KOH. What mass of propene is treated with a locholic KOH. What mass of propene is treated with a locholic KOH. What mass of propene is $	ght of till, it
39.When 1 : 2 equivalence ratio of the gases X and Y are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. Here, the gases X and Y (a) $\overline{CO_2} \& H_2$ (b) $CO \& H_2$ (c) $CH_4 \& O_2$ (d) $CH_4 \& H_2O_{(g)}$ AP EAPCET 24.08.2021, Shift-I Ans. (b) : $CO + 2H_2 - \frac{ZaO + Cr_2O_3}{573K - 673} K at 200 - 300(a) 4L_2 are heated to 573 K - 673 K at 200 - 300atm in the presence of ZnO - Cr2O3 catalyst,methanol is formed. This process is used to prepare methanol onan industrial scale.= \frac{2 \times 83}{6 + 35.5} = 4The atomic weight of metal is equal to the provident weight of metal = n × equivalent weightequivalent weight of metal = n × equivalent weight\approx 4 = 24Hence, the correct option (b).40.Ans. (b) : CO + 2H_2 - \frac{ZaO + Cr_2O_3}{573K - 673K} K at 200 - 300atm industrial scale.A = 40\% by mass sucrose solution is heatedbecomes 50% by mass. Calculate the nwater lost from 100 g of the solution is(a) 10 g (b) 15 g(c) 20 g (d) 25 gAP EAMCET (Engg.) 21.09.202.0, 5Ans. (c) : 40% sucrose solution means it containwater. After heating, till 50% by mass sucrose renThus, % water lost = 100 - 80 = 20 gHence, option (c) is correct.Ans. (d) : Given, Amount of gas = 3.7gHere, volume and pressure of both gases.So, n_1T_1 = n_2T_2\frac{M_1}{M_1} = \frac{W_2}{M_2}T_2\frac{3.7}{M_1} \approx 298 = \frac{0.184}{2} \times 290M_1 = 41.33 gMass of 12C = 12 gm.Mass of 1.2C2 \times 10^{23} atom = 12 gm.Mass of 1.4tom = \frac{12}{6.023 \times 10^{23}}= 1.993 \times 10^{-23} gm41.12.3 g of 1-bromopropane is treated withalcoholic KOH. What mass of propene isIn a flask, the weight ratio of CH4(g) and(C) \approx 200 F K$	ght of till, it
39.When 1 : 2 equivalence ratio of the gases X and Y are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. Here, the gases X and Y are mandrespectively. (a) $\overline{CO_2} \& H_2$ (b) $CO \& H_2$ (c) $CH_4 \& O_2$ (d) $CH_4 \& H_2O_{(g)}$ AP EAPCET 24.08.2021, Shift-I Ans. (b) : $CO + 2H_2 - \frac{ZaO + Cr_2O_3}{253K - 673 K} \rightarrow CH_3OH$ CO and H ₂ are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. This process is used to prepare methanol on an industrial scale. $= \frac{2 \times 83}{6 + 35.5} = 4$ The atomic weight of metal is equal to the provident weight of metal = n × equivalent weight end weight of metal = n × equivalent weight $= 4 + 6 = 24$ Hence, the correct option (b).40.3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same. What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases. So, $n_1T_1 = n_2T_2$ $\frac{M_1}{M_1} = \frac{M_2}{M_2}T_2$ $\frac{M_1}{M_1} = \frac{M_2}{M_2}T_2$ $\frac{M_1}{M_1} = \frac{M_2}{M_2}T_2$ $\frac{M_1}{M_1} = 41.33 g$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene isThe adoxic propene is treated with alcoholic KOH. What mass of propene is41.12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is10 and (a) and (a) and (b) and	ght of till, it
atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. Here, the gases X and Y areandrespectively. (a) $\overline{CO_2 \& H_2}$ (b) $\overline{CO \& H_2}$ (c) $CH_4 \& O_2$ (d) $CH_4 \& H_2O_{(g)}$ APEAPCET 24.08.2021, Shift-I Ans. (b) : $CO + 2H_2 = \frac{ZaO \cdot C_1O_3}{573K - 673K} \Rightarrow CH_3OH$ CO and H ₂ are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. This process is used to prepare methanol on an industrial scale. 40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases. So, n ₁ T ₁ = n ₂ T ₂ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33$ g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is tracted with alcoholic KOH. What mass of progene is treated with alcoholic KOH. What mass of progene is the solution of COM and the complexity of CM and the complexity of the complexity of the complexity of CM and the complexity of t	ght of till, it
atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. Here, the gases X and Y areandrespectively. (a) $\overline{CO_2 \& H_2}$ (b) $\overline{CO \& H_2}$ (c) $CH_4 \& O_2$ (d) $CH_4 \& H_2O_{(g)}$ APEAPCET 24.08.2021, Shift-I Ans. (b) : $CO + 2H_2 = \frac{ZaO \cdot C_1O_3}{573K - 673K} \Rightarrow CH_3OH$ CO and H ₂ are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. This process is used to prepare methanol on an industrial scale. 40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases. So, n ₁ T ₁ = n ₂ T ₂ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33$ g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is tracted with alcoholic KOH. What mass of progene is treated with alcoholic KOH. What mass of progene is the solution of COM and the complexity of CM and the complexity of the complexity of the complexity of CM and the complexity of t	ght of till, it
methanol is formed. Here, the gases X and Y are and respectively. (a) $CO_2 \& H_2$ (b) $CO \& H_2$ (c) $CH_4 \& O_2$ (d) $CH_4 \& H_2O_{(g)}$ AP EAPCET 24.08.2021, Shift-I Ans. (b) : $CO + 2H_2 = \frac{ZBO^{+}CC_1O}{573K - 673K} CH_3OH$ CO and H_2 are heated to 573 K – 673 K at 200 - 300 atm in the presence of $ZDO - Cr_2O_3$ catalyst, methanol is formed. This process is used to prepare methanol on an industrial scale. 40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same what will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33$ g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is	ght of till, it
are and respectively. (a) $CO_2 \& H_2$ (b) $CO \& H_2$ (c) $CH_4 \& O_2$ (d) $CH_4 \& H_2O_{(g)}$ AP EAPCET 24.08.2021, Shift-I Ans. (b) : $CO + 2H_2 \xrightarrow{ZBO+C_2O_2} K-G_3 K \to C_{13}OH$ CO and H_2 are heated to 573 K - 673 K at 200 - 300 atm in the presence of $ZnO - Cr_2O_3$ catalyst, methanol on an industrial scale. 40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33 g$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is	till, it
(a) $CO_2 \& H_2$ (b) $CO \& H_2$ (c) $CH_4 \& O_2$ (d) $CH_4 \& H_2O_{(g)}$ AP EAPCET 24.08.2021, Shift-I Ans. (b) : $CO + 2H_2 \xrightarrow{ZaO+Cr_{C}O_2} CH_3OH$ CO and H ₂ are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. This process is used to prepare methanol on an industrial scale. 40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same what will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33 g$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is beams beams beams beams beams beams beams beams beams coms coms beams coms coms	till, it
(c) CH ₄ & C ₂ (d) CH ₄ & H ₂ O _(g) AP EAPCET 24.08.2021, Shift-I Ans. (b) : CO + 2H ₂ $\frac{ZaO+C_{1}O_{2}}{573K - 673K}$ CH ₃ OH CO and H ₂ are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. This process is used to prepare methanol on an industrial scale. 40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same what will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, n ₁ T ₁ = n ₂ T ₂ $\frac{W_{1}}{M_{1}}T_{1} = \frac{W_{2}}{M_{2}}T_{2}$ $\frac{W_{1}}{M_{1}}T_{1} = \frac{W_{2}}{M_{2}}T_{2}$ $\frac{W_{1}}{M_{1}} = 41.33 g$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is (c) C) C) Water lost = 12 gm. Mass of 1 Atom = $\frac{12}{6.023 \times 10^{23}}$ gm 45. In a flask, the weight ratio of CH ₄ (g) and	
Ans. (b): $CO + 2H_2 \xrightarrow{ZaO+Cr_{i}O_1}{573K-673K} CH_3OH$ Induction the concervation of the concervati	
CO and H ₂ are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. This process is used to prepare methanol on an industrial scale. 40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same volume when pressures of both gases are same. What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33 g$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is	
CO and H ₂ are heated to 573 K - 673 K at 200 - 300 atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. This process is used to prepare methanol on an industrial scale. 40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same volume when pressures of both gases are same. What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33 g$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is	
atm in the presence of ZnO - Cr ₂ O ₃ catalyst, methanol is formed. This process is used to prepare methanol on an industrial scale. 40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same volume when pressures of both gases are same. What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33$ g 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is	ass of
is formed. This process is used to prepare methanol on an industrial scale. 40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same volume when pressures of both gases are same. What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33$ g 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is	
AP EAMCET (Eng.) 21.09.2020, S AP EAMCET (Eng.) 21.09.2020, S Ar 17°C, 0.184 gm hydrogen gas occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same volume when pressures of both gases are same. What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{W_1}{M_1} = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33$ g 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is	
40. 3.7 gm of a gas at 25°C occupies some volume. At 17°C, 0.184 gm hydrogen gas occupies same volume when pressures of both gases are same. What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33$ g 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is	· • • • • • • •
Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_L}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{W_L}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{W_L}{M_1} = 41.33 g$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is $\frac{11}{123}$ g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is	
And the construction of the gas occupies state volume when pressures of both gases are same. What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{W_1}{M_1}X_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33$ g 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is M = 41.32 g of 1-bromopropane is treated with Ar = 41.32 g of 1-bromopropane 1.22 g or 1.22 g	
What will be the molecular weight of the gas? (a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33$ g 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is	anns.
(a) 41.98 (b) 20.67 (c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, $PV = nRT$ P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{W_1}{M_1} = 41.33 \text{ g}$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is (a) 1 amu (b) 1.9923×10 ⁻²³ (c) 1.6603×10 ⁻²² g (d) 6 amu WB-JEI Water lost = 100 - 80 = 20 g Hence, option (c) is correct. 44. What will be the mass of one atom of ¹² C (a) 1 amu (b) 1.9923×10 ⁻²³ (c) 1.6603×10 ⁻²² g (d) 6 amu WB-JEI Ans. (b) : Mass of ¹² C = 12 gm 6.022×10 ²³ atoms are present in 12 g of carbo element. Mass of 6.022 × 10 ²³ atom = 12 gm. Mass of 1 Atom = $\frac{12}{6.023 \times 10^{23}}$ $= 1.993 \times 10^{-23} \text{ gm}$ 45. In a flask, the weight ratio of CH ₄ (g) and	
(c) 20.94 (d) 41.34 Tripura JEE-2021 Ans. (d) : Given, Amount of gas = 3.7g Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33$ g 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is C(2) 20.94 M = 41.33 g M = 41.3	
Tripura JEE-2021Ans. (d) : Given, Amount of gas = 3.7gHere, volume and pressure of both gases are same.As we know, PV = nRTP and V are same for both gases.So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ M1 = 41.33 g41.12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is42.What will be the mass of one atom of ^{12}C (a) 1 amu(b) 1.9923 \times 10^{-23} (c) 1.6603 \times 10^{-22} g(c) 1.6603 \times 10^{-22} g(d) 6 amuWB-JEIAns. (b) : Mass of $^{12}C = 12 \text{ gm}$ 6.022 \times 10^{23} atoms are present in 12 g of carboelement.Mass of 1 Atom = $\frac{12}{6.023 \times 10^{23}}$ $= 1.993 \times 10^{-23} \text{ gm}$	
Ans. (d) : Given, Amount of gas = $3.7g$ Here, volume and pressure of both gases are same. As we know, PV = nRT P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33 \text{ g}$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is $M_1 = 41.33 \text{ g}$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is	
Here, volume and pressure of both gases are same. As we know, $PV = nRT$ P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33 \text{ g}$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is $M_1 = 41.33 \text{ g}$ $M_1 = 41.33 \text{ g}$ $M_2 = 1.993 \times 10^{-23} \text{ gm}$ $M_2 = 1.993 \times 10^{-23} \text{ gm}$ $M_2 = 1.993 \times 10^{-23} \text{ gm}$	
As we know, $PV = nRT$ P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33 \text{ g}$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is $RO(4) = 10005 M = 10^{-10005 M = 10^{-100005 M = 10^{-10005 M = 10^{-10005 M = 10^{-10$)
P and V are same for both gases. So, $n_1T_1 = n_2T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $M_1 = 41.33 \text{ g}$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is $M_1 = 41.32 \text{ g}$ Mass of 1 Atom = $\frac{12}{6.023 \times 10^{23}}$ $= 1.993 \times 10^{-23} \text{ gm}$ 45. In a flask, the weight ratio of CH ₄ (g) and the prior 1.2 m model.	-2020
$\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2$ $\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $\frac{M_1 = 41.33 \text{ g}}{M_1 = 41.33 \text{ g}} \times 290$ $\frac{M_1 = 41.33 \text{ g}}{M_1 = 41.33 \text{ g}} = 1.993 \times 10^{-23} \text{ gm}$ $41. 12.3 \text{ g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is}$ $45. \text{In a flask, the weight ratio of CH4(g) and}$ $45. \text{In a flask, the weight ratio of CH4(g) and}$	
$\frac{\frac{W_1}{M_1}T_1 = \frac{W_2}{M_2}T_2}{\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290}$ $\frac{M_1 = 41.33 \text{ g}}{41. 12.3 \text{ g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is}$ $45. \text{In a flask, the weight ratio of CH}_4(g) \text{ and } f(g) = 1.993 \times 10^{-23} \text{ gm}}$	10
$\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290$ $\frac{M_1 = 41.33 \text{ g}}{41. 12.3 \text{ g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is} = 1.993 \times 10^{-23} \text{ gm}$ $45. \text{In a flask, the weight ratio of CH4(g) and} = 12 \text{ gm}.$	n -12
$\frac{\frac{3.7}{M_1} \times 298 = \frac{0.184}{2} \times 290}{M_1 = 41.33 \text{ g}}$ 41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is $45. \text{In a flask, the weight ratio of CH4(g) and SO(x) = 1.298 \text{ Kord} = 1.2$	
$\frac{M_1 = 41.33 \text{ g}}{41. 12.3 \text{ g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is}} = \frac{0.023 \times 10^{-23} \text{ gm}}{45. \text{ In a flask, the weight ratio of CH}_4(g) \text{ and }}$	
$\frac{M_1 = 41.33 \text{ g}}{41. 12.3 \text{ g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is}} = \frac{0.023 \times 10^{-23} \text{ gm}}{45. \text{ In a flask, the weight ratio of CH}_4(g) \text{ and }}$	
41. 12.3 g of 1-bromopropane is treated with alcoholic KOH. What mass of propene is 50 (1) at 200 K and 1 have 1.2 The art	
alcoholic KOH. What mass of propene is 45. In a flash, the weight ratio of $CH_4(g)$ and $SO_1(g)$ at 200 K and 1 has a 1.2 The set	
(a) 6.05 g (b) 12.3 g the number of molecules of SO ₂ (g) and C	
(c) $42 g$ (d) $21 g$ IS	1 ₄ (g)
$\begin{array}{c} (c) & 1.2 \ g \\ \hline \\$	1 ₄ (g)
Ans. (d) : COMEDI	1 ₄ (g)
$CH_3 - CH_2 - CH_2 - Br \xrightarrow{alc}{KOH} CH_3 - CH = CH_2$ Ans. (c) : Let mass of $CH_4(g) = 1g$	
12.3g $50% x g?$	
121 g \rightarrow 41 g(100%) Number of moles of CH ₄ (n _{CH₄}) = $\frac{1}{16}$	
$1 \text{ g} \rightarrow \frac{41}{121} \times \frac{50}{100} (50\%)$ Number of molecules of CH ₄ (g)= $\frac{1}{16} \times N_A$	
$12.3g \rightarrow \frac{41}{121} \times \frac{50}{100} \times 12.3$ Let the mass of SO ₂ (g)=2g	
Number of moles of $SO_{2}(q)(-p_{1}) = \frac{2}{2}$	
= 2.06 = 2.1g	

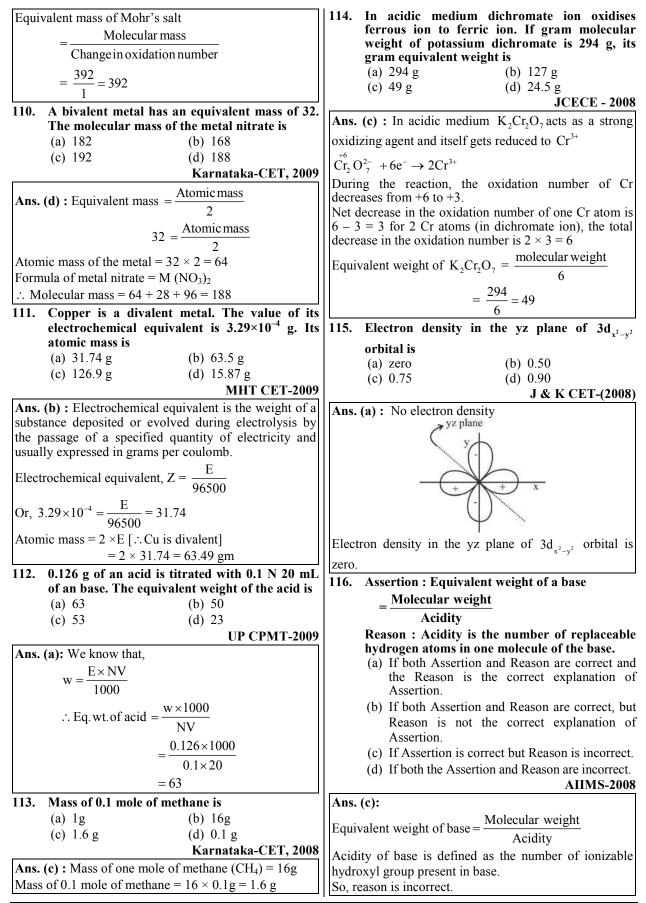
· · · · · · · · · · · · · · · · · · ·	
Number of molecules of SO ₂ (g)= $\frac{2}{64} \times N_A$	$= 2 \times 90$ $= 180$
07	Hence, assertion is correct but reason is incorrect.
Ratio of number of molecules of $SO_2(g)$ and number of	49. In acid medium MnO_4^- is reduced to Mn^{2+} , by a
molecules of $CH_4(g) =$	reducing agent. Then the equivalent mass of $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty$
$\frac{2}{2} \times \mathbf{N} \xrightarrow{1} \mathbf{N} \xrightarrow{1} \frac{1}{2} \xrightarrow{1}$	KMnO ₄ is given by :
$\frac{2}{64} \times N_A : \frac{1}{16} \times N_A \Rightarrow \frac{1}{32} : \frac{1}{16} \Rightarrow 1:2$	(M = molecular mass)
46. Equivalent mass of K ₂ Cr ₂ O ₇ in acidic solution	(a) $M/2$ (b) M
is equal to	(c) M/5 (d) M/3
(a) molecular mass/2 (b) molecular mass/4	Manipal-2019
(c) molecular mass (d) molecular mass/ 6.	Ans. (c) :
COMEDK-2019	$M_{n}O^{-} + 8H^{+} + 5e^{-} > M_{n}^{2+} + 4H_{n}O$
Ans. (d) : The given reaction occurred in acidic	$ \begin{array}{c} MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O \\ \downarrow \\ ON - +7 \\ \end{array} $
medium is :	
$K_2Cr_2O_7 + 14H^+ + 6e^- \longrightarrow 2K^+ + 2Cr^{3+} + 7H_2O$	In acidic medium, Mn ⁺⁷ goes to Mn ⁺² state and hence
In the above reaction, you can see that I molecule of	there is a net gain of 5 electrons.
$K_2Cr_2O_7$ is releasing 6 electrons and molecular weight	Now, equivalent weight
of K ₂ Cr ₂ O ₇ =294 g/mol	_ molar mass
∴Calculation of equivalent weight	number of electrons gained or lost
	I A A A A A A A A A A A A A A A A A A A
$= \frac{\text{Molecular wt.of } K_2 Cr_2 O_7}{\text{Acidity}}$	So, equivalent weight = $\frac{M}{5}$
Actually	50. The equivalent weight of oxalic acid in
Equivalent weight = $\frac{\text{Molecular wt.of } K_2 Cr_2 O_7}{6}$	$C_2H_2O_4.2H_2O$ is
6	(a) 45 (b) 63
47. Equivalent weight of KMnO ₄ is equal to	(c) 90 (d) 126
(a) one-sixth its molecular weight	NDA (I)-2019
(b) its molecular weight	Ans : (b) Given, Oxalic Acid $(C_2H_2O_4.2H_2O)$
(c) one-fifth its molecular weight	We know that,
(d) half is molecular weight.	Equivalent weight = $\frac{\text{Molecular weight}}{\text{n - factor}}$
COMEDK-2019	n - factor
Ans. (c): $\frac{2KMnO_4 + 3H_2SO_4 \rightarrow}{KSO_4 + 2MrSO_4 + 2H_2O_4 + 5IO_1}$	$=\frac{126}{2}=63$
$K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$	2
Since, mass of oxygen are available from	Hence, equivalent weight of oxalic acid $(C_2H_2O_4.2H_2O)$
	is 63.
$\frac{2 \times 8}{5 \times 16} = \frac{1}{5}$ mol. wt. of KMnO ₄	51. 1 mol of $FeSO_4$ (atomic weight of Fe is 55.84g
Therefore, equivalent weight of $KMnO_4$	mol ⁻¹) is oxidised to $Fe_2(SO_4)_3$. Calculate the equivalent weight of ferrous ion
	(a) 55.84 (b) 27.92
$=\frac{1}{5}$ × molecular weight.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Thus equivalent weight of KMnO ₄ is one fifth its	(e) 83.76
molecular weight.	Kerala-CEE-2018
48. Assertion: Molecular weight of a compound is	Ans. (a) : 1 mol of $FeSO_4$ is oxidised to $Fe_2(SO_4)_3$.
180, if its vapour density is 90.	Change in oxidation number = $1(+2 \rightarrow +3)$
Reason: Molecular Weight =	The atomic mass of $Fe = 55.84$
Reason: whole cutar weight = $\frac{2}{2}$	Equivalent mass = Atomic mass
(a) If both Assertion and Reason are correct and	Equivalent mass = $\frac{\text{Atomic mass}}{\text{Change in oxidation state}}$
Reason is the correct explanation of	For the charge, $Fe^{2+} \rightarrow Fe^{3+}$ i.e. $(3-2=1)$
Assertion.	
(b) If both Assertion and Reason are correct, but Passon is not the correct explanation of	The equivalent mass = $\frac{55.84}{1} = 55.84$
Reason is not the correct explanation of Assertion.	1
(c) If Assertion is correct but Reason is incorrect.	52. In the standardization of $Na_2S_2O_3$ using K Cr O by indemetry the equivalent weight of
(d) If both the Assertion and Reason are	K ₂ Cr ₂ O ₇ by iodometry, the equivalent weight of K ₂ Cr ₂ O ₇ is :
incorrect.	(a) Molecular weight/2
AIIMS 25 May 2019 (Morning)	(b) Molecular weight/6
Ans. (c): Relation between molecular weight and	(c) Molecular weight/3
vapour density is,	(d) Same as molecular weight
Molecular weight of compound = $2 \times$ vapour density	Manipal-2018

Ans. (b) : The reaction between $Na_2S_2O_3$ and K_2O_3 and $K_2O_3O_3$	Ans. (a): Mass of neutron = 1.008665 amu Mass of electron = 0.00055 amu
$K_2Cr_2O_7$ is as shown below.	Hence, Neutron is 1842 times heavier than an electron.
$26H^{+} + 3S_{2}O_{3}^{2-} + 4Cr_{2}O_{7}^{2-} \rightarrow 6SO_{4}^{2-} + 8Cr^{3+} + 13H_{2}O$	56. What is the formula mass of anhydrous sodium
The oxidation state of chromium in $K_2Cr_2O_7$ change	carbonate? [Given that the atomic masses of
from +6 to +3.	sodium, carbon and oxygen are 23u, 12u and 16u respectively]
The net change in oxidation number per formula unit is	(a) 286 u (b) 106 u
6. Hence,	(c) 83 u (d) 53 u
	NDA (II)-2018
The equivalent weight of $K_2Cr_2O_7 = \frac{Molecular weight}{6}$	Ans. (b) : Chemical formula of anhydrous sodium carbonate- (Na_2CO_3)
53. A certain amount of a metal whose equivalent mass is 28 displaces 0.7 L of H_2 at STP from an acid. Hence, mass of the element is :	$= 2 \times [Atomic Mass of Na + Atomic mass of C + 3 \times Atomic mass of oxygen]$
(a) 1.75 g (b) 0875 g	$=2\times23+12+3\times16=106 \ \mu$
(c) 3.50 g (d) 7.00 g	57. A sample of oxygen contains two isotopes of oxygen with masses 16 u and 18 u respectively.
Manipal-2018	The proportion of these isotopes in the sample
And (a) t Malag of H_{-} given volume (i)	is 3 : 1. What will be the average atomic mass
Ans. (a) : Moles of $H_2 = \frac{\text{given volume}}{\text{volume at STP}}$ (i)	of oxygen in this sample? (a) 17.5 u (b) 17 u
molar mass of metal	(a) 17.5 u (b) 17 u (c) 16 u (d) 16.5 u
Equivalent weight = $\frac{\text{molar mass of metal}}{\text{valency}}$ (ii)	(d) 10.0 u NDA (II)-2018
Gram equivalent metal = gram equivalent of H_2	Ans. (d) : Given,
From (i) & (ii) $-$	Two isotopes of oxygen with 16u and 18u. The
	proportion is given, 3:1
$\frac{\text{Weight of metal}}{\text{Equivalent wt. of metal}} = \text{Moles of H}_2 \times \text{Valency factor}$.: Percentage composition of isotopes of oxygen is 75% and 25%.
Weight of metal given volume	Now, we know that Average atomic mass of element=
$\Rightarrow \frac{\text{Weight of metal}}{28} = \frac{\text{given volume}}{22.4} \times 2$	
	$\frac{(\text{Atomic mass of } I^{\text{st}} \text{ isotope} \times \text{Percentage } \text{Isotop})}{100} +$
$\Rightarrow \frac{\text{Weight of metal}}{28} = \frac{0.7}{22.4} \times 2$	(Atomic mass 2^{nd} isotope × Percentage of 2^{nd})
Weight = 1.75 gm	
54. The masses of oxygen which combine with a	100
fixed mass of hydrogen to form H ₂ O and H ₂ O ₂ ,	$= 16 \times \frac{75}{100} + 18 \times \frac{25}{100}$
respectively, bear the simple ratio 1:2.	= 16.5u
The above statement illustrates which of the following laws?	Hence, the average atomic mass of oxygen is 16.5u.
(a) Law of definite composition	58. Assertion : Equal moles of different substances
(b) Law of multiple proportions	contain same number of constituent particles.
(c) Gay Lussac's law of gaseous volumes	Reason: Equal weights of different substance contain the same number of constituent
(d) Avogadro's law	particles.
COMEDK-2018	(a) If both Assertion and Reason are correct and
Ans. (b) : The masses of oxygen which combine with a fixed mass of hydrogen to form U.O. and U.O.	the Reason is the correct explanation of
fixed mass of hydrogen to form H_2O and H_2O_2 , respectively bear the simple ratio 1: 2. It illustrates the	Assertion. (b) If both Assertion and Reason are correct, but
law of multiple proportions.	Reason is not the correct explanation of
The law of multiple proportions can be defined as if two	Assertion.
elements form more than one compound between them,	(c) If Assertion is correct but Reason is incorrect.
the mass ratios of the second elements that combine with a fixed mass of the first element will always be the	(d) If both the Assertion and Reason are
with a fixed mass of the first element will always be the ratios of small whole numbers.	incorrect.
55. The number of times the comparative mass of a	AIIMS-2017
neutron is heavier than an electron is	Ans. (c): Equal moles of different substances contain same number of constituent particles. But equal weights
(a) ~1842 (b) ~182	of different substances do not contain the same number
(c) ~ 102 (d) ~ 4050	of constituent particles. Hence, Assertion is correct but
J & K CET-(2018)	reason is incorrect.

Number of moles = $\frac{\text{Weight}}{\text{Molecular weight}}$	62. What mass of calcium chloride in grams would be enough to produce 14.35 g of AgCl? (Atomic
	$\begin{array}{c} mass \ Ca = 40, \ Ag = 108) \\ (a) \ 5.55 \ g \\ (b) \ 8.295 \ g \end{array}$
Number of moles = $\frac{\text{Number of particle}}{\text{N}}$	(a) 5.55 g (b) 6.295 g (c) 11.19 g (d) 16.59 g
- 'A	Manipal-2017
Where, $N_A = Avogadro's$ number	Ans. (a): Given, weight of $AgCl = 14.35 g$
59. 4 g of copper was dissolved in conc. HNO ₃ . The copper nitrate thus obtained gave 5 g of its	Molecular weight of $AgCl = 143.32 \text{ g mol}^{-1}$
oxide on strong heating the equivalent weight	$CaCl_2 + 2AgNO_3 \rightarrow Ca(NO_3)_2 + 2AgCl$
of copper is	$CaCl_2$ required to produced 2×143.5g of AgCl = 111g
(a) 23 (b) 32	CaCl ₂ required to produced 2×145.5g of AgCl
(c) 12 (d) 20	
BITSAT-2017 Ans. (b) : Given that, 4 g of copper gave 5 g of its	$=\frac{111\times14.35}{2\times143.5}=5.55 \text{ g}$
oxides means one g of oxygen combines with 4 g of copper.	63. The mass of oxygen that would be required to produce enough CO which completely reduces 1.6 kg Fe ₂ O ₃ (at. mass Fe = 56), is :
\therefore Eq. wt of oxygen = 8, Therefore, 8 g of oxygen combine with	(a) 240 g (b) 480 g
Therefore, 8 g of oxygen combine with = 4×8 g of copper = 32 g	(c) 720 g (d) 960 g
Hence, equivalent weight of copper = 32 g	Manipal-2017
60. The most abundant elements by mass in the	Ans. (b) : $3C + \frac{3}{2}O_2 \rightarrow 3CO$
body of a healthy human adult are Oxygen (61.4%); of healthy Carbon (22.9%), Hydrogen	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
(10.0%); and Nitrogen (2.6%). The weight which a 75 kg person would gain if all ¹ H atoms are replaced by ² H atoms is	1 mol of $Fe_2O_3 \equiv 3$ mol of CO $\equiv \frac{3}{2}$ mole of O_2
(a) 15 kg (b) 37.5 kg (c) 7.5 kg (d) 10 kg	160 g of Fe ₂ O ₃ require O ₂ = $\frac{3}{2} \times 32 = 48$ g
[JEE Main-2017]	1.6 kg of Fe ₂ O ₃ require $O_2 = 480$ g
Ans. (c) : Given that –	64. What is the actual volume occupied by water
Percentage of mass of oxygen (W_0) = 61.4 %	molecules present in 20 cm ³ of water?
Percentage of mass of carbon (W_c) = 22.9 %	(a) 20 cm^3 (b) 10 cm^3
Percentage of mass of hydrogen (W_H) = 10 % Percentage of mass of nitrogen (W_N) = 2.6 %	(c) 40 cm^3 (d) 24.89 dm^3 MHT CET-2017
Weight of the person (W) = 75 kg.	Ans. (d) : Given,
Mass of H^1 , $W_H = 10\%$ of 75kg	Density of water = 1 g/cc and volume = $20 \text{ cm}^3 = 20 \text{cc}$.
= 7.5 kg	
Since	Density = $\frac{Mass}{Volume}$
$_{1}$ H ² is double mass of $_{1}$ H ¹	$Mass = 1 \times 20 = 20 \text{ g}$
Mass of H^2 , $W_{H^2} = 15 kg$	So, no. of moles of water $=\frac{20}{18} = 1.11$ moles
Increase in mass $\Delta w = W_{H^2} - W_{H^1}$	10
= 15 kg - 7.5 kg	1 moles occupies 22.4L
= 7.5 kg	\therefore 1.11 moles occupies 24.89L, i.e. 24.89 dm ³ (1 lt = 1 dm ³)
61. The compound Na ₂ CO ₃ . xH ₂ O has 50% H ₂ O by	65. 0.126 g of an acid is needed to completely
mass. The value of "x" is	neutralize 20 mL 0.1 (N) NaOH solution. The
(a) 4 (b) 5 (c) (c) (b) 7	equivalent weight of the acid is
(c) 6 (d) 7	(a) 53 (b) 40
(e) 8 Kerala-CEE-2017	(c) 45 (d) 63 WB-JEE-2017
Ans. (c) : Molar mass of $Na_2CO_3 = 106$ unit	Ans. (d) : Gram equivalents weight of Acid = Gram
$(23 \times 2) + 12 + (3 \times 16)$	equivalents of weight Base
Number of moles (per unit charge) = 50% of 106 is	$\frac{0.126}{20} = \frac{20}{20} \times 0.1$
106/2 = 53 gm	$\frac{0.126}{E_{Acid}} = \frac{20}{1000} \times 0.1$
$\frac{53}{18} = 2.94$ mol	$\frac{0.126 \times 1000}{20 \times 0.1} = E_{Acid}$
Total moles of $H_2O = 2 \times 2.94 = 5.89 \cong 6.00$	$E_{Acid} = 63$ g/equivalent

66.	When 2.46 g of a hydrated salt (MSO ₄ xH ₂ O) is completely dehydrated 1.20 g of anhydrous salt is obtained. If the molecular weight of anhydrous salt is 120 g mol ⁻¹ , what is the value of x? (a) 2 (b) 4 (c) 5 (d) 6	Ans. (b): Acive mass = $\frac{\text{Given mass of compound}}{\text{molecular mass of compound} \times \text{volume of solution}}$ Active mass is defined as number of g mol per litre. It is also known as molar concentration molarity.
	(c) 5 (d) 6 (e) 7 Kerala-CEE-2016	$[NH_3] = \frac{8.50 \text{ g}}{17 \text{ g/mol} \times 250 \text{ mL}} \times 1000 \text{ mL}$
Ans.	(e): $MSO_4.xH_2O \xrightarrow{\Delta} MSO_4 + H_2O_{1.20g} \xrightarrow{xg}$	$[NH_3] = 2.0 \text{mol} / L$
Mole (120) gives	ecular weight of $MSO_4 \cdot xH_2O = 120g + x \times 18g$ g + x.18g) of $MSO_4 \cdot xH_2O$ on complete dehydration s 120g of MSO_4	 70. Sulphur forms the chlorides S₂Cl₂ and SCl₂. The equivalent mass of sulphur in SCl₂ is (a) 8 g/ mol (b) 16 g/mol (c) 64.8 g/mol (d) 32 g/mol AIIMS-2015
	$ives = \frac{120}{120 + 18x}$	Ans. (b): Equivalent mass of sulphur
Ther	h, 2.46g of MSO ₄ ·xH ₂ O gives $\frac{120 \times 2.4 \text{ g}}{120 + 18 \text{ x g}}$	$\Rightarrow \frac{\text{atomic mass of sulphur}}{\text{valency}}$
$\frac{120}{120}$	$\frac{\times 2.46}{+18 \mathrm{x}} = 1.20$	$SCl_{2}^{x(-1)} = x + 2(-1) = 0$
$\frac{29}{120}$	1000000000000000000000000000000000000	$x = 2$ $\Rightarrow \frac{32}{2} = 16$
295.2	$2 = 1.20 \times 120 + 1.20 \times 18x$ 2 = 144 + 21.6x 2 - 144 = 21.6 x	71. 3.011×10^{22} atoms of an element weighs 1.15 g. The atomic mass of the element is :
x = -	$\frac{151.2}{21.6} = 7$	(a) 23 (b) 10 (c) 16 (d) 35.5
67.	The following reaction occurs in acidic medium	AP-EAMCET (Engg.)-2015
	$KMnO_4 + 8H^+ + 5e^- \rightarrow K^+ + Mn^{2+} + 4H_2O$ What is the equivalent weight of $KMnO_4$?	Ans. (a) : From Avogadro's law : $\therefore 3.011 \times 10^{22}$ atoms contain an element weight 1.15
	(Molecular weight of $KMnO_4 = 158$)	gm.
	(a) 79.0 (b) 31.6 (c) 150.0 (c) 20.5	Atomic mass $\rightarrow 1$ mole of atoms $\rightarrow 6.022 \times 10^{23}$ atoms
	(c) 158.0 (d) 39.5 TS-EAMCET-2016	$1 \operatorname{atom} = \frac{1.15}{3.011 \times 10^{22}}$
Ans.	(b) : Given that,	
KMr	$MO_4 + 8H^+ + 5e^- \rightarrow K^+ + Mn^{2+} + 4H_2O$	$6.022 \times 10^{23} \text{ atoms} = \frac{1.15 \times 6.022 \times 10^{23}}{3.011 \times 10^{22}} = 23$
	O_4 acts as oxidising agent in acidic medium.	Thus, the atomic mass of the element is $= 23$.
∴ Eo	quivalent weight of KMnO ₄ = $\frac{158}{5}$	72. KMnO ₄ reacts with ferrous sulphate according
	= 31.6 g/equivalent.	to the following equation. $MnO_4^- + 5Fe^{2+} + 8H^- \rightarrow Mn^{2+} + 2Fe^{3+} + 4H_2O$
68.	A bivalent metal has an equivalent mass of 32.	Here, 10 mL of 0.1 M KMnO ₄ is equivalent to
	The molecular mass of the metal nitrate is(a) 124(b) 156	(a) 50 mL of 0.1 M FeSO ₄
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(b) 20 mL of 0.1 M FeSO ₄
	COMEDK-2016	(c) 40 mL of 0.1 M FeSO ₄
Ans.	(d) : Atomic mass of metal = Eq. mass × valency = $32 \times 2 = 64$	(d) 30 mL of 0.1 M FeSO ₄ JIPMER-2015
M(N	netal M is bivalent, formula of its nitrate will be O_{3}_{2} .	Ans. (a) : KMnO ₄ reacts with ferrous sulphate according to the following equation, 2KM = 0 + 2M = 0 + 2M = 0 + 2M = 0 + 2M = 0
Mole	ecular mass of $M(NO_3)_2 = 64 + 2(14 + 48)$ = 64+124=188	$2KMnO_4 + 10 FeSO_4 + 8H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O_4$ 2 moles of KMnO ₄ reacts with 10 moles of FeSO ₄
69.	8.50g of NH ₃ is present in 250 mL volume. Its	The number of moles of $KMnO_4$ in 10 ml of 0.1
	active mass is	$M = 0.1 \times 0.01 = 10^{-3} \text{ moles}$
	(a) 1.5 ML^{-1} (b) 2.0 ML^{-1} (c) 1.0 ML^{-1} (d) 0.5 ML^{-1}	No. of moles $FeSO_4 = 5 \times 10^{-3}$
	(c) 1.0 ML (d) 0.5 ML UPTU/UPSEE-2016	Volume having 5×10^{-3} mol in 0.1 MFeSO ₄
	UI 10/01 SEE-2010	

- 10 ⁻³ 1000	Ans. (b) : 16.9 g AgNO ₃ is present in 100 mL solution.
$0.1 = \frac{5 \times 10^{-3} \times 1000}{V_{m\ell}}$	\therefore 8.45 g AgNO ₃ is present in 50 mL solution.
$\mathbf{V}_{\mathbf{m}\ell}$	5.8 g NaCl is present in 100 mL solution.
$5 \times 10^{-3} \times 1000$	2.9 g NaCl is present in 50 mL solution.
$V_{m\ell} = \frac{5 \times 10^{-3} \times 1000}{0.1}$	Initial mole
$V_{m\ell} = 50 \text{ ml}$	$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$
73. In acidic medium, dichromatic ion oxidizes	$\frac{8.45}{169.5}$ $\frac{2.9}{58.5}$ 0 0
ferrous ion to 'ferric ion'. If the gram	169.5 58.5
molecular weight of potassium dichromate is 294g, its gram equivalent weight (in grams) is	= 0.049 = 0.049
(a) 24.5 (b) 49	After reaction 0 0 0.049 0.049
$\begin{array}{c} (a) & 24.5 \\ (c) & 125 \\ (d) & 250 \\ \end{array}$	
JIPMER-2015	Therefore, mass of AgCl precipitated
Ans. (b) : In acidic medium $K_2Cr_2O_7$ acts as a strong	$= 0.049 \times 143.5 = 7 \text{ g}$
oxidising agent and itself gets reduced to Cr^{3+} .	76. Suppose the elements X and Y combine to form
$Cr_2O_7^{-2} + 6e^- \rightarrow 2Cr^{3+}$	two compounds XY_2 and X_3Y_2 . When 0.1 mole of XV weight 10 g and 0.05 mole of XV
2 /	of XY_2 weight 10 g and 0.05 mole of X_3Y_2 weights 9 g, the atomic weights of X and Y are
The oxidation state of $K_2Cr_2O_7$	(a) 40, 30 (b) 60, 40
2(+1) + 2x + 2(-7) = 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2x = +12	(c) 20, 50 (d) 50, 20 NEET-2015
x = +6	Ans. (a) : $M_1 \rightarrow$ Molecular mass of xy_2
Equivalent weight of Molecular weight 294	Mis. (a) $M_1 \rightarrow Molecular mass of Xy_2M_2 \rightarrow Molecular mass of x_3y_2$
$K_2Cr_2O_7 = \frac{Molecular weight}{Valency} = \frac{294}{6} = 49$	$a_1 \rightarrow \text{Atomic weight of } x_3y_2$
74. Which of the following is correctly arranged in	$a_1 \rightarrow \text{Atomic weight of } x$ $a_2 \rightarrow \text{Atomic weight of } y$
order of increasing weight?	
(a) 0.0105 equivalent of $H_2C_2O_4$. $2H_2O < 0.625$ g	$\frac{10}{M_1} = 0.1$
of Fe < 0.006 g atom of Ag < 6.0×10^{21} atoms of Zn	1
	$m_1 = 100$
(b) 0.625 g of Fe < 0.0105 equivalent of $H_2C_2O_4$. 2 $H_2O < 6.0 \times 10^{21}$ atoms of Zn < 0.006 g atom	$a_1 + 2a_2 = 100$ (i)
of Ag	Similarly
(c) 0.625 g of Fe < 6.0×10^{21} atoms of Zn < 0.006	
g atom of Ag < 0.0105 equivalent of $H_2C_2O_4$.	$\frac{9}{m_2} = 0.05$
.2H ₂ O	
(d) 0.0105 equivalent of $H_2C_2O_4$. $2H_2O < 0.006$ g atom of Ag < 6.0×10^{21} atoms of Zn < 0.625 g	$n_2 = \frac{900}{5}$
atom of Ag $< 6.0 \times 10^{21}$ atoms of Zn < 0.625 g	5
of Fe	$3a_1 + 2a_2 = \frac{900}{5} = 180$ (ii)
JIPMER-2015	5
Ans. (c) : Here, the correct order of increasing weight, - 0.625 g of Fe $< 6.0 \times 10^{21}$ atoms of Zn < 0.006 g atom	Solving (i) & (ii) simultaneously $2a + 2a = 180$
$of Ag < 0.0105$ equivalent of $H_2C_2O_4$. 2 H_2O .	$3a_1 + 2a_2 = 180$
6.0×10^{21} atoms of Zn (atomic weight 65.4 g/mol)	$\underline{a_1 \pm 2a_2 = 100}{2a_1 = 80}$
Corresponds to $\frac{6.0 \times 10^{21}}{6.0 \times 10^{23}} \times 65.4 = 0.654 \text{ g}$	$a_1 = 40$ $a_2 = 30$
6.0×10^{-2} 0.006 g atom of Ag (atomic mass 108 g/mol)	$a_2 = 50$ Atomic weight of x & y are
Corresponds to $0.006 \times 108 = 0.648$ g	40 & 30 respectivily
0.0105 equivalent of H ₂ C ₂ O ₄ .2H ₂ O (equivalent mass	
63 g/eq	77. The equivalent weight of $Na_2S_2O_3$ in the following reaction is
Corresponds to $0.0105 \times 63 = 0.662$ g	$2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$
	(a) M (b) M/8
75. What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO ₃ is	(a) M (b) $M/3$ (c) $M/0.5$ (d) $M/2$
mixed with 50mL of 5.8% NaCl Solution?	JCECE - 2014
(Ag = 107.8, N = 14, O = 16 Na = 23, Cl = 35.5)	Ans. (a) : $2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2e^-$
(a) 3.5 g (b) 7 g	
(c) 14 g (d) 28 g	$E_{Na_2S_2O_3} = \frac{2M}{2} = M$
NEET-2015	


78. The oxide of a metal contains 40% of oxygen. **Ans. (b) :** Molecular mass of yellow phosphorus $(P_4) =$ The valency of metal is 2. What is the atomic $4 \times 30 = 120$ weight of metal? According to Avogadro's hypothesis, (a) 24 (b) 13 Mass of 6.022×10^{23} molecules = 120 g (c) 40 (d) 36 Mass of 1 Molecule = $\frac{120 \times 1}{6.022 \times 10^{23}}$ AP-EAMCET (Engg.) - 2014 Ans. (a): 100 gm of metal oxide contain 40 gm oxygen $= 19.926 \times 10^{-23} g$ and 60 gm of metal. $= 1.993 \times 10^{-22} \text{ g}$ \therefore 8 gm of oxygen will be combined with = $\frac{60 \times 8}{40} = 12$ gm of metal $= 1.993 \times 10^{-19} \text{ mg}$ A certain metal sulphide, MS₂, is used 82. \therefore Equivalent weight of metal = 12 extensively as a high temperature lubricant, If MS₂ has 40.96% sulphur by weight, atomic Thus, atomic weight = Eq. weight \times valency mass of M will be- $= 12 \times 2$ (a) 100 amu (b) 96 amu = 24(c) 60 amu (d) 30 amu 79. Which has the maximum number of molecules **BCECE-2013** among the following? Ans. (b) : (a) 44g CO₂ (b) 48 g O₃ Weight percentage of sulphur (c) 8 g H₂ (d) 64 g SO₂ $=\frac{\text{Mass of sulphur}}{\text{Mass of Compound}} \times 100$ **AIIMS-2014** Ans. (c): $8g H_2$ has the maximum number of molecules. weight of the substance $\Rightarrow 40.96 = \frac{64}{M+64} \times 100$ No. of moles = -Molecular weight of the substance $40.96 (M + 64) = 64 \times 100$ Moles of $CO_2 = \frac{44}{44} = 1 \text{ mol.}$ 40. 96 M + 64 \times 40.96 = 64 \times 100 M = 96 amuMoles of $O_3 = \frac{48}{48} = 1 \text{ mol.}$ Where, M = Atomic mass of metal Equivalent weight of (NH₄)₂Cr₂O₇ in the 83. Moles of H₂ = $\frac{8}{2}$ = 4 mol change is $(NH_4)_2Cr_2O_7 \rightarrow N_2 + Cr_2O_3 + 4H_2O$ Moles of $SO_2 = \frac{64}{64} = 1 \text{ mol.}$ (b) Mol. wt./3 (a) Mol. wt./6 (c) Mol. wt./4 (d) Mol. wt./2 Maximum no. of moles will corresponds to maximum **UP CPMT-2013** number of molecules. Ans. (a) : 1 mole $(NH_4)_2 Cr_2 O_7 \equiv 1$ mole of $Cr_2 O_3$ 4 moles of H₂ i.e. $4 \times 6.023 \times 10^{23}$ molecules. $\equiv 1 \times 6$ eq. of Cr₂O₃ The ratio of masses of oxygen and nitrogen in a 80. : Reduction of $Cr_2O_7^{2-}$ to Cr^{3+} is a 6e⁻ change. particular gaseous mixture is 1:4 The ratio of number of their molecule is $\left[(\mathrm{Cr}^{6+})_2 + 6\mathrm{e}^- \rightarrow (\mathrm{Cr}^{3+})_2 \right]$ (a) 1:4 (b) 7:32 Therefore, equivalent weight of $(NH_4)_2 Cr_2 O_7 = M/6$ (c) 1:8 (d) 3:16 [JEE Main-2014] The equivalent mass of a certain bivalent metal 84. Ans. (b) : Given ratio of masses of oxygen and is 20. The molecular mass of its anhydrous chloride is Nitrogen = 1:4(a) 111 (b) 55.5 Let mass of $O_2 = x$ (c) 75.5 (d) 91 Mass of $N_2 = 4x$ Karnataka-CET-2012 Molecular mass of oxygen = 32Ans. (a) : The equivalent mass of bivalent metal Molecular mass of Nitrogen = 28= <u>molecular mass</u> Molecules of $O_2 = \frac{X}{32} N_A$ Molecular mass = equivalent mass $\times 2$ Molecules of $N_2 = \frac{4x}{28} N_A$ $= 20 \times 2 = 40$ The metal is bivalent. So, 1 mole of metal atoms will Ratio of number of molecules = 7:32combine with 2 moles of chlorine atoms. What is the mass of one molecule of yellow 81. $M + Cl_2 \rightarrow MCl_2$ phosphorus? (Atomic mass, P = 30) (a) 1.993×10^{-22} kg (c) 4.983×10^{-20} mg (b) $1.993 \times 10^{-19} \text{ mg}$ The atomic mass of chlorine is 35.5 g (d) 4.983×10^{-23} g The molecular mass of its anhydrous chloride will be 40 + 2(35.5) = 111 g/mol.**MHT CET-2014**

85. A 100% pure sample of a divalent metal carbonate weighing 2g on complete thermal decomposition releases 448 cc of carbon dioxide at STP. The equivalent mass of the metal is (a) 40 (b) 20 (c) 28 (d) 12 (e) 56 Kerala-CEE-2012 Ans. (b) : Formula of Metal carbonate is MCO ₃ Molar mass of MCO ₃ = $x + 12 + 3 \times 16$ = (x + 60) g/mol (Let atomic mass of M is x) 448 cc (448mL) CO ₂ is produced from Carbonate = 2 g 22400 cc CO ₂ will be obtained from carbonate $= \frac{2 \times 22400}{448} = 100 \text{ g}$	Ans. (b) : The rate of effusion is inversely proportional to the molecular mass $\frac{r_1}{r_2} = \sqrt{\frac{Mw_2}{Mw_1}}$ The rate of effusion is the ratio of the volume effused to the time taken $\frac{v_1}{t_1} \times \frac{t_2}{v_2} = \sqrt{\frac{Mw_2}{Mw_1}}$ Here, volume is same. So, $\frac{3}{1} = \sqrt{\frac{Mw_2}{4}}$ $9 = \frac{Mw_2}{4}$
$\therefore 100 = x + 60$	$Mw_2 = 36$
x = 100 - 60 = 40 g/mol	88. Two gases A and B having the same volume
Atomic mass	diffuse through a porous partition in 20 and 10
Equivalent mass of metal = $\frac{\text{Atomic mass}}{\text{Valency}}$	seconds respectively. The molecular mass of A
$=\frac{40}{2}=20\mathrm{gequiv}^{-1}$	is 49 u. Molecular mass of B will be
$\frac{-\frac{1}{2}}{2} = 20 \text{ gequiv}$	(a) 50.00 u (b) 12.25 u (c) 6.50 u (d) 25.00 u
86. 50 mL of each gas A and of gas B takes 150 and	UP CPMAT-2012
200 seconds respectively for effusing through a pin hole under the similar conditions. If	
molecular mass of gas B is 36, the molecular	Ans. (b) : Graham's law of diffusion states that the rate
mass of gas A will be $(b) 128$	of diffusion of a gas is inversely proportional to the
(a) 96 (b) 128 (c) 32 (d) 20.2	square root of its molecular weight.
(d) 20.2 NEET-2012	According to the Graham's law
Ans. (d) : Graham's law of effusion states that the rate of effusion of a gas is inversely proportional to the square root the molar mass of its particles.	Rate of diffusion (r) $\propto \frac{1}{\sqrt{M}}$
$V_{\rm A} = V_{\rm B} = 50 \text{mL}$	Rate of diffusion = $\frac{V}{t}$
$T_A = 150 s$	Where v is volume and t is time
$T_{\rm B} = 200 \mathrm{s}$	
$M_{\rm B} = 36$	$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$
$M_{A} = ?$	
From Graham's law of effusion.	$\frac{\mathbf{v}_1}{\mathbf{v}_1}$
	$\frac{\frac{V_1}{t_1}}{\frac{V_2}{t_2}} = \sqrt{\frac{M_2}{M_1}} = \frac{t_2}{t_1} = \sqrt{\frac{M_2}{49}}$
$\frac{\mathbf{r}_{\mathrm{B}}}{\mathbf{r}_{\mathrm{A}}} = \sqrt{\frac{\mathbf{M}_{\mathrm{A}}}{\mathbf{M}_{\mathrm{B}}}} = \frac{\mathbf{V}_{\mathrm{B}}\mathbf{T}_{\mathrm{A}}}{\mathbf{T}_{\mathrm{B}}\cdot\mathbf{V}_{\mathrm{A}}}$	$\underline{\mathbf{v}}_2$ \mathbf{V} \mathbf{M}_1 \mathbf{t}_1 \mathbf{V} 49
$\sqrt{\frac{M_A}{36}} = \frac{V_A \times 150}{200 \times V_A}$	$\frac{1}{2} = \sqrt{\frac{M_2}{49}}$
	$2^{-}\sqrt{49}$
or $\sqrt{\frac{M_A}{36}} = \frac{15}{20} = \frac{3}{4}$	$M_2 = \frac{49}{4}$
$\frac{M_A}{36} = \frac{9}{16}$	$M_2 = 12.254$
	89. Excess of silver nitrate solution is added to 100
$M_{\rm A} = \frac{9 \times 36}{16} = \frac{81}{4} = 20.25 \approx 20.2$	mL of 0.01 M pentaaqua chloro chromium (III)
16 4 20.20 10 20.2	chloride solution. The mass of silver chloride obtained in grams is [Atomic mass of silver is
87. A certain gas takes three times as long to effuse out as helium. Its molecular mass will be	108].
(a) 27 u (b) 36 u	(a) 287×10^{-3} (b) 143.5×10^{-3}
(c) 64 u (d) 9 u	(c) 143.5×10^{-2} (d) 287×10^{-2}
NEET-2012	Karnataka-CET-2011

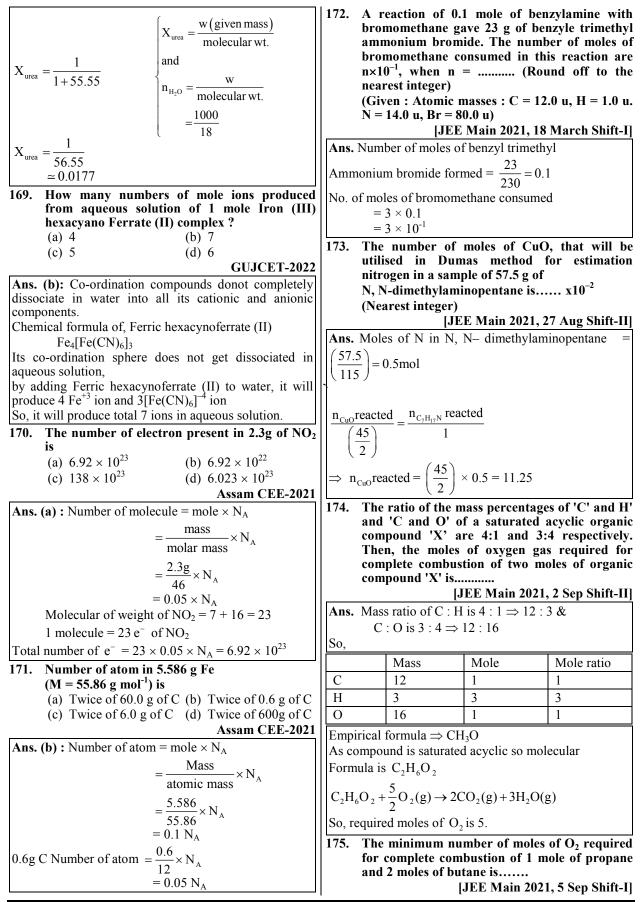
Ans. (a) : The reagent is $[Cr (H_2O)_5Cl] Cl_2$	Ans. (b) :
$[Cr(H_2O_5)_5Cl]Cl_2 \xrightarrow{Excess} [Cr(H_2O_5)_5Cl]^+ NO_3^- + 2AgCl$	
$\downarrow \qquad \qquad$	Equivalent weight in redox system= $\frac{\text{Molar mass}}{n - \text{factor}}$
No. of moles of Cl ⁻ ion present = $\frac{2 \times 100 \times 0.01}{1000}$ = 0.002	(where, n-factor is net change in oxidation number per formula unit of oxidising or reducing agent.) In $MnSO_4$. n – Factor is 2 because equivalent weight is equal to its molecular weight.
$\therefore \text{ Mass of AgCl} = 0.002 \times 143.5 \\ = 0.287$	Here, n-factor –
= 0.237 = 287 × 10 ⁻³ g	$MnSO_4 \rightarrow Mn_2O_3 \ 1(+2 \rightarrow +3)$
90. Equivalent and molecular masses are same in	$MnSO_4 \rightarrow MnO_2 \ 2(+2 \rightarrow +4)$
(a) Mohr's salt	$MnSO_4 \rightarrow MnO_4^-$ 5(+2 \rightarrow +7)
(b) potassium permanganate(c) potassium dichromate	$MnSO_4 \rightarrow MnO_4^{2-} 4(+2 \rightarrow +6)$
(d) oxalic acid.	Therefore, $MnSO_4$ convert to MnO_2 . Then the n-
COMEDK-2011	factor is to and the equivalent weight of MnSO ₄ will be
Ans. (a) : Mohr's salt is $FeSO_4$. $(NH_4)_2SO_4$. $6H_2O$.	half of its molecular weight.94. If the equivalent weight of a trivalent metal is
$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	32.7, the molecular weight of a trivatent metal is
The oxidation state of Fe change from $+2$ to $+3$.	(a) 68.2 (b) 103.2
\therefore Equivalent wt. of Mohr's salt = $\frac{\text{Mol.wt.}}{1} = \frac{392}{1} = 392$	(c) 204.6 (d) 32.7
91. Two different electrolytic cells filled with	$\frac{\text{JCECE - 2011}}{\text{Ans. (c) : Atomic wt. of metal = valency \times equivalent}}$
molten $Al(NO_3)_3$ respectively are connected in	weight
series. When electricity is passed 2.7 gram Al is deposited on electrode. Calculate the weight of	$= 3 \times 32.7$
Cu deposited on cathode. [Cu = 63.5 ; Al = 27.0	Molecular wt. of metal chloride $(MCl_3) = (3 \times 32.7) + (3 \times 35.5)$
gram. mol ⁻¹] (a) 190.5 gram (b) 9.525 gram	= 204.6
(c) 63.5 gram (d) 31.75 gram	95. In the disproportionation reaction
GUJCET-2011	$3HClO_3 \longrightarrow HClO_4 + Cl_2 + 2O_2 + H_2O_3$, the
Ans. (b): $Cu_{2+}^{2+} + 2e^{-} \rightarrow Cu(s)$	equivalent mass of the oxidizing agent is (molar
$Al^{3+} + 3e^- \rightarrow Al(s)$	
$Al^{3^+} + 3e^- \rightarrow Al(s)$ When same current is passed through two electrolytic solution containing copper nitrate [Cu(NO ₂) ₂] and aluminium nitrate [Al(NO ₃) ₃] are connected in series.	mass of $HClO_3 = 84.45$)(a) 16.89(b) 32.22(c) 84.45(d) 28.15(e) 29.7
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. Weight of Cu deposited _ Equivalent weight of Cu	mass of $HClO_3 = 84.45$)(a) 16.89(b) 32.22(c) 84.45(d) 28.15(e) 29.7Kerala-CEE-2011
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$	mass of $HClO_3 = 84.45$)(a) 16.89(b) 32.22(c) 84.45(d) 28.15(e) 29.7Kerala-CEE-2011
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{\text{Wt.of Cu}}{\text{Wt.of Cu}} = \frac{31.7}{\text{Cu}}$	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5 +7 0$ +7 0 HClO + Cl ₂ + 2O ₂ + H ₂ O
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{\text{Wt.of Cu}}{2.7} = \frac{31.7}{9}$	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5 + 7 = 0$ 2HClO ₃ \longrightarrow HClO + $Cl_2 + 2O_2 + H_2O$ Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent.
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{\text{Wt.of Cu}}{\text{Wt.of Cu}} = \frac{31.7}{\text{Cu}}$	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5 +7 0$ $2HClO_3 \longrightarrow HClO + Cl_2 + 2O_2 + H_2O$ Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{\text{Wt.of Cu}}{2.7} = \frac{31.7}{9}$ $\text{Wt.of Cu} = \frac{31.7 \times 2.7}{9} = 9.5 \text{ gram}$ So, weight of Cu deposited = 9.525 gm 92. Equivalent weight of crystalline oxalic acid is	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5 +7 0$ $2HClO_3 \longrightarrow HClO + Cl_2 + 2O_2 + H_2O$ Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{\text{Wt.of Cu}}{2.7} = \frac{31.7}{9}$ $\text{Wt.of Cu} = \frac{31.7 \times 2.7}{9} = 9.5 \text{ gram}$ So, weight of Cu deposited = 9.525 gm 92. Equivalent weight of crystalline oxalic acid is (a) 90 (b) 63	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5$ $+7$ 0 $2HClO_3 \longrightarrow HClO + Cl_2 + 2O_2 + H_2O$ Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃ $= \frac{Mol.mass of HClO_3}{oxidation number change} = \frac{84.45}{5} = 16.89$
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{Wt.of Cu}{2.7} = \frac{31.7}{9}$ $Wt.of Cu = \frac{31.7 \times 2.7}{9} = 9.5 \text{ gram}$ So, weight of Cu deposited = 9.525 gm 92. Equivalent weight of crystalline oxalic acid is (a) 90 (b) 63 (c) 53 (d) 45	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5$ $+7$ 0 $2HClO_3 \longrightarrow HClO + Cl_2 + 2O_2 + H_2O$ Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃ $= \frac{Mol.mass of HClO_3}{oxidation number change} = \frac{84.45}{5} = 16.89$ 96. One atomic mass is equal to
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{Wt.of Cu}{2.7} = \frac{31.7}{9}$ $Wt.of Cu = \frac{31.7 \times 2.7}{9} = 9.5 \text{ gram}$ So, weight of Cu deposited = 9.525 gm 92. Equivalent weight of crystalline oxalic acid is (a) 90 (b) 63 (c) 53 (d) 45 BCECE-2011 Ans. (b) : Formula of crystalline oxalic acid $C_2H_2O_4$	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5$ +7 0 Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃ = $\frac{Mol.mass of HClO_3}{oxidation number change} = \frac{84.45}{5} = 16.89$ 96. One atomic mass is equal to (a) 1.66×10^{-27} g (b) 1.66×10^{-24} g (c) 1.66×10^{-23} g (d) 1.66×10^{-25} kg
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{Wt.of Cu}{2.7} = \frac{31.7}{9}$ $Wt.of Cu = \frac{31.7 \times 2.7}{9} = 9.5 \text{ gram}$ So, weight of Cu deposited = 9.525 gm 92. Equivalent weight of crystalline oxalic acid is (a) 90 (b) 63 (c) 53 (d) 45 BCECE-2011 Ans. (b) : Formula of crystalline oxalic acid $C_2H_2O_4$	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5$ +7 0 Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃ = $\frac{Mol.mass of HClO_3}{oxidation number change} = \frac{84.45}{5} = 16.89$ 96. One atomic mass is equal to (a) 1.66×10^{-27} g (b) 1.66×10^{-24} g (c) 1.66×10^{-23} g (d) 1.66×10^{-25} kg MHT CET-2011
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{\frac{\text{Wt.of Cu}}{2.7} = \frac{31.7}{9}}{\text{Wt.of Cu} = \frac{31.7 \times 2.7}{9} = 9.5 \text{ gram}}$ So, weight of Cu deposited = 9.525 gm 92. Equivalent weight of crystalline oxalic acid is (a) 90 (b) 63 (c) 53 (d) 45 Equivalent weight = \frac{\text{Molecular weight}}{\text{valency}}	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5$ $+7$ 0 2HClO ₃ \rightarrow HClO + Cl ₂ + 2O ₂ + H ₂ O Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃ = $\frac{Mol.mass of HClO_3}{oxidation number change} = \frac{84.45}{5} = 16.89$ 96. One atomic mass is equal to (a) 1.66×10^{-27} g (b) 1.66×10^{-24} g (c) 1.66×10^{-23} g (d) 1.66×10^{-25} kg MHT CET-2011 Ans. (b) : An atomic unit of mass is defined as
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{\frac{\text{Wt.of Cu}}{2.7} = \frac{31.7}{9}}{\text{Wt.of Cu} = \frac{31.7 \times 2.7}{9} = 9.5 \text{ gram}}$ So, weight of Cu deposited = 9.525 gm 92. Equivalent weight of crystalline oxalic acid is (a) 90 (b) 63 (c) 53 (d) 45 Equivalent weight = \frac{\text{Molecular weight}}{\text{valency}}	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5$ $+7$ 0 2HClO ₃ \rightarrow HClO + Cl ₂ + 2O ₂ + H ₂ O Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃ = $\frac{Mol.mass of HClO_3}{oxidation number change} = \frac{84.45}{5} = 16.89$ 96. One atomic mass is equal to (a) 1.66×10^{-27} g (b) 1.66×10^{-24} g (c) 1.66×10^{-23} g (d) 1.66×10^{-25} kg MHT CET-2011 Ans. (b) : An atomic unit of mass is defined as accurately $\frac{1}{12}$ th mass of a C-12 atom.
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{\frac{\text{Wt. of Cu}}{2.7} = \frac{31.7}{9}$ $\text{Wt. of Cu} = \frac{31.7 \times 2.7}{9} = 9.5 \text{ gram}$ So, weight of Cu deposited = 9.525 gm 92. Equivalent weight of crystalline oxalic acid is (a) 90 (b) 63 (c) 53 (d) 45 BCECE-2011 Ans. (b) : Formula of crystalline oxalic acid $C_2H_2O_4$ Equivalent weight = $\frac{\text{Molecular weight}}{\text{valency}}$ $\Rightarrow \frac{126}{2} = 63$	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5$ $+7$ 0 $2HClO_3 \longrightarrow HClO + Cl_2 + 2O_2 + H_2O$ Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃ $= \frac{Mol.mass of HClO_3}{oxidation number change} = \frac{84.45}{5} = 16.89$ 96. One atomic mass is equal to (a) 1.66×10^{-27} g (b) 1.66×10^{-24} g (c) 1.66×10^{-23} g (d) 1.66×10^{-25} kg MHT CET-2011 Ans. (b) : An atomic unit of mass is defined as accurately $\frac{1}{12}$ th mass of a C-12 atom. One, AMU is the average of the proton rest mass and the
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{\frac{\text{Wt.of Cu}}{2.7} = \frac{31.7}{9}}{\text{Wt.of Cu} = \frac{31.7 \times 2.7}{9} = 9.5 \text{ gram}}$ So, weight of Cu deposited = 9.525 gm 92. Equivalent weight of crystalline oxalic acid is (a) 90 (b) 63 (c) 53 (d) 45 Equivalent weight = \frac{\text{Molecular weight}}{\text{valency}}	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5$ $+7$ 0 $2HClO_3 \longrightarrow HClO + Cl_2 + 2O_2 + H_2O$ Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃ $= \frac{Mol.mass of HClO_3}{oxidation number change} = \frac{84.45}{5} = 16.89$ 96. One atomic mass is equal to (a) 1.66×10^{-27} g (b) 1.66×10^{-24} g (c) 1.66×10^{-23} g (d) 1.66×10^{-25} kg MHT CET-2011 Ans. (b) : An atomic unit of mass is defined as accurately $\frac{1}{12}$ th mass of a C-12 atom. One, AMU is the average of the proton rest mass and the neutron rest mass. This is approximately
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. $\therefore \frac{\text{Weight of Cu deposited}}{\text{Weight of Aldeposited}} = \frac{\text{Equivalent weight of Cu}}{\text{Equivalent weight of Al}}$ $\frac{\frac{\text{Wt. of Cu}}{2.7} = \frac{31.7}{9}}{9}$ Wt. of Cu = $\frac{31.7 \times 2.7}{9} = 9.5$ gram So, weight of Cu deposited = 9.525 gm 92. Equivalent weight of crystalline oxalic acid is (a) 90 (b) 63 (c) 53 (d) 45 BCECE-2011 Ans. (b) : Formula of crystalline oxalic acid C ₂ H ₂ O ₄ Equivalent weight = $\frac{\text{Molecular weight}}{\text{valency}}$ $\Rightarrow \frac{126}{2} = 63$ 93. The equivalent weight of MnSO ₄ is half of its	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5$ +7 0 $2HClO_3 \longrightarrow HClO + Cl_2 + 2O_2 + H_2O$ Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃ = $\frac{Mol.mass of HClO_3}{oxidation number change} = \frac{84.45}{5} = 16.89$ 96. One atomic mass is equal to (a) 1.66×10^{-27} g (b) 1.66×10^{-24} g (c) 1.66×10^{-23} g (d) 1.66×10^{-25} kg MHT CET-2011 Ans. (b) : An atomic unit of mass is defined as accurately $\frac{1}{12}$ mass of a C-12 atom. One, AMU is the average of the proton rest mass and the neutron rest mass. This is approximately 1.67377×10^{-27} kilogram (kg) or 1.67377×10^{-24} gram (g).
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. \therefore Weight of Cu deposited Weight of Al deposited =Equivalent weight of Cu Equivalent weight of Al Equivalent weight of Al $\frac{Wt.of Cu}{2.7} = \frac{31.7}{9}$ Wt.of Cu = $\frac{31.7 \times 2.7}{9} = 9.5$ gram So, weight of Cu deposited = 9.525 gm92.Equivalent weight of crystalline oxalic acid is (a) 90 (b) 63 (c) 53 (d) 45BCECE-2011Ans. (b) : Formula of crystalline oxalic acid $C_2H_2O_4$ Equivalent weight =Molecular weight valency \Rightarrow $\frac{126}{2} = 63$ 93.The equivalent weight of MnSO4 is half of its molecular weight when it is converted to	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5$ +7 0 $2HClO_3 \longrightarrow HClO + Cl_2 + 2O_2 + H_2O$ Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃ $= \frac{Mol.mass of HClO_3}{oxidation number change} = \frac{84.45}{5} = 16.89$ 96. One atomic mass is equal to (a) 1.66×10^{-27} g (b) 1.66×10^{-24} g (c) 1.66×10^{-23} g (d) 1.66×10^{-25} kg MHT CET-2011 Ans. (b) : An atomic unit of mass is defined as accurately $\frac{1}{12}$ th mass of a C-12 atom. One, AMU is the average of the proton rest mass and the neutron rest mass. This is approximately
When same current is passed through two electrolytic solution containing copper nitrate $[Cu(NO_2)_2]$ and aluminium nitrate $[Al(NO_3)_3]$ are connected in series. \therefore Weight of Cu deposited Weight of Aldeposited =Equivalent weight of Cu Equivalent weight of Al Equivalent weight of Al $\frac{Wt.of Cu}{2.7} = \frac{31.7}{9}$ Wt.of Cu = $\frac{31.7 \times 2.7}{9} = 9.5$ gram So, weight of Cu deposited = 9.525 gm92.92.Equivalent weight of crystalline oxalic acid is (a) 90 (b) 63 (c) 53 (d) 45BCECE-2011Ans. (b) : Formula of crystalline oxalic acid $C_2H_2O_4$ Equivalent weight = $\frac{126}{2} = 63$ 93.The equivalent weight of MnSO4 is half of its molecular weight when it is converted to (a) Mn_2O_3 (b) MnO_2	mass of HClO ₃ = 84.45) (a) 16.89 (b) 32.22 (c) 84.45 (d) 28.15 (e) 29.7 Kerala-CEE-2011 Ans. (a): $+5$ +7 0 $2HClO_3 \longrightarrow HClO + Cl_2 + 2O_2 + H_2O$ Since oxidation number of Cl decreases from +5 in HClO ₃ to zero in Cl ₂ . Therefore, HClO ₃ acts as an oxidising agent. Eq. mass of HClO ₃ = $\frac{Mol.mass of HClO_3}{oxidation number change} = \frac{84.45}{5} = 16.89$ 96. One atomic mass is equal to (a) 1.66×10^{-27} g (b) 1.66×10^{-24} g (c) 1.66×10^{-23} g (d) 1.66×10^{-25} kg MHT CET-2011 Ans. (b) : An atomic unit of mass is defined as accurately $\frac{1}{12}$ th mass of a C-12 atom. One, AMU is the average of the proton rest mass and the neutron rest mass. This is approximately 1.67377×10^{-27} kilogram (kg) or 1.67377×10^{-24} gram (g). The mass of an atom in AMU is roughly equal to the

97. If The molecular wt. of $Na_2S_2O_3$ and I_2 are M_1	Half reaction occur as :
and M_2 respectively, then what will be the	
equivalent wt. of Na ₂ S ₂ O ₃ and I ₂ in the following reaction?	$2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^{-}$
$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^{-}$	for 2 electron lost by 2 molecules of $S_2O_3^{2-}$ (Sodium
	thiosulphate).
(a) M_1, M_2 (b) $M_1, M_2/2$ (c) $2M_1, M_2$ (d) $M_1, 2M_2$	So one molecule will lost 1 electron so equivalent
WB-JEE-2011	weight is equal to molecular weight divided by 1.
Ans. (b) :	Equivalent weight = Molecular weight 100. The number of water molecules differing in
$\begin{bmatrix} Change in O.N.per mole = 0.5 \times 2 = 1 \\ (+2) & (0) & (+2.5) & (-1) \\ 2S_2O_3^{2^*} & +I_2 & S_4O_6^{2^*} & +2I^* \\ Change in O.N.per mole = 1 \times 2 = 2 \end{bmatrix}$	molecular mass formed by hydrogen isotopes
(+2) (0) $(+2.5)$ (-1)	and oxygen isotopes
$2S_2O_3^{2}$ + I_2 $S_4O_6^{2-}$ + $2I^{-}$	(a) 6 (b) 9 (c) 12 (d) 18
^L Change in O.N. per mole= $1 \times 2 = 2^{J}$	SCRA-2010
Equivalent mass of $S_2O_3^{2-} = \frac{M_1}{1} = M_1$	Ans. (a) : Water molecule mass formed by O^{16} and ${}_{1}H^{1}$,
Equivalent mass of $3_2 0_3 = \frac{1}{1} - 1 0_1$	$_{1}^{1}H^{2}$, $_{1}^{1}H^{3}$ isotope is-
And equivalent mass of $I_2 = \frac{M_2}{2}$	18, 20, 22, 19, 20, 19, 21, 20, 21
2	Water molecule mass formed by O ¹⁷ and ₁ H ¹ , ₁ H ² , ₁ H ³ isotope is–
98. 2g of metal carbonate is neutralized completely by 100 mL of 0.1 N HCl. The equivalent weight	19, 21, 23, 20, 21, 20, 22, 21, 22
of metal carbonate is	Water molecule mass formed by O^{18} and $_1H^1$, $_1H^2$, $_1H^3$
(a) 50 (b) 100	isotope is-
(c) 150 (d) 200	20, 22, 24, 21, 22, 21, 23, 22, 23 So, total 6 different water molecules can be formed
WB-JEE-2011	which have mass-
Ans. (d) : As 2 g of metal carbonate is neutralized by 100 mL of 0.1 N HCl	18, 19, 20, 21, 22, 23
Normality = $\frac{\text{Number of gram equivalents of HCl}}{\text{Normality}}$	101. 0.32 g of metal gave on treatment with an acid 112 mL of hydrogen at NTP. Calculate the
Normality = $\frac{1}{\text{Volume of solution (L)}}$	equivalent weight of the metal.
0.1 N. 1 C. 110 100	(a) 58 (b) 32
$0.1 =$ Number of gram equivalents of HCl $\times \frac{100}{1000}$	(c) 11.2 (d) 24
∴Number of gram – equivalents of HCl	AMU-2010 Ans. (b) : Given, mass of metal = 0.32 g
$\frac{100 \times 0.1}{1000} = 0.01$	volume of hydrogen = 112 ml
	Equivalent weight
Mass of 0.01 gram equivalent metal carbonate = $2g$	$=\frac{\text{Mass of metal} \times 11200}{\text{Volume in mL of hydrogen}}$
Mass of 1 gram equivalents metal carbonate	Volume in mL of hydrogen
$=\frac{2}{200}$ = 200 g	Given, Mass of metal = 0.32 g
$-\frac{1}{0.01} = 200 \text{ g}$	Volume of hydrogen at NTP = 112 mL
\therefore Equivalent mass of metal carbonate = 200	Equivalent weight = $\frac{0.32 \times 11200}{112} = 32g$
99. In the reaction of sodium thiosulphate with l_2 in	112 102. The vapour density of ozone is
aqueous medium the equivalent weight of sodium thiosulphate is equal to	(a) 16 (b) 32
(a) molar mass of sodium thiosulphate	(c) 24 (d) 48
(b) The average of molar masses of $Na_2S_2O_3$ and	BITSAT-2010
I_2 (c) half the molar mass of sodium thiosulphate	Ans. (c) : We know that,
(d) molar mass of sodium thiosulphate×2	Vapour density = $\frac{\text{molecular weight}}{2}$
WB-JEE-2010	Molecular weight of $O_3 = 16 \times 3 = 48$
Ans. (a) : For two molecules of sodium thiosulphate, 2	
electrons are lost by sodium thiosulphate. So, one molecule of sodium thiosulphate will lose one electron	Then, Vapour density of ozone = $\frac{48}{2}$ = 24
eventually.	103. The density of a gas is found to be 1.56g/L at
Therefore, the number of electrons lost is 1.	745 mm pressure and 65°C. What is the
Equivalent weight = $\frac{\text{Molecular weight}}{1}$	molecular mass of the gas? (a) 44.2 u (b) 4.42 u
-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$	JIPMER-2010

Ans. (a): Pressure is P = 745 mm = 0.98 atm (1 atm = 106). 1.5 g of CdCl₂ was found to contain 0.9 g of Cd. Calculate the atomic weight of Cd. 760 mm Hg) (a) 118 (b) 112 Temperature is $T = 65^{\circ}C = 65 + 273 = 338K$ (c) 106.5 (d) 53.25 Density is d = 1.56 g/LAP EAMCET (Engg.)-2009 From ideal gas equation, Ans. (c): Given that, PV = nRT $P = \frac{m}{M \times V} \times R \times T \left\{ \begin{array}{l} \text{Where, } m = \text{given mass.} \\ M = \text{molecular mass} \end{array} \right\}$ $M = \frac{d \times R \times T}{P} \qquad (d = \text{density} = \frac{m}{v})$ $CdCl_2 \rightarrow 1.5g$ $Cd\rightarrow 0.9g$ $Cl_2 \rightarrow 0.6 \text{ g}(1.5-0.9)$ Cl₂→ 0.6 g(1.5–0.9) \therefore 0.6 g chlorine combine with 0.9 g Cd \therefore 71 g chlorine will combine with $\frac{0.9}{0.6} \times 71$ g Cd = $M = \frac{1.56 \times 338 \times 0.0821}{0.98} = 44.2u$ 106.5 g Cd Hence, the molecular mass of the gas is 44.2u \therefore Atomic weight of Cd = 106.5 104. A 0.5 g/L solution of glucose is found to be 107. The standard for atomic mass is isotonic with a 2.5 g/L solution of an organic (b) ₆C¹² (a) ${}^{1}_{1}H$ compound. What will be the molecular weight (c) ${}_{6}C^{14}$ (d) ₈O¹⁶ of that organic compound? (a) 300 **BCECE-2009** (b) 600 (c) 900 (d) 200 Ans. (b) : Carbon-12 is the standard while measuring the atomic mass. because no other nuclides other than **JIPMER-2009** carbon – 12 have exactly whole number masses. Ans. (c) : We know, two solutions are said to be An atomic mass unit is defined as precisely $1/2^{th}$ mass isotonic when pressure are equal. of an atom of carbon-12 The Carbon -12 (C -12) atom Osmotic pressure is given by (For glucose) has six protons and six neutrons in its nucleus. $\frac{nRT}{mRT} = \frac{mRT}{mRT} = \frac{0.5RT}{mRT} = \frac{RT}{mRT}$ The C - 12 isotope of the carbon is the stable isotope MV V М 360 which is not much affected as compared to others For other organic compound. elements. Thus it is chosen as the standard for $\frac{nRT}{V} = \frac{mRT}{MV} = \frac{2.5RT}{M_1}$ expressing the atomic mass and the molecular mass of the substance. 108. The potassium equivalent mass of n = Moles of solute.permanganate in alkaline medium is its m = mass of solute.(a) $\frac{\text{Molar Mass}}{5}$ (b) $\frac{\text{Molar Mass}}{3}$ M = Molecular weight of solute. V = volume of solution. T = Temperature(c) $\frac{\text{Molar Mass}}{2}$ (d) Molar mass itself When both the pressures are equal. <u>RT</u> 2.5RT J & K CET-(2009) 360 M₁ Ans. (d) : The reaction in alkaline medium is: $M_1 = 900$ $KMnO_4 + 1e^- \rightarrow K_2MnO_4$ of 105. The equivalent weight Potassium Thus, n factor = change in oxidation state = 1permanganate (KMnO₄) in neutral medium The equivalent mass of potassium permanganate in will be alkaline medium is its molar mass itself (b) <u>Atomic weight</u> Equivalent weight = $\frac{\text{molar mass}}{n - \text{factor}} \Rightarrow \frac{\text{molar mass}}{1}$ (a) Atomic weight (c) $\frac{\text{Atomic weight}}{3}$ (d) $\frac{\text{Atomic weight}}{5}$ The formula mass of Mohr's salt is 392. The iron present in it is oxidised by KMnO₄ in acid medium. The equivalent mass of Mohr's salt is **MPPET-2009** (a) 392 (b) 31.6 Ans. (c) : In neutral medium-(c) 278 (d) 156 $MnO_4^- + 4H^+ + 3e^- \longrightarrow MnO_2 + 2H_2O$ **JCECE - 2009** Here, n = 3Ans. (a): We know, Formula of Mohr's salt : : Molecular weight = 158.04 $(NH_4)_2SO_4 \cdot FeSO_4 \cdot 6H_2O$: Equivalent weight = $\frac{\text{Atomic Weight}}{\text{n-factor}}$ oxidation of Fe²⁺ ions take place as: $5Fe^{2+} + MnO_4^{-} + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$ \therefore Equivalent weight = $\frac{\text{Atomic Weight}}{2}$ Total change in oxidation number of iron (Fe) = +3 - (+2) = +

117. The number of formula units calcium flouride CaF ₂ present in 146.4 g of CaF ₂ are (molar mass of CaF ₂ is 78.08 g/mol) (a) 1.129×10^{24} CaF ₂ (b) 1.146×10^{24} CaF ₂ (c) 7.808×10^{24} CaF ₂ (d) 1.877×10^{24} CaF ₂	= Gram equivalent of O ₂ $\frac{80}{E} = \frac{20}{8}$
VITEEE- 2008	E = 32
Ans. (a) : $CaF_2 = 146.4g$	121. What is the equivalent weight of $SnCl_2$ in the
Molecular weight $CaF_2 = 78.08 \text{ g/mol}$	following reaction
Formula unit = no. of molecules of CaF_2 .	$\operatorname{SnCl}_2 + \operatorname{Cl}_2 \longrightarrow \operatorname{SnCl}_4 ?$
$Moles = \frac{mass in gm}{molar mass} = \frac{146.4 gm}{78.08 gm} = 1.875$	(a) 95 (b) 45 (c) 60 (d) 30
	Karnataka-CET-2007
$Molecules = Mole \times 6.022 \times 10^{23}$	Ans. (a) : $SnCl_2 + Cl_2 \longrightarrow SnCl_4$
$=1.875 \times 6.022 \times 10^{23}$	190 71
$= 1.129 \times 10^{24} \text{ units of } \text{CaF}_2$	190 _ 71
118. The mass of KClO ₃ required to produce 2.4 mol of oxygen by catalytic decomposition will	$\frac{190}{E_1} = \frac{71}{35.5}$
be	\Rightarrow E ₁ = 95
(a) 19.6 g (b) 196.0 g	122. An element, X has the following isotopic composition :
(c) 122.5 g (d) 245.0 g	200 X : 90% 199 X : 8.0% 202 X : 2.0%
[Given that : $2KClO_{3(g)} \rightarrow 2KCl_{(g)} + 3O_{2(g)}$; molar mass of $KClO_3=122.5$ g]	
AMU – 2007	The weighted average atomic mass of the naturally occurring element X is closed to
Ans. (b) : $2KClO_{3(g)} \rightarrow 2KCl_{(g)} + 3O_{2(g)}$	(a) 201 amu (b) 202 amu
Molar mass of KClO ₃ = 122.5	(c) 199 amu (d) 200 amu
Now, 3 mol of O_2 is produced by 2 mol of KClO _{3.}	NEET-2007
1 mole of O ₂ is producd by $\frac{2}{3}$ mole of KClO ₃	Ans. (d) : weight of 200 X = 0.90 × 200 = 180.00 u
$\frac{1}{3}$ more of $\frac{1}{2}$ is produce of $\frac{1}{3}$	Weight of 199 X = 0.08 × 199 = 15.92 u
24 mole of O ₂ is produced by $\frac{2}{3} \times 2.4$ mole of KClO ₃	Weight of 202 X = 0.02 × 202 = 4.04 u
5	Total weight = $199.96 \approx 200$ amu.
= 1.6 mol of KClO ₃ Therefore, the mass of KClO ₃ required to produce 2.4 mol of oxygen is given as = 1.6×122.5 g =196 g	123. A 0.5 g/L solution of glucose is found to be isotonic with a 2.5 g/L solution of an organic compound. What will be the molecular weight of the torganic compound?
119. The milliequivalent in 60 ml 4M H ₂ SO ₄ is:	of that organic compound? (a) 300 (b) 600
(a) 240 (b) 480	$\begin{array}{c} (a) & 500 \\ (c) & 900 \\ (d) & 200 \\ \end{array}$
(c) 24 (d) 48	AP-EAMCET (Medical), 2006
[BITSAT – 2007]	Ans. (c) : 0.5 g/L 2.5 g/L
Ans. (b) : Relation between normality and molarity is	(Glucose) (Organic compound)
given by the equation	Isotone,
Normality = $n \times Molarity$ Where,	$\pi_1 = \pi_2$
n = number of replaceable hydrogen = 2 (for sulfuric	$C_1RT = C_2RT \qquad \{C_1, C_2 = Molarity\}$
acid)	$C_1 = C_2$
Given	$\frac{0.5/180}{1} = \frac{2.5/M}{1}$
Molarity of the solution $= 4.0M$	
Then	$\frac{0.5}{180} = \frac{2.5}{M}$
$N_{H_2SO_4} = 2 \times 4 = 8 N$	M = 900 g/mole
Milliequivalents = Normality \times volume (in mL)	
$= 8 \times 60$ = 480 m. eq.	124. The equivalent weight of potassium permanganate when it acts as oxidizing agent
$\frac{-480 \text{ III. eq.}}{120. \text{ An oxide of the element contains 20% } O_2 \text{ by}}$	in ferrous ion estimation is
weight. Calculate the equivalent weight of the	(a) 158 (b) 31.6
element.	(c) 79 (d) 39.5
(a) 8 (b) 16	VITEEE- 2006
(c) 32 (d) 12	Ans. (b) : The oxidation of ferrous ion by $KMnO_4$ takes
Karnataka-CET-2007	place in acidic medium as per following reaction

2KMnO ₄ + 8H ₂ SO ₄ + 10FeSO ₄	128. The standard adopted for the determination of
$\rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5Fe_2(SO_4)_3$	atomic weight of elements is based on:
$\therefore \text{ Eq. mass of KMnO}_4$	(a) H^1 (b) C^{12} (c) O^{16} (d) S^{32}
Molecular mass	(c) U (d) S JCECE - 2005
change in oxidation number	Ans. (b) : The standard adopted for the determination of
-	atomic weight of elements is based on C^{12} .
$=\frac{158}{5}=31.6$	Mass of one atom of an element = atomic mass \times
125. KMnO ₄ (mol. wt. = 158) oxidizes oxalic acid in	$\left(\frac{1}{12}\right)^{\text{th}}$ of the mass of one atom of carbon.
acidic medium to CO ₂ and water as follows.	
$5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$	129. The mass of carbon anode consumed (giving
What is the equivalent weight of KMnO ₄ ?	only carbon dioxide) in the production of 270 kg of aluminium metal from bauxite by the
(a) 158 (b) 31.6	Hall process is
(c) 39.5 (d) 79	(a) 270 kg (b) 540 kg
J & K CET-(2006)	(c) 90 kg (d) 180 kg
Ans. (b) : Given that,	NEET-2005
Molecular wt. of $KMnO_4 = 158$ MnO ⁻⁴ $\longrightarrow Mn^2_+$	Ans. (c): $2Al_2O_3 + 3C \longrightarrow 4Al + 3CO_2$ $_{3\times 12 = 36} 4\times 27 = 108$
(Oxidation number of $M_n = +7$) (Oxidation number of $M_n = +2$)	:. For 108 g of Al, 36 g of C is required in above
Equivalent mass of $KMnO_4$ =	reaction ∴ For 270 kg of Al require amount of C
molecular mass	
change in oxidation number	$=\frac{36}{108}\times 270=90$ kg
$=\frac{158}{5}=31.6$	130. What is the ratio of mass of an electron to the
Ç	mass of a proton?
126. 1.520 g of hydroxide a metal on ignition gave	(a) 1:2 (b) 1:1 (c) 1:1837 (d) 1:3
0.995 g of oxide. The equivalent weight of metal is	
(a) 1.52 (b) 0.995	UPTU/UPSEE-2004
(c) 190 (d) 9	Ans. (c) : It is clear that an electron is 1/1837 times lighter than a proton,
UP CPMT-2006	So, ratio between them will be $= 1 : 1837$
Ans. (d) : Since hydroxide and oxide both are involving in same reaction, the ratio of their molecular weight is	Or
equal to the ratio of their equivalent weight.	Mass of proton 1.6×10^{-27}
$\frac{E_{Hydroxide}}{E_{Hydroxide}} = \frac{E_{oxide}}{E_{oxide}}$	$\frac{\text{Mass of proton}}{\text{Mass of electron}} = \frac{1.6 \times 10^{-27}}{9.1 \times 10^{-31}} = 1.8 \times 10^{3}$
$\frac{1}{E_{\text{metal}} + E_{\text{OH}^-}} = \frac{1}{E_{\text{metal}} + E_{\text{OH}^-}}$	131. Equivalent weight of an acid:
	(a) Depends on the reaction involved
$\frac{1.520}{E+17} = \frac{0.995}{E+8}$	(b) Depends upon the number of oxygen atoms
E + 17 E + 8 $E = 9$	present
127. The mass of a photon with wave length 3.6 Åis	(c) Is always constant
(a) 6.135×10^{-29} kg (b) 3.60×10^{-29} kg	(d) None of the above
(a) 6.135×10^{-33} kg (b) 5.00×10^{-10} kg (c) 6.135×10^{-33} kg (d) 3.60×10^{-27} kg	UPTU/UPSEE-2004
(c) 0.135×10 kg (d) 5.00×10 kg AMU-2005	Ans. (a) : Equivalent Weight – The equivalent of a compound can be calculated by dividing the molecular
Ans. (a) : $\lambda = 3.6 \times 10^{-10}$ m	weight by the number of positive or negative electrical
We know, de-Broglie wavelength	charge that result from the dissolution of the compound
$h \rightarrow h \rightarrow h \rightarrow h \rightarrow h$	(i.e. acidity or basicity).
$\lambda = \frac{h}{p} \Rightarrow \lambda = \frac{h}{mv} \Rightarrow m = \frac{h}{\lambda v}$	Example- NaOH
$\lambda = 3.6 \text{ A}^\circ = 3.6 \times 10^{-10} \text{m}$	$\frac{23+16+2}{1} = \frac{\text{Molecular weight}}{\text{Basicity}} = 41$
Velocity of Photon = velocity of light	
h $6.626 \times 10^{-34} \text{Js}^{-1}$	Equivalent weight of an acid depends on the reaction
$m = \frac{h}{\lambda v} = \frac{6.626 \times 10^{-34} \text{Js}^{-1}}{(3.6 \times 10^{-10} \text{m})(3 \times 10^8 \text{ms}^{-1})}$	involved with the base.
$= 6.135 \times 10^{-29}$ kg.	The equivalent weight of an acid does not depend on the number of oxygen atoms presents.
0.155 · 10 Kg.	number of oxygen atoms presents.


	1
132. In acidic medium, dichromate ion oxidizes	Ans. (c) : Equivalent weight of $KMnO_4 = 158$
ferrous ion to ferric ion. If the gram molecular	KMnO ₄ as an oxidizer in acidic media
weight of potassium dichromate is 294 g, its	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O$
gram equivalent weight is g.	
(a) 294 (b) 147	In Acidic medium
(c) 49 (d) 24.5	$_$ Molecular weight $158_{-21.6}$
AP-EAMCET (Medical), 2003	$= \frac{\text{Molecular weight}}{\text{No. of electron lost or gained}} = \frac{158}{5} = 31.6$
Ans. (c) : From reaction-	_
$Cr_{2}O_{7}^{2-} + 14H^{+} + 6Fe^{2+} \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_{2}O$	In Basic Medium = $\frac{\text{Molecular weight}}{3} = \frac{158}{3} = 52.67$
Potassium dichromate ($K_2Cr_2O_7$) acts as a strong	3 3
oxidizing agent and itself gets reduced to Cr^{3+} .	Molecular weight
	In Neutral Medium = $\frac{\text{Molecular weight}}{1} = 158$
$Cr_2O_7^{2-} + 6e^- \longrightarrow 2Cr^{3+}$	136. The oxygen obtained from 72 kg water is
change in oxidation number $= 6$	
Equivalent weight of	(a) 72 kg (b) 46 kg
K G O Molecular Weight	(c) 50 kg (d) 64 kg
$K_2Cr_2O_7 = \frac{Molecular Weight}{Total change in oxidation number}$	UP CPMT-2002
	Ans. (d) : Molecular weight of $H_2O = 18$
$=\frac{294}{6}=49g$	Atomic weight of oxygen $= 16$
	\therefore 18 gm H ₂ O contain = 16 gm Oxygen
133. The number of gram equivalent of H ₂ SO ₄ in	
1000 mL 3M solution is:	$\therefore 72 \text{ kg H}_2\text{O contain} = \frac{72 \times 16}{18}$
(a) 3 (b) 6	= 64000 gm or 64 kg.
(c) 4 (d) 1.5	
JCECE - 2003	137. Specific volume of cylindrical virus particle is $(22 - 10^{-2})^{-3}$
$H_2SO_4 \longrightarrow 2H^+ + SO_4^{2-}$	6.02×10^{-2} cc/g whose radius and length are 7 Å
Ans. (b):	and 10 Å respectively. If $N_A = 6.02 \times 10^{23}$, find
\therefore 1 mole H ₂ SO ₄ = 2 g - equivalent of H ₂ SO ₄	molecular weight of virus.
\therefore 3 mole H ₂ SO ₄ = 2 × 3 g - equivalent of H ₂ SO ₄	(a) 15.4 kg/mol (b) $1.54 \times 10^4 \text{ kg/mol}$
$= 6 \text{ g equivalent of } H_2SO_4$	(c) 3.08×10^4 kg/mol (d) 3.08×10^4 kg/mol
	NEET-2001
134. Assertion: Atoms can neither be created nor	NEET-2001
134. Assertion: Atoms can neither be created nor destroyed.	NEET-2001
134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{\AA} = 7 \times 10^{-8}$
134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of	NEET-2001 Ans. (a) : Given,
134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of	NEET-2001 Ans. (a) : Given, Radius (r) = $7 \text{ Å} = 7 \times 10^{-8}$ Length (L) = $10 \text{ Å} = 10 \times 10^{-8}$ cm
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. 	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{\AA} = 7 \times 10^{-8}$
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and 	NEET-2001Ans. (a) : Given, Radius (r) = 7 Å = 7×10^{-8} Length (L) = 10 Å = 10×10^{-8} cmSpecific volume (volume of 1g of cylindrical virus)= 6.02×10^{-2} cc/gm
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but 	NEET-2001 Ans. (a) : Given, Radius (r) = 7 Å = 7×10^{-8} Length (L) = 10 Å = 10×10^{-8} cm Specific volume (volume of 1g of cylindrical virus)= 6.02×10^{-2} cc/gm Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the 	NEET-2001 Ans. (a) : Given, Radius (r) = $7 \text{ Å} = 7 \times 10^{-8}$ Length (L) = $10 \text{ Å} = 10 \times 10^{-8} \text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 \text{L} = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. 	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{\AA} = 7 \times 10^{-8}$ Length (L) = $10\text{\AA} = 10 \times 10^{-8}$ cm Specific volume (volume of 1g of cylindrical virus)= 6.02×10^{-2} cc/gm Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23}$ cc
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is 	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{\AA} = 7 \times 10^{-8}$ Length (L) = $10\text{\AA} = 10 \times 10^{-8}$ cm Specific volume (volume of 1g of cylindrical virus)= 6.02×10^{-2} cc/gm Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23}$ cc Wt of one virus particle = <u>Volume</u>
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. 	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{\AA} = 7 \times 10^{-8}$ Length (L) = $10\text{\AA} = 10 \times 10^{-8}$ cm Specific volume (volume of 1g of cylindrical virus)= 6.02×10^{-2} cc/gm Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23}$ cc
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are correct. 	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{\AA} = 7 \times 10^{-8}$ Length (L) = $10\text{\AA} = 10 \times 10^{-8}$ cm Specific volume (volume of 1g of cylindrical virus)= 6.02×10^{-2} cc/gm Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23}$ cc Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are meason are correct. 	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{\AA} = 7 \times 10^{-8}$ Length (L) = $10\text{\AA} = 10 \times 10^{-8}$ cm Specific volume (volume of 1g of cylindrical virus)= 6.02×10^{-2} cc/gm Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23}$ cc Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ \therefore Molecular wt. of virus = wt. of N _A particle
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are reason are incorrect. (e) If the Assertion is incorrect but the Reason is incorrect. 	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{\AA} = 7 \times 10^{-8}$ Length (L) = $10\text{\AA} = 10 \times 10^{-8}$ cm Specific volume (volume of 1g of cylindrical virus)= 6.02×10^{-2} cc/gm Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23}$ cc Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ \therefore Molecular wt. of virus = wt. of N _A particle
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are reason are incorrect. (e) If the Assertion is incorrect but the Reason is correct. 	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{\AA} = 7 \times 10^{-8}$ Length (L) = $10\text{\AA} = 10 \times 10^{-8}$ cm Specific volume (volume of 1g of cylindrical virus)= 6.02×10^{-2} cc/gm Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23}$ cc Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ \therefore Molecular wt. of virus = wt. of N _A particle $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are are incorrect. (e) If the Assertion is incorrect but the Reason is incorrect. 	NEET-2001 Ans. (a) : Given, Radius (r) = $7 \text{ Å} = 7 \times 10^{-8}$ Length (L) = $10 \text{ Å} = 10 \times 10^{-8} \text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23} \text{ cc}$ Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ \therefore Molecular wt. of virus = wt. of N _A particle $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$ = 15400 g/mol = 15.4 kg/mol
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are reason are incorrect. (e) If the Assertion is incorrect but the Reason is correct. (a) If both the Assertion and Reason are are incorrect. (b) If both the Assertion and Reason are correct but Reason is not a correct but Reason is incorrect. (c) If the Assertion is incorrect but the Reason are incorrect. (d) If both the Assertion and Reason are are incorrect. (e) If the Assertion is incorrect but the Reason is correct. (f) If the Assertion is incorrect but the Reason is a correct. 	NEET-2001Ans. (a) : Given, Radius (r) = $7 \text{ Å} = 7 \times 10^{-8}$ Length (L) = $10 \text{ Å} = 10 \times 10^{-8} \text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23} \text{ cc}$ Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ \therefore Molecular wt. of virus = wt. of N _A particle $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$ $= 154000 \text{ gmol} = 15.4 \text{ kg/mol}$ 138. The oxide of an element contains 67.67%
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are reason is correct. (e) If the Assertion is incorrect but the Reason is correct. (a) If both the Assertion is incorrect but the Reason is not a correct but Reason are incorrect. (b) If both the Assertion and Reason are incorrect. (c) If the Assertion is incorrect but the Reason is correct. (b) If both the Assertion and Reason are incorrect. (c) If the Assertion is incorrect but the Reason is correct. (d) If both the Assertion is incorrect but the Reason is correct. (e) If the Assertion is incorrect but the Reason is correct. (f) Dalton hypothesized the law of conservation of mass. According to this law atoms can neither be 	NEET-2001Ans. (a) : Given, Radius (r) = 7Å = 7 × 10^{-8} Length (L) = 10Å = 10 × 10^{-8} cmSpecific volume (volume of 1g of cylindrical virus)= 6.02×10^{-2} cc/gmVolume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23}$ ccWt. of one virus particle $= \frac{Volume}{Specific volume}$ \therefore Molecular wt. of virus = wt. of N _A particle $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$ $= 15400g/mol = 15.4 \text{ kg/mol}$ 138. The oxide of an element contains 67.67% oxygen and the vapour density of its volatile
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are reason is correct. (e) If the Assertion is incorrect but the Reason is correct. (f) If the Assertion is incorrect but the Reason is correct. (h) If both the Assertion and Reason are incorrect. (c) If the Assertion is incorrect but the Reason is correct. (d) If both the Assertion is incorrect but the Reason is correct. (e) If the Assertion is incorrect but the Reason is correct. AIIMS-2002 Ans. (c): Dalton hypothesized the law of conservation of mass. According to this law atoms can neither be created nor destroyed. 	NEET-2001Ans. (a) : Given, Radius (r) = $7 \text{ Å} = 7 \times 10^{-8}$ Length (L) = $10 \text{ Å} = 10 \times 10^{-8} \text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23} \text{ cc}$ Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ \therefore Molecular wt. of virus = wt. of N _A particle $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$ $= 154000 \text{ gmol} = 15.4 \text{ kg/mol}$ 138. The oxide of an element contains 67.67%
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are reason is correct. (e) If the Assertion is incorrect but the Reason is correct. Ans. (c): Dalton hypothesized the law of conservation of mass. According to this law atoms can neither be created nor destroyed. Avogadro's law states that under similar condition of	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{ Å} = 7 \times 10^{-8}$ Length (L) = $10\text{ Å} = 10 \times 10^{-8}\text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23} \text{ cc}$ Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ \therefore Molecular wt. of virus = wt. of N _A particle $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-23}} \times 6.02 \times 10^{23}$ = 15400 g/mol = 15.4 kg/mol 138. The oxide of an element contains 67.67% oxygen and the vapour density of its volatile chloride is 79. Equivalent weight of the element is
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason and Reason are incorrect. (e) If the Assertion is incorrect but the Reason is correct. Ans. (c): Dalton hypothesized the law of conservation of mass. According to this law atoms can neither be created nor destroyed. Avogadro's law states that under similar condition of temperature and pressure, equal volume of gases	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{ Å} = 7 \times 10^{-8}$ Length (L) = $10\text{ Å} = 10 \times 10^{-8}\text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23} \text{ cc}$ Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ $\therefore \text{Molecular wt. of virus = wt. of N_A particle}$ $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$ = 15400 g/mol = 15.4 kg/mol 138. The oxide of an element contains 67.67% oxygen and the vapour density of its volatile chloride is 79. Equivalent weight of the element is (a) 2.46 (b) 3.82
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason and Reason are incorrect. (e) If the Assertion is incorrect but the Reason is correct. (f) If the Assertion is incorrect but the Reason is correct. (g) If the Assertion is incorrect but the Reason is correct. (h) If both the Assertion and Reason are incorrect. (h) If both the Assertion is incorrect but the Reason is correct. (h) If a both the Assertion is incorrect but the Reason is correct. (h) If a both the Assertion is incorrect but the Reason is correct. (h) If a both the Assertion is incorrect but the Reason is correct. (h) If a both the Assertion is incorrect but the Reason is correct. (h) If a both the assertion is incorrect but the Reason is correct. (h) If a both the assertion is incorrect but the Reason is correct. (h) If a both the assertion is incorrect but the Reason is correct. 	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{ Å} = 7 \times 10^{-8}$ Length (L) = $10\text{ Å} = 10 \times 10^{-8}\text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23} \text{ cc}$ Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ \therefore Molecular wt. of virus = wt. of N _A particle $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-23}} \times 6.02 \times 10^{23}$ = 15400 g/mol = 15.4 kg/mol 138. The oxide of an element contains 67.67% oxygen and the vapour density of its volatile chloride is 79. Equivalent weight of the element is
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are are incorrect. (e) If the Assertion is incorrect but the Reason is correct. (a) If both the Assertion is conservation of mass. According to this law atoms can neither be created nor destroyed. Avogadro's law states that under similar condition of temperature and pressure, equal volume of gases contain equal number of atoms. 	NEET-2001 Ans. (a) : Given, Radius (r) = $7\text{ Å} = 7 \times 10^{-8}$ Length (L) = $10\text{ Å} = 10 \times 10^{-8}\text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23} \text{ cc}$ Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ $\therefore \text{Molecular wt. of virus = wt. of N_A particle}$ $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$ = 15400 g/mol = 15.4 kg/mol 138. The oxide of an element contains 67.67% oxygen and the vapour density of its volatile chloride is 79. Equivalent weight of the element is (a) 2.46 (b) 3.82
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are mincorrect. (e) If the Assertion is incorrect but the Reason is correct. (e) If the Assertion is incorrect but the Reason is correct. Ans. (c): Dalton hypothesized the law of conservation of mass. According to this law atoms can neither be created nor destroyed. Avogadro's law states that under similar condition of temperature and pressure, equal volume of gases contain equal number of atoms. Therefore Assertion is correct but Reason is incorrect. 	NEET-2001 Ans. (a) : Given, Radius (r) = $7 \text{ Å} = 7 \times 10^{-8}$ Length (L) = $10 \text{ Å} = 10 \times 10^{-8} \text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23} \text{ cc}$ Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ \therefore Molecular wt. of virus = wt. of N _A particle $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$ = 15400 g/mol = 15.4 kg/mol 138. The oxide of an element contains 67.67% oxygen and the vapour density of its volatile chloride is 79. Equivalent weight of the element is (a) 2.46 (b) 3.82 (c) 4.36 (d) 4.96
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are meason are incorrect. (e) If the Assertion is incorrect but the Reason is correct. (e) If the Assertion is incorrect but the Reason is correct. Ans. (c): Dalton hypothesized the law of conservation of mass. According to this law atoms can neither be created nor destroyed. Avogadro's law states that under similar condition of temperature and pressure, equal volume of gases contain equal number of atoms. Therefore Assertion is correct but Reason is incorrect. 135. The equivalent weight of KMnO₄ in acidic medium is	NEET-2001 Ans. (a) : Given, Radius (r) = $7 \text{ Å} = 7 \times 10^{-8}$ Length (L) = $10 \text{ Å} = 10 \times 10^{-8} \text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23} \text{ cc}$ Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ $\therefore \text{Molecular wt. of virus = wt. of N_A particle}$ $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$ = 15400 g/mol = 15.4 kg/mol 138. The oxide of an element contains 67.67% oxygen and the vapour density of its volatile chloride is 79. Equivalent weight of the element is (a) 2.46 (b) 3.82 (c) 4.36 (c) 4.96 AIIMS-1998 Ans. (b): Equivalent weight of an element is its weight
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are lincorrect. (e) If the Assertion is incorrect but the Reason is correct. (e) If the Assertion is incorrect but the Reason is correct. Ans. (c): Dalton hypothesized the law of conservation of mass. According to this law atoms can neither be created nor destroyed. Avogadro's law states that under similar condition of temperature and pressure, equal volume of gases contain equal number of atoms. Therefore Assertion is correct but Reason is incorrect. 135. The equivalent weight of KMnO₄ in acidic medium is (a) 158 (b) 52.67 	NEET-2001 Ans. (a) : Given, Radius (r) = $7 \text{ Å} = 7 \times 10^{-8}$ Length (L) = $10 \text{ Å} = 10 \times 10^{-8} \text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23} \text{ cc}$ Wt. of one virus particle = $\frac{\text{Volume}}{\text{Specific volume}}$ \therefore Molecular wt. of virus = wt. of N _A particle $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$ = 15400 g/mol = 15.4 kg/mol 138. The oxide of an element contains 67.67% oxygen and the vapour density of its volatile chloride is 79. Equivalent weight of the element is (a) 2.46 (b) 3.82 (c) 4.36 (d) 4.96 AIIMS-1998 Ans. (b): Equivalent weight of an element is its weight which reacts with 8 gm of oxygen to form oxide.
 134. Assertion: Atoms can neither be created nor destroyed. Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. (c) If the Assertion is correct but Reason is incorrect. (d) If both the Assertion and Reason are meason are incorrect. (e) If the Assertion is incorrect but the Reason is correct. (e) If the Assertion is incorrect but the Reason is correct. Ans. (c): Dalton hypothesized the law of conservation of mass. According to this law atoms can neither be created nor destroyed. Avogadro's law states that under similar condition of temperature and pressure, equal volume of gases contain equal number of atoms. Therefore Assertion is correct but Reason is incorrect. 135. The equivalent weight of KMnO₄ in acidic medium is	NEET-2001 Ans. (a) : Given, Radius (r) = $7 \text{ Å} = 7 \times 10^{-8}$ Length (L) = $10 \text{ Å} = 10 \times 10^{-8} \text{ cm}$ Specific volume (volume of 1g of cylindrical virus)= $6.02 \times 10^{-2} \text{ cc/gm}$ Volume of virus $\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$ $= 154 \times 10^{-23} \text{ cc}$ Wt. of one virus particle $= \frac{\text{Volume}}{\text{Specific volume}}$ $\therefore \text{Molecular wt. of virus = wt. of N_A particle}$ $= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$ = 15400 g/mol = 15.4 kg/mol 138. The oxide of an element contains 67.67% oxygen and the vapour density of its volatile chloride is 79. Equivalent weight of the element is (a) 2.46 (b) 3.82 (c) 4.36 (c) 4.96 AIIMS-1998 Ans. (b): Equivalent weight of an element is its weight

1 g of oxygen will combine with $\frac{32.33}{67.67}$ g of element to	Ans. (c): Molecular weight = equivalent weight \times n-
	factor (Where, n-factor of the metal ion = 2.)
form oxide.	So molecular weight = $12 \times 2 = 24$
8 g of oxygen will combine with $8 \times \frac{32.33}{67.67} = 3.82$ g of	Since it is bivalent ion it requires only one oxygen
element to form oxide.	combine to form oxide.
Hence, the equivalent weight of the element is 3.82 g.	Therefore, the molecular wt. of the oxide is molecular
139. The weight of a single atom of oxygen is:	wt. = molecular wt. of metal + molecular wt. of oxygen
(a) 1.057×10^{23} g (b) 3.556×10^{23} g	i.e. molecular wt. $= 24 + 16 = 40$
(c) 2.656×10^{-23} g (d) 4.538×10^{-23} g	143. The weight to a metal of equivalent weight 12, which will give 0.475 g of its chloride, is
(c) 2.050×10 g (d) 4.558×10 g AIIMS-1998	
Animis-1996 Ans. (c): Molar mass of oxygen atoms = 16 g mol^{-1}	(a) 0.18 g (b) 0.12 g (c) 0.24 g (d) 0.16 g
Number of atom in 1 mole = 6.022×10^{23}	AIIMS-1994
	Ans. (b) : Equivalent weight of metal chloride =
Therefore, 1 atom of oxygen weight = $\frac{16}{6.022 \times 10^{23}}$	Equivalent weight of Metal + Equivalent wt. of
$= 2.657 \times 10^{-23} \mathrm{g}$	Cl = 12 + 35.5 = 47.5
140. Haemoglobin contains 0.334% of iron by	47.5 g of metal chloride will give 12g of metal Then, 0.475g of metal chloride will give -
weight. The molecular weight of haemoglobin	12×0.475
is approximately 67200. The number of iron	$= \frac{12 \times 0.475}{47.5}$
atoms (Atomic weight of Fe is 56) present in	= 0.12g
one molecules of haemoglobin is (a) 4 (b) 6	144. The molecular mass of a volatile substance may
(a) + (b) + (c)	be measured by
NEET-1998	(a) Liebig's method
Ans. (a) : Given that,	(b) Hofmann's method
Molecular weight of haemoglobin = 67200	(c) Victor Meyer's method
It contains 0.334% of iron by weight.	(d) none of these
Weight of iron = $\frac{0.334}{100} \times 67200 = 224.448$	AIIMS-1994 Ans. (c): The molecular mass of volatile substances
100	can be determined by Victor Meyar. In this method
No. of atoms = $\frac{\text{weight of iron in haemoglobin}}{\text{Atomic weight}}$	primary, secondary and tertiary alcohols are subjected
Atomic weight	to a series of chemical analysis and the colour of
$=\frac{224.448}{56}$	resulting solution observed. A known mass of the
	compound is vaporized in an instrument called Victor Meyar tube.
= 4.008	145. What is the weight of oxygen required for the
141. If active mass of a 6% solution of a compound is 2, its molecular weight will be	complete combustion of 2.8 kg of ethylene?
(a) 30 (b) 15	(a) 2.8 kg (b) 6.4 kg
(c) 60 (d) 22	(c) 9.6 kg (d) 96 kg
AIIMS-1996	NEET-1989
Ans. (a): Given, 6% of solution contains 6g of	Ans. (c): C_2H_4 (ethylene) + $3O_2 \longrightarrow 2CO_2 + 2H_2O$
Compound in 100 ml of solution.	To oxidise 1mol of ethylene we required 3 moles of
Then, mass of Compound present in 1 liter of Solution = 60 g	oxygen.
-	Then, For oxidising 28g of C_2H_4 ,
\Rightarrow No. of moles = $\frac{\text{given mass}}{\text{molar mass}} = \frac{60\text{g}}{\text{M}}$	We need $3 \times 32 = 96g$ of oxygen.
\Rightarrow Active mass is defined as number of moles per litre.	For 2.8kg of C_2H_4 ,
-	
So, Active mass = $\frac{60g}{M}$ / litre	We need = $\frac{96}{28} \times 2.8$ =9.6kg of oxygen.
141	146. 2.76 g of silver carbonate on being strongly
$2 = \frac{60}{M} \times \frac{1}{1L}$	heated yields a residue weighing
Then, M (molar mass) = 30	(a) 3.54 g (b) 3.0 g
142. A bivalent metal has the equivalent weight of	(c) 1.36 g (d) 2.16 g
12. The molecular weight of its oxide will be	IIT JEE 1997
(a) 36 (b) 24 (d) 22	Ans. (d) :
(c) 40 (d) 32	$Ag_2CO_3(s) \longrightarrow 2Ag(s) + CO_2(g) + \frac{1}{2}O_2(g)$
AIIWIS-1994	

Molecular weight of Ag ₂ CO ₃ = 276 gm and molecular weight of Ag = $2 \times 108 = 216$ gm $\therefore 276$ gm of Ag ₂ CO ₃ give = 216 gm of Ag $\therefore 1$ gm of Ag ₂ CO ₂ give = $\frac{216}{276}$ gm of Ag Then, 2.76 gm Ag ₂ CO ₂ give = $\frac{216}{276} \times 2.76$ gm of Ag = 2.16 gm of Ag 147. The molecular weight of O ₂ and SO ₂ are 32 and 64 respectively At 15 ^o C and 150 mmHg pressure, one litre of O ₂ contains 'N' molecules. The number of molecules in two litres of SO ₂ under the same conditions of temperature and pressure will be (a) N/2 (b) N	149. A commercially cold conc. HCl is 35% HCl by mass. If the density of this commercial acid is 1.46 g/mL, the molarity of this solution is: (Atomic mass:Cl=35.5 amu, H=1 amu) (a) 10.2 M (b) 12.5 M (c) 14.0 M (d) 18.2 M JEE Main-26.06.2022, Shift-I Ans. (c) : Given, Concentration of HCl = 35% by mass Density = 1.46 g/mL We know that- Molarity = $\frac{(W/W\%) \times d \times 10}{(Molar mass)_{solute}}$ = $\frac{35 \times 1.46 \times 10}{36.5}$ = 14.0M
(c) $2N$ (d) $4N$	150. Which one of the following contains the highest
AIPMT 1990	number of oxygen atoms?
Ans. (c) : Avogadro's law states, equal volumes of all gases contain equal number of molecules under similar, condition of temperature and pressure. Given, $T = 15^{\circ}C$ P = 759 mm Volume of $O_2 = v_1 = 1$ lit	 (a) One mole of aluminum sulphate (b) Three moles of ferrous sulphate (c) Three moles of hydrogen peroxide (d) Two moles of potassium permanganate (e) One mole of potassium dichromate Kerala CEE -03.07.2022
No. of O_2 molecules = $n_1 = N$	Ans. (a) : One mole of aluminum sulphate $=Al_2 (SO_4)_3$
Volume of $SO_2 = V_2 = 2$ lit	It contain 12 mole of oxygen
No. of molecule of $SO_2 = n_2 = 2$ int No. of molecule of $SO_2 = n_2 = ?$	1 mole of oxygen = N_A atoms
	\therefore 12 mole of oxygen = 12 N _A atoms
From Avogadro's law, $\frac{v_1}{n_1} = \frac{v_2}{n_2}$ Avogadro's law	(b) Three moles of ferrous sulphate = 3 FeSO₄It contain 12 mole of oxygen
$\frac{1}{N} = \frac{2}{n_2}$	\therefore 12 mole of oxygen = 12 N _A atoms.
N n ₂	(c) Three moles of hydrogen peroxide = $3H_2O_2$
$n_2 = 2N$	It contain 6 mole of oxygen
	\therefore 6 mole of oxygen = 6 N _A atoms
3. Mole Concept and Molar Mass	(d) Two moles of potassium permanganate = $2KMnO_4$
148. 2.0 g of H ₂ gas is adsorbed on 2.5 g of platinum	It contain 8 mole of oxygen
powder at 300 K and 1 bar pressure. The	\therefore 8 mole of oxygen =8N _A atoms
volume of the gas adsorbed per gram of the	(e) One mole of potassium dichromate = $K_2Cr_2O_7$ It contain 7 mole of evugen
adsorbent is mL.	It contain 7 mole of oxygen \therefore 7 mole of oxygen =7 N _A atoms
(Given: $\mathbf{R} = \overline{\mathbf{0.083 L}}$ bar \mathbf{K}^{-1} mol ⁻¹)	Here, N_A =Avogadro number
JEE Main-26.06.2022, Shift-I	So, option (a) one mole of aluminum sulphate
Ans. (9960) : Given,	contains the highest number of oxygen atoms.
Mass of $H_2 = 2.0g$	151. Two elements A and B which form 0.15 moles
Mass of platinum (Pt) = $2.5g$	of A_2B and AB_3 type compounds. If both A_2B
Temperature = 300 K	and AB_3 weigh equally, then the atomic weight
Pressure = 1 bar	of a is times of atomic weight of B.
$R = 0.083 L bar K^{-1} mol^{-1}$	JEE Main-27.06.2022, Shift-I
	Ans. (2) : Given,
$V_{H_2(g)} = \frac{n \times R \times T}{1}$	Moles of $A_2B = 0.15$ mole
_	Moles of $AB_3 = 0.15$ mole
$=\frac{2}{2}\times\frac{0.083\times300}{1}=24.9L$	Weight of A_2B = Weight of AB_3
2 1	Let molar mass of element $A = x g$
\therefore 24.9L H ₂ (g) adsorbed on 2.5 Pt	and molar mass of element $B = y g$
\therefore Volume of H ₂ (g) adsorbed on 1g Pt	We know that –
-24.9 - 0.001 - 0.000 - 100	No. of moles = $\frac{given mass}{given mass}$
$=\frac{24.9}{2.5}=9.96L=9960 \text{ mL}$	No. of moles = $\frac{\text{given mass}}{\text{molar mass}}$
2.0	110101 11055

For compound A₂B -Weight of oxygen = $\frac{45}{2} \left[\frac{756}{210} \right] \times 32 = 2592 \text{ g}$ Molar mass $(2x + y) = \frac{\text{given mass}}{\text{no. of moles}} = \frac{w}{0.15}$ Weight of $CO_2 = 15 \left[\frac{756}{210} \right] \times 44 = 2376 \text{ g.}$ For compound AB_3 – Molar mass $(x + 3y) = \frac{W}{0.15}$ Geraniol, a volatile organic compound, is a component of rose oil. The density of the vapour is 0.46 gL⁻¹ at 257°C and 100 mm Hg. So. The molar mass of geraniol is ---- g mol²¹ x + 3y = 2x + y2x - x = 3y - yx = 2y(Nearest Integer) [Given: $R = 0.082 L atm K^{-1} mol^{-1}$] JEE Main-29.06.2022, Shift-I So, atomic weight of A is 2 times of atomic weight of $P = \frac{dRT}{M}$ B. Ans. (152) : 152. Choose the correct answer: Given below are two statements: one is labelled $P = \frac{100}{760} atm$ 88 Assertion (A) and the other is labelled as T = 256 + 273 = 530KReason (R). $d = 0.46 \frac{g}{L}$ Assertion (A): At 10°C, the density of a 5 M solution of KCl [atomic masses of K and Cl are 39 and 35.5 g mol⁻¹ respectively], is 'X' g mL⁻¹. $M = \frac{0.46 \times 0.082 \times 530}{100} \times 760$ The solution is cooled to -21° C. The molality of the solution will remain unchanged. = 151.92 = 152Reason (R): The molality of a solution does not Production of iron in blast furnace follows the 155. change with temperature as mass remains following equation: unaffected with temperature. $Fe_{0}O_{1}(s) + 4CO(g) \rightarrow 3Fe(1) + 4CO_{1}(g)$ In the light of the above statement choose the correct answer from the options given below. When 4.640 kg of Fe₃O₄ and 2.520 kg of CO are allowed to react then the amount of iron (in g) (a) Both (A) and (R) are true and (R) is the produced is: correct explanation of (A) Molar Atomic mass (g mol^{-1}): Fe = [Given: (b) Both (A) and (R) are true but (R) is not the 56 correct explanation of (A) Molar Atomic mass (g mol⁻¹): O = 16(c) (A) is true but (R) is false Molar Atomic mass (g mol⁻¹): C =12] (d) (A) is false but (R) is true (a) 1400 (b) 2200 JEE Main-27.06.2022, Shift-I (c) 3360 (d) 4200 Ans. (a) : We know that molality and mass both are JEE Main-29.06.2022, Shift-I temperature independent so, on changing temperature. Ans. (c) : Given, Molality and mass remain unchanged. The reaction is -If a rocket runs on a fuel $(C_{15}H_{30})$ and liquid 153. $Fe_3O_4(s) + 4CO(g) \longrightarrow 3Fe(l) + 4CO_2(g)$ oxygen, the weight of oxygen required and CO₂ $Fe_3O_4 = 4.640$ kg. released for every litre of fuel respectively are: CO = 2.520 kg. (Given: density of the fuel is 0.756 g/mL) Molar mass of Fe₃O₄ = $3 \times 56 + 4 \times 16$ (a) 1188 g and 1296 g (b) 2376 g and 2592 g = 232 g(c) 2592 g and 2376 g (d) 3429 g and 3142 g 1 mole of Fe₃O₄ is produced 3 mole of Fe JEE Main-24.06.2022, Shift-I $= 3 \times 56 = 168$ g Fe Ans. (c) : Given, : 232 g FeO₄ produce 168 g Fe. Density of fuel = 0.756 g/mLMolecular formula of fuel = $C_{15}H_{30}$: 4.640 kg Fe₃O₄ will produce = $\frac{168}{232} \times 4.640$ kg Then, molar mass of fuel = $15 \times 12 + 30 \times 1$ = 210 g= 3.36 kgDensity = <u>mass</u> = 3360 gSo, the correct option is (c) volume Number of grams of bromine that will 156. $Mass = density \times volume$ completely react with 5.0 g of pent-1-ene $= 0.756 \times 1000 = 756$ gm. $\times 10^{-2}$ g. is The reaction is ----(Atomic mass of Br= 80 g/mol) [Nearest $C_{15}H_{30}(l) + \frac{45}{2}O_2(g) \longrightarrow 15CO_2(g) + 15H_2O$ Integer] JEE Main-25.06.2022, Shift-I

\therefore 36 g of H ₂ O produce 1 mole of oxygen	166. A gas is found to have a formula $[CO]_x$. Its
∴ 108 g of water will produce oxygen	vapour density is 70, the x is
$=\frac{108}{36}=3\mathrm{mole}$	(a) 3.0 (b) 3.5 (c) 5.0 (d) 6.5
	BCECE-2007
163. The number of moles of $KMnO_4$ reduced by one mole of KI in alkaline medium is	BITSAT-2006
(a) one fifth (b) five (c) one (d) two	Ans. (c) : Vapour density = $\frac{(\text{molecular weight})}{2}$
JCECE-2012	2
JIPMER-2007	Formula mass CO is = 28
Ans. (d) : In alkaline solution, KMnO ₄ is reduced to	Vapour density of the gas $= 70$
MnO_2 (colourless).	Molecular weight of gas = $2 \times \text{vapour density} = 2 \times 70$
$2KMnO_4 + 2H_2O \longrightarrow MnO_2 + 2KOH + 3[O]$	= 140
$KI + 3[O] \longrightarrow KIO_3$	$x = \frac{\text{molecular weight}}{\text{weight of CO}}$
$\frac{\text{KI} + 3[\text{O}] \longrightarrow \text{KIO}_3}{2\text{KMnO}_4 + 2\text{H}_2\text{O} + \text{KI} \longrightarrow 2\text{MnO}_2 + 2\text{KOH}}$	weight of CO
+ KIO ₃ Hence, two moles of KMnO ₄ are reduced by one mole	$x = \frac{140}{28} = 5$
of KI. 164. In Kjeldahl' s method, ammonia from 5g of	167. Number of atoms of He is 100 amu of He
food neutralizes 30 cm ³ of 0.1 N acid. The	(atomic wt. of He is 4) are :
percentage of nitrogen in the food is	(a) 25 (b) 100
(a) 0.84 (b) 8.4	(c) 50 (d) $100 \times 6 \times 10^{-23}$
(c) 16.8 (d) 1.68 BCECE-2014	BITSAT-2012
Karnataka-CET, 2010	BCECE-2008
Ans. (a) : Given, $w = 5g$, $V = 30 \text{ cm}^3$	Ans. (a) : We know formula,
From Kjedahl's method,	Mass of substance
percentage of nitrogen = $\frac{1.4 \times N \times V}{W} = \frac{1.4 \times 0.1 \times 30}{5}$	No. of atoms $= \frac{\text{Mass of substance}}{\text{Atomic mass}}$
	100
= 0.84%	100 amu of He = $\frac{100}{4}$ atoms of He
165. 50 cm ³ of 0.2 N HCl is titrated against 0.1 N NaOH solution. The titration is discontinued	= 25 atoms.
after adding 50 cm^3 of NaOH. The remaining	[1 AMU = mass of one proton (approx.)]
titration is completed by adding 0.5 N KOH.	168. Calculate the mole fraction of aqueous solution
The volume of KOH required for completing the titration is	of 1 molal urea (NH ₂ CONH ₂)
(a) 12 cm^3 (b) 10 cm^3	(a) 0.01878 (b) 0.01768
(c) 25 cm^3 (d) 10.5 cm^3	(c) 0.01800 (d) 0.01698
Karnataka-CET, 2010, 2011	GUJCET-2022
Ans. (b) : (i) Calculation of volume of HCl left often incomplete titration.	Ans. (b) : Molarity = 1 M
When 0.1 N NaOH is used,	Molarity = <u>n solute</u>
$N_1V_1 = N_2V_2$ (For HCl) (For NaOH)	mass of solvent in kg
$0.2 \text{ N} \times \text{V}_1 = 50 \times 0.1 \text{N}$	1 n solute
$V_1 = \frac{50 \times 0.1}{0.2} = 25 \text{ cm}^3$	$\frac{1}{1} = \frac{1}{\text{mass of solvent in kg}}$
$v_1 = \frac{1}{0.2} = 23$ cm	Hence solute in urea and solvent aqueous solution is
(ii) Calculation of volume of KOH for completing the titration.	given
When 0.5 N KOH is used,	$X_{urea} = \frac{n_{urea}}{n_{urea} + n_{H_2O}}$
$N_1V_1 = N_3V_3$ (For remaining HCI) (For KOH)	-
(For remaining HCl) (For KOH) $0.2 \text{ N} \times 25 = 0.5 \text{ N} \times \text{ V}_3$	$n_{urea} = 1$ and mass of $H_2O = 1$ kg = 1000 gm
-	
$V_3 = \frac{0.2 \times 25}{0.5}$	$\therefore X_{\text{urea}} = \frac{1}{1000}$
$= 10 \text{ cm}^3$	$\therefore X_{\text{urea}} = \frac{1}{1 + \frac{1000}{18}}$
10 011	~~

Ans. $C_3H_8 + SO_2 \rightarrow CO_2 + 4H_2O$	Now, $x = 40K$
1 mole 5 mole	$x = 40 \times \frac{4}{146} g$
For 1 mole propane Combustion 5 mole O ₂ required	1.0
	So,
$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5H_2O$	x = 1.1, y = 2.9 x = 1.1 \approx 1 (nearest integer)
$1 \text{ mole } \rightarrow 6.5 \text{ mole}$	179. The hardness of a water sample (in terms of
	equivalents of CaCO ₃) containing 10 ⁻³ M
2 mole \rightarrow 13 mole For 2 moles of butane 13 mole of O ₂ is required	CaSO ₄ is
total moles = $13 + 5 = 18$	(Molar mass of CaSO ₄ = 136 g mol ⁻¹) (a) 100 nmm (b) 10 nmm
176. The ammonia (NH ₃) released on quantitative	(a) 100 ppm (b) 10 ppm (c) 50 ppm (d) 90 ppm
reaction of 0.6 g urea (NH ₂ CONH ₂) with	[JEE Main 2021, 12 Jan Shift-I]
sodium hydroxide (NaOH) can be neutralised	Ans. (a) : The hardness of water sample (in terms of
by [JEE Main 2021, 7 Jan Shift-II]	equivalents of CaCO ₃) containing 10^{-3} M CaSO ₄
Ans. $NH_2CONH_2 + 2NaOH \rightarrow 2NH_3 + Na_2CO_3$	Mole of $CaSO_4 = 10^{-3}$ moles
1 mole urea gives 2 moles ammonia as per the balance	Mass of water = 1000g DOH (in terms of CaCO ₂) = $10^{-3} \times 100/1000$ g
reaction.	DOH (in terms of CaCO ₃) = $10^{-3} \times 100/1000$ g Hardness = $(10^{-3} \times 100/1000) \times 10^{6}$
0.6 0.01 mm/h	Hardness of water = 100 ppm
$n_{urea} = \frac{0.6}{60} = 0.01$ mole	180. The NaNO ₃ weighed out to make 50 mL of an
\therefore n _{ammonia} = 2 × 0.01 = 0.02 mole	aqueous solution containing 70.0 mg Na ⁺ per
Now,	mL isg. (Rounded off to the nearest integer) [Given : Atomic weight in g mol ⁻¹ , Na : 23 ; N :
0.02 moles of NH ₃ reacts with 0.02 moles of HCl.	14; 0: 16].
Mole of HCl = $\frac{100 \times 0.2}{1000}$ = 0.02 mole	[JEE Main 2021, 26 Feb Shift-II]
	Ans. Given that, N_{1}
177. A chloro compound A,(i) Forms aldehydes on ozonolysis followed by	Na^+ present in 50ml
the hydrolysis,	$Na^+ = 70 \text{ mg/mL}$
(ii) When vaporised completely, 1.53 g of A	W_{Na^*} in 50 mL solution
gives 448 mL of vapour at STP.	$= 70 \times 50 \text{ mg}$ $= 3500 \text{ mg}$
The number of carbon atoms in a molecule of compound A is	= 3.5 mg
[JEE Main 2021, 26 Aug Shift-II]	
Ans. 448 ml of A \Rightarrow 1.53 gm A	Moles of Na ⁺ in 50 mL solution = $\frac{3.5}{23}$
1 m l of A = 1.53/448 gm of A	Moles of $NaNO_3 = moles of Na^+$
22400 ml of A $\Rightarrow \frac{1.53}{448} \times 22400$ gm A = 76.5 A gm	$=\frac{3.5}{23}$ mol
$H_3CHC-CH-Cl \xrightarrow{O_3} CH_3-CH = 0$	
$\begin{array}{c} \text{It has 3 Carbon atoms} \\ \text{\& mm is } 36 + 5 + 35.5 = 76.5 \\ \end{array}$	Mass of NaNO ₃ = $\frac{3.5}{23} \times 85 = 12.934 \approx 13 \text{ gm}$
178. 4g equimolar mixture of NaOH and Na ₂ CO ₃	181. The number of atoms in 8 g of sodium is \overline{X}
contains x g of NaOH and y g of Na ₂ CO ₃ . The	×10 ²³ . The value of X is
value of x isg. (Nearest integer)	(nearest integer) [Given : $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ Atomic mass of
[JEE Main 2021, 20 July Shift-II]	Na = 23.0 u
Ans. Mass of NaOH = x	[JEE Main 2021, 1 Sep Shift-II]
Moles of NaOH = $\frac{x}{40}$	Ans. We know that,
40 Mass of Na ₂ CO ₃ = y	$\frac{\text{Weight of sodium atom}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$
	Molecular mass of sodium atom Avogadro's number
Moles of Na ₂ CO ₃ = $\frac{y}{106}$	$\frac{8g}{23g} = \frac{\text{Number of atoms}}{6.02 \times 10^{23}}$
	$23g \qquad 6.02 \times 10^{23}$
$\frac{x}{40} = \frac{y}{106} = K$	Number of atoms = $\frac{8 \times 6.02 \times 10^{23}}{23}$
x + y = 4	23
40K + 106K = 4	Number of atoms = 2.09×10^{23}
K = 4/146	x ≈2

182. 10.0 mL of 0.05 M KMnO₄ solution was (a) 480 g (b) 160 g consumed in a titration with 10.0 mL of given (c) 320 g (d) 240 g oxalic acid dihydrate solution. The strength of **TS-EAMCET 09.08.2021. Shift-I** given oxalic acid solution is..... $x10^{-2}$ g/L. Ans. (a) : (Round off to the nearest integer) Double bond compound (1π) Triple bond compound (2π) [JEE Main 2021, 27 July Shift-II] H₂C=CH₂ HC≡CH **Ans.(1575).** $n_{eq} KMnO_4 = n_{eq}H_2C_2O_4$. 2H₂O 2Br. Br₂ $\frac{10 \times 0.05}{1000} \times 5 = \frac{10 \times m}{1000} \times 2$ H H then Br-C- \therefore Conc. of oxalic acid solution = 0.125 M 0.125×126 g/L = 15.75 g/L H H $1575 \times 10^{-2} \text{ g/L}$ Since, weight of Br of 1 mole = 80 gm183. When 10 mL of an aqueous solution of Fe² Then, weight of 6 mole of Br atom is $= 80 \times 6$ ions was titrated in the presence of dil. H₂SO₄ = 480 gm.using diphenylamine indicator, 15 mL of 0.02 M solution of K₂Cr₂O₇ was required to get the 186. Number of moles of dichromate needed to end point. The morality of the solution containing Fe^{2+} ions is x ×10⁻² M. The value of x oxidizes one mole of Sn²⁺ is (a) 3 (b) 2 is..... . (c) $\frac{1}{3}$ (Nearest integer) (d) $\frac{1}{2}$ [JEE Main 2021, 25 July Shift-I] **TS-EAMCET 09.08.2021, Shift-I** Ans.(18) $Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$ Ans. (c) : The overall oxidation reaction is given $Cr_2O_7^{2-}$: 15 mL 0.02 M and 1 mole used in reaction below- $Fe^{\overline{2}+}$: 10 mL $M_2\,$? and 6 mole used in reaction $Cr_2 O_7^{2-} + 14H^+ + 3Sn^{+2} \rightarrow 2Cr^{3+} + 3Sn^{4+} + 7H_2O$ $(Cr_2O_7^{2-})$ (Fe^{2+}) Thus, 3 mole of Sn^{+2} will reduce 1 mole of $\text{K}_2\text{Cr}_2\text{O}_7$. Now, $\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$ Therefore, 1 moles of Sn^{2+} will reduce 1/3 moles of $K_2Cr_2O_7$ 20 g of CaCO₃ on heating produces x amount $\underline{0.02M \times 15\,mL} _ \underline{M_2 \times 10\,mL}$ 187. of \overline{CO}_2 . If the final weight of $CaCO_3$ after the 1 mole 6 mole reaction is 5 g. the amount of CO₂ liberated in $M_2 = \frac{0.02 \times 15 \times 6}{10} = 0.18 \text{ M} = 18 \times 10^{-2} \text{ M}$ L at STP is (b) 3.36 (a) 44 (c) 22 (d) 6.66 184. Calculate the amount of lime, Ca (OH)₂ required to remove hardness of 50,000 litres of **TS-EAMCET 09.08.2021, Shift-I** well water which contains 1.62 g of calcium Ans. (b): The balanced equation isbicarbonate per 10 liters. [Given, atomic $CaCO_3 \rightarrow CO_2 + CaO$ masses : Ca \rightarrow 40, H \rightarrow 1, C \rightarrow 12, O \rightarrow 16] (a) 1.5 kg (b) 3.7 kg 1 mole 1 mole = 22.4 litre at STP(c) 2.8 kg (d) 4.2 kg $:: 100 \text{ gm of CaCO}_3 \text{ evolve CO}_2 = 22.4 \text{ litre}$ AP- EAPCET- 07-09-2021, Shift-I Ans. (b) : Ca (HCO₃) + Ca(OH)₂ \rightarrow 2 CaCO₃ + 2H₂O 1gm of CaCO₃ evolve CO₂ = $\frac{22.4}{100}$ well water contain 1.62 gm of calcium bicarbonate per 10 litres of water so, 50,000 litres of well water contain $\therefore 15 \text{ gm of CaCO}_3 \text{ evolve CO}_2 = \frac{22.4}{100} \times 15$ $=\frac{1.62\times50,000}{1.62\times50}$ = 162×50 gm of calcium carbonate = 3.36 litre \therefore No. of moles of calcium bicarbonate = $\frac{162 \times 50}{100}$ 188. KMnO₄ oxidises oxalic acid in acidic medium. The number of CO₂ molecules produced per mole of KMnO₄ is = 50 mole(a) 5 (b) 4 The mass of calcium hydroxide required is $\frac{74 \times 50}{1000}$ (c) 3 (d) 1.5 **TS EAMCET 05.08.2021, Shift-I** = 3.7 kg Ans. (a) : for 2 mole \rightarrow 185. One mole of an organic compound with a $2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \rightarrow 2MnSO_4$ double bond and a triple bond is reacted with $+ 10 \text{ CO}_2 + \text{K}_2 \text{SO}_4$ Br₂/CCl₄. The amount of Br₂ required to +8 H₂O completely brominates all π -bonds in the compounds is (Given Br mass is 80 amu) For one mole $10/2 = 5 \text{ CO}_2$ molecule are formed.

189. Salts of A (atomic weight 8), B (atomic weight 18) and C (atomic weight 50) were electrolysed	Ans. (5).
under identical conditions using the same	100 mole of KBr is doped with 10^{-5} mole of SrBr ₂ .
quantity of electricity. It was found that 2.4g of A was deposited, the weight of B and C	1 mole KBr contain = $\frac{10^{-5}}{100}$ = 10^{-7} mol of SrBr ₂
deposited are 1.8 g and 7.5 g respectively. The	Hence, 10^{-7} moles cation vacancy (as 1 Sr^{2+} will result 1
valences of A, B and C are, respectively, (a) 3, 1 and 2 (b) 1, 2 and 3	cation vacancy)
(c) 1, 3 and 2 (d) 3, 2 and 1	119g KBr contains 10^{-7} mol of SrBr ₂
TS EAMCET 04.08.2021, Shift-I	$1 \times KDr$ southing 10^{-7} moles of SrDr
Ans. (c) : According to Faraday law– E O	1g KBr contains $\frac{10^{-7}}{119}$ mol of SrBr ₂
$W = Z.Q = \frac{E.Q}{96500}$:. Required number of cation vacancy
For A,	$=\frac{10^{-7} \times 6.023 \times 10^{23}}{119}$
$2.4 = \frac{(8/x)Q}{96500}$	117
	$=5.06 \times 10^{14}$
$x = \frac{8Q}{96500 \times 2.4}$	$\approx 5 \times 10^{14}$
For B,	192. A gas X is dissolved in water at 2 bar pressure.
$1.8 = \frac{(18/y)Q}{96500}$	Its mole fraction in the solution is 0.02. Find
96500	the mole fraction of water in the solution when the pressure of the gas is doubled at the same
$y = \frac{18Q}{96500 \times 1.8}$	temperature.
96500×1.8 For C,	(a) 0.04 (b) 0.98
	(c) 0.96 (d) 0.02
$7.5 = \frac{(50/z)Q}{96500}$	AP EAPCET 24.08.2021, Shift-I
$z = \frac{50Q}{96500 \times 7.5}$	Ans. (c) : According to the Raoult's law –
	$\mathbf{P}_1 = \mathbf{X}_1 \mathbf{P}_0$
Hence, $x : y : z = \left(\frac{8}{2.4}\right) : \left(\frac{18}{1.8}\right) : \left(\frac{50}{7.5}\right)$	Where –
(2.4) (1.8) $(7.5)= 3.33 : 10 : 6.66$	$P_1 = Vapour pressure of the solvent.$
= 1 : 3 : 2	$P_0 = Vapour pressure in pure state.$ $X_1 = mole fraction$
By solving equation,	A_1 = mole maction Given – $P_1 = 2$ Bar
A = 1, B = 3 and C = 2 So, valence of A, B and C are 1, 3 and 2.	$X_1 = 0.02$
190. The number of grams of oxygen in 32.2g of	
Na ₂ SO ₄ . 10H ₂ O is approximately	$P_2 = 2P_1 = 2 \times 2 = 4$ Bar
(a) 32.2 g (b) 22.4 g (c) 11.2 g (d) 64.4 g	$X_2 = ?$
TS EAMCET 04.08.2021, Shift-I	$\therefore \qquad \mathbf{P}_1 = \mathbf{X}_1 \mathbf{P}_0$
Ans. (b) : No. of oxygen atoms in one molecule of	$2 = 0.02 \times P_0 \qquad \dots (I)$
$Na_2SO_4.10 H_2O = 4 + 10 = 14$ Thus, moles of oxygen in n moles of compound = 14n	and
Molar mass of Na ₂ SO ₄ . 10 $H_2O = 46 + 32 + 64 + 180$	$P_2 = X_1 P_0 \tag{11}$
= 322 g/mol	$4 = X_2 P_0 \qquad \dots (II)$
Since, $32.2g = \frac{32.2}{322} = 0.1$ moles	From (I) and (II) we get
322 Thus, moles of oxygen = $0.1 \times 14 = 1.4$	$\frac{0.02}{X_2} = \frac{1}{2}$
So, weight is $16 \times 1.4 = 22.4$ g	
191. KBr is doped with 10 ⁻⁵ mole percent of SrBr ₂ .	or $X_2 = 0.04$ So, Mole fraction of water = $1-X_2 = 1-0.04 = 0.96$
The number of cationic vacancies in 1 g of KBr crystal is 10^{14} . (Round off to the	193. How many moles of electrons weighs one kg?
Nearest Integer).	(a) 3×10^4 (b) 6×10^{23}
[Atomic Mass: K: 39.1 u, Br: 79.9u	(a) 5×10^{8} (b) 6×10^{6} (c) 1×10^{8} (d) 1.8×10^{6}
N _A =6.023 ×10 ²³] JEE Main 17.03.2021, Shift-II	TS EAMCET 10.08.2021, Shift-II

Ans.(d) :	196. When oxalic acid is oxidised with acidified
1 mole $e^- = 6.023 \times 10^{23} e^-$	KMnO ₄ , the number of moles of CO ₂ liberated is (consider balancing the reaction)
Mass1mole of electron = $6.023 \times 10^{23} \times 9.108 \times 10^{-31}$ kg	(a) 2 (b) 4
$= 6.023 \times 9.108 \times 10^{-8} \text{kg}$	(c) 6 (d) 10 TS EAMCET 10.08.2021, Shift-I
e	Ans. (d) : Balance chemical reaction
No. of mole in one kg = $\frac{1}{9.108 \times 6.023 \times 10^{-8}}$	$2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \rightarrow 2MnO_4 +$
9.108×6.023×10 ⁻⁸	$K_2SO_4 + 8H_2O + 10$ mole of CO_2 liberate.
10^8	197. The strength of 50 volume of H_2O_2 solution is
$=\frac{10^8}{9.108 \times 6.023}$	approximately. (a) 50% (b) 25%
	(c) 10% (d) 15%
$=\frac{100}{9.108\times6.023}\times10^{6}$	TS EAMCET 10.08.2021, Shift-I
$=1.82 \times 10^{6}$	Ans. (d) : $2H_2O_2 \rightarrow 2H_2O + O_2$
$\frac{-1.62 \times 10}{194. 3.011 \times 10^{22} \text{ atoms of an element weighs 1.5gm.}}$	2(34) = 68g 22.4 Lat NTP
The atomic mass of the element is	50 volume H_2O_2 means 1L of 50 volume of H_2O_2 give
(a) 10 amu (b) 2.3 amu	50L O ₂ at STP \therefore 22.4 liter of O ₂ produced from = 68 gm H ₂ O ₂
(c) 35.5 amu (d) 23 amu	\therefore 50 liter of
AP EAPCET 25.08.2021, Shift-II	
Ans. (d) : Given that –	O_2 produced from = $\frac{68}{22.4} \times 50 = 151.7g \text{ of } H_2O_2$
Weigh = 1.15 gm	Percentage strength of H ₂ O ₂ Solution $=\frac{151.7}{1000} \times 100$
Atoms = 3.011×10^{22}	1000
Atomic mass = $\frac{Mass}{No of atoms}$	$=15.17\% \text{ or } \approx 15\%$
No.of atoms	198. 100 ml of 0.2 M acetic acid is completely
$= \frac{1.15 \text{ gm}}{3.011 \times 10^{22}}$	neutralized using a standard solution of NaOH. The volume of ethane obtained at STP after
	complete electrolysis of the resulting solution is
$= 0.38 \times 10^{-22} \text{ gm}$	
We know, $1 \leq c \leq 10^{-24}$	(a) 11.2 L (b) 2.24 L (c) 0.224 L (d) 22.4 L
$1 \text{amu} = 1.66 \times 10^{-24} \text{ gm}$ Then,	AP EAPCET 23-08-2021 Shift-I
	Ans. (c) : $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$
$=\frac{0.38\times10^{-22}}{1.66\times10^{-24}}$	Number of moles of sodium acetate
= 23 amu.	$=\frac{100 \text{ml}}{1000 \text{ml/lit}} \times 0.2 \text{mol/lit} = 0.02 \text{moles}$
195. If Fe _{0.96} O, Fe is present in +2 and +3 oxidation	1000 ml/lit
state, what is the mole-fraction of Fe^{2+} in the	$2CH_{3}COONa \xrightarrow{hydrolysis} CH_{3} - H_{3} + 2CO_{2} + 2NaOH + H_{2} \uparrow$
compound?	Number of moles of ethane are one half the number of
(a) 12/25 (b) 25/12	moles of sodium acetate(CH ₃ COONa).
(c) $1/12$ (d) $11/12$	No. of moles of ethane $=\frac{0.02}{2}=0.01$ moles.
AP EAPCET 25.08.2021, Shift-II	At STP, 1 mole of ethane occupies = 22.4 liter.
Ans. (d) : Given $Fe_{0.96}O$, Fe is present +2 and +3 avidation state	0.01 mole of ethane =?
oxidation state Let 'x' molecule fraction of Fe^{+2} and $(0.96 - x)$	0.01×22.4= 0.224 liter.
molecular fraction of Fe^{+3}	199. The number of sodium ions present in 0.5 mole
Now,	of sodium ferrocyanide is (a) 2×10^{23} (b) 0.5×10^{23}
x (+2) + (0.96 - x) (+3) - 2 = 0	(c) 12×10^{23} (d) 4×10^{23}
2x - 3x + 2.88 - 2 = 0	TS-EAMCET (Engg.), 05.08.2021 Shift-II
x = 0.88	Ans. (c) : Formula of sodium ferrocyanide
Fraction of $Fe^{+2} = 0.88$ and fraction of $Fe^{+3} = 0.12$	$Na_4[Fe(CN)_6]$ contains 4 Na atoms. Number of Na atoms = Number of moles × Number of
Mole fraction of $Fe^{+2} = \frac{0.88}{0.88 + 0.12}$	atom per molecule × Avogadro number
0.88+0.12	$= 0.5 \times 4 \times 6.023 \times 10^{23}$
= 11	$= 12.046 \times 10^{23}$
$-\frac{12}{12}$	$\approx 12 \times 10^{23}$

200. 56 g of CaO has been mixed with 63 g of HNO ₃ ,	Ans (a) · Given that	
the amount of $Ca(NO_3)_2$ formed is	$W_{N_2} = 5 \text{ gm}$	
Ca(NO ₃) ₂ 63gHNO ₃ 56gCaO	2	
(a) 4g (b) 8.28g	$W_{A_r} = 6 \text{ gm}$	
(c) $164 g$ (d) $82 g$ TS FAMCET (F	weight 5 0.18	
TS-EAMCET (Engg.), 07.08.2021 Shift-II	$n_{N_2} = \frac{\text{weight}}{\text{m. weight}} = \frac{5}{28} = 0.18$	
Ans. (d): $\underset{\text{Calcium}}{\text{Calcium}} + 2\text{HNO}_3 \rightarrow Ca(\text{NO}_3)_2 + \text{H}_2\text{O}$	weight 6	
oxide acid nitrate	$n_{A_r} = \frac{\text{weight}}{\text{m. weight}} = \frac{6}{40} = 0.15$	
Molar mass of CaO = 56 gm/mol	e	
Molar mass of $HNO_3 = 63 \text{ gm/mol}$ Molar mass of $Ca(NO_3)_2 = 164 \text{ gm/mol}$	Mole fraction of N ₂ = $\frac{0.18}{0.18 + 0.15} = 0.5454$	
Molar mass of $H_2O = 18$ gm/mol	$\therefore \text{ Partial pressure of } (P_{N_2}) = X_{N_2} \times P_{\text{total}}$	
\therefore 126 gm Nitric acid forms = 164 gm Ca(NO ₃) ₂	$= 0.5454 \times 30$	
$\therefore 1 \text{ gm Nitric acid forms} = \frac{164}{126} \text{gmCa}(\text{NO}_3)_2$	= 16.36 bar	
$\frac{126}{126} \operatorname{glin}\operatorname{Ca}(\operatorname{NO}_3)_2$	204. The molal elevation constant is the ratio of	
\therefore 63gm Nitric acid forms = 63 $\times \frac{164}{126}$ gm Ca(NO ₃) ₂	Elevation in boiling point to —	
120	(a) Molarity	
$= 82 \text{ gm Ca}(\text{NO}_3)_2$	(b) Molality (c) Mola fraction of colute	
201. When 35 mL of 0.15 M lead nitrate solution is	(c) Mole fraction of solute(d) Mole fraction of solvent	
mised with 20 mL of 0.12 M chromic sulphate solution,×10 ⁻⁵ moles of lead sulphate		
precipitate out. (Round off to the Nearest		
Integer).	solution's boiling point is greater than the pure solvents	
	boiling point. This is called as deviation in boiling point	
JEE Main 16.03.2021, Shift-II	1	
Ans. The following reaction take place -	$\Delta T_{\rm b} = K_{\rm b} \times \text{molality}$	
$3Pb(NO_3)_2 + Cr_2(SO_4)_3 \longrightarrow 3PbSO_4 + 2Cr(NO_3)_3$ lead nitrate chromic sulphate lead sulphate chromic	or $K_b = \frac{\Delta T_b}{\text{molality}}$	
nitrate.		
	1205 W/key 10 m of company and 10 m of indime and	
Volume of lead nitrate solution = $35mL$	205. When 10 g of copper and 10 g of iodine are mixed calculate the theoretical yield of Cul	
concentration of lead nitrate = $0.15M$	mixed, calculate the theoretical yield of Cul	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol	mixed, calculate the theoretical yield of Cul according to the equation,	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol = 2.4×10^{-3} mol	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g <u>AP EAMCET (Engg.) 21.09.2020, Shift-II</u>	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2Cul$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g <u>AP EAMCET (Engg.) 21.09.2020, Shift-II</u> Ans. (c) : I ₂ is limiting reagent,	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol = 2.4×10^{-3} mol therefore moles of PbSO ₄ formed = 5.25×10^{-3}	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2Cul$ (a) 30 g(b) 10 g(c) 15 g(d) 20 gAP EAMCET (Engg.) 21.09.2020, Shift-IIAns. (c) : I_2 is limiting reagent, mole of I_2 = mole of Cul	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol = 2.4×10^{-3} mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H ₂ O ₂ is approximately	mixed, calculate the theoretical yield of CuI according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{2}$	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol = 2.4×10^{-3} mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H ₂ O ₂ is approximately (a) 3 (b) 8	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I_2 is limiting reagent, mole of I_2 = mole of Cul Mole of CuI = $\frac{10}{127}$ 10	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol = 2.4×10^{-3} mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H ₂ O ₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I_2 is limiting reagent, mole of I_2 = mole of Cul Mole of CuI = $\frac{10}{127}$ 10	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol = 2.4×10^{-3} mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H ₂ O ₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II	mixed, calculate the theoretical yield of CuI according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{2}$	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol = 2.4×10^{-3} mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H ₂ O ₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II Ans. (c): Given, normality = 3N	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I_2 is limiting reagent, mole of I_2 = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol = 2.4×10^{-3} mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H ₂ O ₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen	
concentration of lead nitrate = 0.15M ∴ Number of moles of Pb(NO ₃) ₂ = 0.15×35×10 ⁻³ mol = 5.25×10 ⁻³ mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = 0.12×20×10 ⁻³ mol = 2.4×10 ⁻³ mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H ₂ O ₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II Ans. (c): Given, normality = 3N Volume strength = ? ∴ We known, Volume strength = 5.6 × Normality	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen (b) 6.022×10^{23} atoms of oxygen	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol = 2.4×10^{-3} mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H₂O₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II Ans. (c): Given, normality = 3N Volume strength = ? \therefore We known, Volume strength = $5.6 \times$ Normality = 5.6×3	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g <u>AP EAMCET (Engg.) 21.09.2020, Shift-II</u> Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen (b) 6.022×10^{23} atoms of oxygen (c) 16 g of oxygen	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol = 2.4×10^{-3} mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H₂O₂ is approximately	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g <u>AP EAMCET (Engg.) 21.09.2020, Shift-II</u> Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen (b) 6.022×10^{23} atoms of oxygen (c) 16 g of oxygen (d) 32 g of oxygen	
concentration of lead nitrate = 0.15M ∴ Number of moles of Pb(NO ₃) ₂ = 0.15×35×10 ⁻³ mol = 5.25×10 ⁻³ mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = 0.12×20×10 ⁻³ mol = 2.4×10 ⁻³ mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H₂O₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II Ans. (c): Given, normality = 3N Volume strength = ? ∴ We known, Volume strength = 5.6 × Normality = 5.6×3 = 16.8 Volume strength ≈ 17	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2Cul$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen (b) 6.022×10^{23} atoms of oxygen (c) 16 g of oxygen (d) 32 g of oxygen AP EAMCET (Engg.) 17.09.2020 Shift-I Ans. (a) : 1 mole of O ₂ (g) at STP contains Avogadro	
concentration of lead nitrate = $0.15M$ \therefore Number of moles of Pb(NO ₃) ₂ = $0.15 \times 35 \times 10^{-3}$ mol = 5.25×10^{-3} mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = $0.12 \times 20 \times 10^{-3}$ mol = 2.4×10^{-3} mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H₂O₂ is approximately	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2Cul$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen (b) 6.022×10^{23} atoms of oxygen (c) 16 g of oxygen (d) 32 g of oxygen AP EAMCET (Engg.) 17.09.2020 Shift-I Ans. (a) : 1 mole of O ₂ (g) at STP contains Avogadro number (N _a = 6.022×10^{23} mol ⁻¹) of O ₂ molecules,	
concentration of lead nitrate = 0.15M ∴ Number of moles of Pb(NO ₃) ₂ = 0.15×35×10 ⁻³ mol = 5.25×10 ⁻³ mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = 0.12×20×10 ⁻³ mol = 2.4×10 ⁻³ mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H₂O₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II Ans. (c): Given, normality = 3N Volume strength = ? ∴ We known, Volume strength = $5.6 \times \text{Normality}$ = 5.6×3 = 16.8 Volume strength ≈ 17 203. A cylinder contains a mixture of 5 g of N₂ and 6 g of Ar gases. If the total pressure of the mixture of the gases in the cylinder is 30 bar,	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen (b) 6.022×10^{23} molecules of oxygen (c) 16 g of oxygen (d) 32 g of oxygen AP EAMCET (Engg.) 17.09.2020 Shift-I Ans. (a) : 1 mole of O ₂ (g) at STP contains Avogadro number (N _a = 6.022×10^{23} mol ⁻¹) of O ₂ molecules, which will occupy its molar volume, i.e, 22.4 L.	
concentration of lead nitrate = 0.15M ∴ Number of moles of Pb(NO ₃) ₂ = 0.15×35×10 ⁻³ mol = 5.25×10 ⁻³ mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = 0.12×20×10 ⁻³ mol = 2.4×10 ⁻³ mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H₂O₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II Ans. (c): Given, normality = 3N Volume strength = ? ∴ We known, Volume strength = $5.6 \times \text{Normality}$ = 5.6×3 = 16.8 Volume strength ≈ 17 203. A cylinder contains a mixture of 5 g of N₂ and 6 g of Ar gases. If the total pressure of the mixture of the gases in the cylinder is 30 bar, then the partial pressure of N₂ gas is	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I_2 is limiting reagent, mole of I_2 = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen (b) 6.022×10^{23} molecules of oxygen (c) 16 g of oxygen (d) 32 g of oxygen AP EAMCET (Engg.) 17.09.2020 Shift-I Ans. (a) : 1 mole of O ₂ (g) at STP contains Avogadro number (N _a = 6.022×10^{23} mol ⁻¹) of O ₂ molecules, which will occupy its molar volume, i.e, 22.4 L. 207. Which of the following units is useful in	
concentration of lead nitrate = 0.15M ∴ Number of moles of Pb(NO ₃) ₂ = 0.15×35×10 ⁻³ mol = 5.25×10 ⁻³ mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = 0.12×20×10 ⁻³ mol = 2.4×10 ⁻³ mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H₂O₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II Ans. (c): Given, normality = 3N Volume strength = ? ∴ We known, Volume strength = $5.6 \times \text{Normality}$ = 5.6×3 = 16.8 Volume strength ≈ 17 203. A cylinder contains a mixture of 5 g of N₂ and 6 g of Ar gases. If the total pressure of the mixture of the gases in the cylinder is 30 bar, then the partial pressure of N₂ gas is (Molecular mass of N₂ = 28 g mol⁻¹. Atomic	mixed, calculate the theoretical yield of Cul according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I_2 is limiting reagent, mole of I_2 = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen (b) 6.022×10^{23} molecules of oxygen (c) 16 g of oxygen (d) 32 g of oxygen AP EAMCET (Engg.) 17.09.2020 Shift-I Ans. (a) : 1 mole of O ₂ (g) at STP contains Avogadro number (N _a = 6.022×10^{23} mol ⁻¹) of O ₂ molecules, which will occupy its molar volume, i.e, 22.4 L. 207. Which of the following units is useful in	
concentration of lead nitrate = 0.15M ∴ Number of moles of Pb(NO ₃) ₂ = 0.15×35×10 ⁻³ mol = 5.25×10 ⁻³ mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = 0.12×20×10 ⁻³ mol = 2.4×10 ⁻³ mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H₂O₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II Ans. (c): Given, normality = 3N Volume strength = ? ∴ We known, Volume strength = 5.6 × Normality = 5.6×3 = 16.8 Volume strength ≈ 17 203. A cylinder contains a mixture of 5 g of N₂ and 6 g of Ar gases. If the total pressure of the mixture of the gases in the cylinder is 30 bar, then the partial pressure of N₂ gas is	mixed, calculate the theoretical yield of CuI according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen (b) 6.022×10^{23} molecules of oxygen (c) 16 g of oxygen (d) 32 g of oxygen AP EAMCET (Engg.) 17.09.2020 Shift-I Ans. (a) : 1 mole of O ₂ (g) at STP contains Avogadro number (N _a = 6.022×10^{23} mol ⁻¹) of O ₂ molecules, which will occupy its molar volume, i.e, 22.4 L. 207. Which of the following units is useful in relating concentration of solution with its vapour pressure ? (a) Mole fraction (b) Parts per million	
concentration of lead nitrate = 0.15M ∴ Number of moles of Pb(NO ₃) ₂ = 0.15×35×10 ⁻³ mol = 5.25×10 ⁻³ mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = 0.12×20×10 ⁻³ mol = 2.4×10 ⁻³ mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H₂O₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II Ans. (c): Given, normality = 3N Volume strength = ? ∴ We known, Volume strength = 5.6 × Normality = 5.6×3 = 16.8 Volume strength ≈ 17 203. A cylinder contains a mixture of 5 g of N₂ and 6 g of Ar gases. If the total pressure of the mixture of the gases in the cylinder is 30 bar, then the partial pressure of N₂ gas is (Molecular mass of N₂ = 28 g mol⁻¹. Atomic mass of Ar = 40u) (a) 16.36 bar (b) 0.545 bar (c) 30 bar (d) 0.180 bar	mixed, calculate the theoretical yield of CuI according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen (b) 6.022×10^{23} atoms of oxygen (c) 16 g of oxygen (d) 32 g of oxygen AP EAMCET (Engg.) 17.09.2020 Shift-I Ans. (a) : 1 mole of O ₂ (g) at STP contains Avogadro number (N _a = 6.022×10^{23} mol ⁻¹) of O ₂ molecules, which will occupy its molar volume, i.e, 22.4 L. 207. Which of the following units is useful in relating concentration of solution with its vapour pressure ? (a) Mole fraction (b) Parts per million (c) Mass percentage (d) Molality	
concentration of lead nitrate = 0.15M ∴ Number of moles of Pb(NO ₃) ₂ = 0.15×35×10 ⁻³ mol = 5.25×10 ⁻³ mol Similarly, number of moles of Cr ₂ (SO ₄) ₃ = 0.12×20×10 ⁻³ mol = 2.4×10 ⁻³ mol therefore moles of PbSO ₄ formed = 5.25×10^{-3} = 525×10^{-5} 202. The volume strength (in L) of 3N H₂O₂ is approximately (a) 3 (b) 8 (c) 17 (d) 9 AP EAPCET 24.08.2021 Shift-II Ans. (c): Given, normality = 3N Volume strength = ? ∴ We known, Volume strength = 5.6 × Normality = 5.6×3 = 16.8 Volume strength ≈ 17 203. A cylinder contains a mixture of 5 g of N₂ and 6 g of Ar gases. If the total pressure of the mixture of the gases in the cylinder is 30 bar, then the partial pressure of N₂ gas is (Molecular mass of N₂ = 28 g mol⁻¹. Atomic mass of Ar = 40u) (a) 16.36 bar (b) 0.545 bar	mixed, calculate the theoretical yield of CuI according to the equation, $2Cu + I_2 \rightarrow 2CuI$ (a) 30 g (b) 10 g (c) 15 g (d) 20 g AP EAMCET (Engg.) 21.09.2020, Shift-II Ans. (c) : I ₂ is limiting reagent, mole of I ₂ = mole of Cul Mole of CuI = $\frac{10}{127}$ Mass of CuI = $\frac{10}{127} \times 190.5 = 15g$ Hence, the correct option is (c). 206. One mole of oxygen gas at STP is equal to (a) 6.022×10^{23} molecules of oxygen (b) 6.022×10^{23} atoms of oxygen (c) 16 g of oxygen (d) 32 g of oxygen AP EAMCET (Engg.) 17.09.2020 Shift-I Ans. (a) : 1 mole of O ₂ (g) at STP contains Avogadro number (N _a = 6.022×10^{23} mol ⁻¹) of O ₂ molecules, which will occupy its molar volume, i.e, 22.4 L. 207. Which of the following units is useful in relating concentration of solution with its vapour pressure ? (a) Mole fraction (b) Parts per million (c) Mass percentage (d) Molality	

Ans. (a): According to Raoult's law, relative lowering Ans. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ of vapour pressure is directly proportional to mole Number of moles of N₂ = $\frac{2.8 \times 10^3}{28}$ = 100 fraction of solute. So, mole fraction is used in relating concentration of solution with its vapour pressure. Raoult's law Can be expressed as; Number of moles of H₂ = $\frac{1000}{2}$ = 500 $\frac{\mathbf{P}^0 - \mathbf{P}_{\rm s}}{\mathbf{P}^0} = \frac{\mathbf{n}_2}{\mathbf{n}_1 + \mathbf{n}_2} = \mathbf{x}_2$ \therefore Number of moles of NH₃ produced = 2 × 100 = 200Where, x_2 = Mole fraction of solute Mass of NH_3 Produced = $200 \times 17 = 3400$ gm n_1 = Moles of solvent n_2 = Moles of solute 212. The volume, in mL, of 0.02 M K₂Cr₂O₇ solution p_s = Vapour pressure of the solution required to react with 0.288 g of ferrous p^{0} = Vapour pressure of pure solvent oxalate in acidic medium is..... 208. Calculate the energy required to convert all (Molar mass of $Fe = 56 \text{ g mol}^{-1}$) atoms 4.8 g of Mg to Mg^{2+} in the vapour state. IE, and IE₂ of Mg are 740 kJ/mol and 1450 [JEE Main 2020, 5 Sep Shift-II] Ans. $K_2Cr_2O_7 + FeC_2O_4 \rightarrow Cr^{+3} + Fe^{+3} + CO_2$ kJ/mol respectively. (a) + 740 kJ/mol n_{factor} of $K_2Cr_2O_7 = 3 \times 2 = 6$ (b) -740 kJ/mol (c) -1450 kJ/mol (d) +438 kJ/mol n_{factor} of FeC₂O₄ = 1 + 2 = 3 AP EAMCET (Engg.) 21.09.2020, Shift-I $\frac{0.02 \times 6 \times V(mL)}{1000} = \frac{0.288}{144} \times 3$ Ans. (d): For 1 mole of $(Mg \rightarrow Mg^{2+})$ 1E = 1E₁ + 1E₂ = (740 + 1450) = 2190 kJ/mol. Number of mole in 4.8g of Mg = 4.8/24 = 0.2 mol. V = 50 mLFor 1 mole energy required = 2190 kJ/mol. The volume (in mL) of 0.125 M AgNO₃ 213. For 0.2 mole energy required = $2190 \ 0 \times 0.2 = 438 \ \text{kJ}$. required to quantitatively precipitate chloride Thus, for 4.8 g of Mg to Mg^{2+} conversion, energy ions in 0.3 g of [Co(NH₃)₆]Cl₃ is..... required is 438 kJ. Hence, the correct option is (d). $M_{[co(NH_3)_6]Cl_3} = 267.46g / mol$ An excess of AgNO₃ is added to 100 mL of 0.01 209. M solution of dichlorotetraaquachromium (III) $M_{AgNO_3} = 169.87 \text{g} / \text{mol}$ chloride. The number of moles of AgCl [JEE Main 2020, 8 Jan Shift-I] precipitated would be (a) 0.001 (b) 0.002 Ans. $[CO(NH_3)_6]Cl_3 + 3AgNO_3 \rightarrow 3AgCl_3$ (c) 0.003 (d) 0.01 0.3gm vml,0.125m Assam CEE-2020 $\frac{\text{wt.}}{\text{mol. wt.}} \times (n - \text{factor}) = \text{Molarity} \times \text{volume}$ Ans. (a): Molecular formula of dichlorotetraaqua chromium (III) chloride is [Cr(H₂O)₄ Cl₂] Cl. $\frac{0.3}{267.46} \times 3 = 0.125 \times v \times 10^{-3}$ On ionisation it generate only one Cl⁻ ion $[Cr(H_2O)_4Cl_2]Cl \xrightarrow{exces AgNO_3} [Cr(H_2O)_4Cl_2]^+ + AgCl \downarrow$ $v = \frac{0.3 \times 3 \times 1000}{267.46 \times 0.125} = 26.92 \,\text{mL}$ Using formula, molarity = $\frac{\text{No.of moles}}{\text{Volume}} \times 1000$ 214. NaClO₃ is used, even in spacecrafts, to produce $0.01 = \frac{\text{No.of moles}}{100} \times 1000$ O₂. The daily consumption of pure O₂ by a person is 492 L at 1 atm 300 K. How much amount of NaClO₃ in grams, is required to No. of moles of AgCl = 0.001 mol AgClproduce O₂ for the daily consumption of a The volume (in mL) of 0.1 NaOH required to 210. person at 1 atm, 300 K.....? neutralise 10mL of 0.1 N phophonic acid is ... $NaClO_3(s)+Fe(s)\rightarrow O_2(g)+NaCl(s)+FeO(s)$ [JEE Main 2020, 3 Sep Shift-II] $R = 0.082 L atm mol^{-1} K^{-1}$ Ans. $H_3PO_2 + NaOH \rightarrow NaH_2PO_2 + H_2O$ [JEE Main 2020, 8 Jan Shift-II] Ans. Moles of H₃PO₂ reacted _ Moles of NaOH reacted $\text{NaClO}_{3(S)} + \text{Fe}_{(S)} \rightarrow \text{O}_{2(g)} + \text{NaCl}_{(S)} + \text{FeO}(S)$ Moles of NaClO₃ = moles of O_2 $\frac{0.1 \times 10}{1} = 0.1 \times V_{\text{NaOH}}$ Moles of $O_2 = \frac{PV}{RT} = \frac{1 \times 492}{0.082 \times 300}$ $V_{NaOH} = 10 \text{ ml}$ = 20 mol211. The mass of ammonia in grams produced when Molar mass of NaClO₃ = $23 + 35.5 + 3 \times 16$ 2.8 kg of dinitrogen quantitatively reacts with 1 = 106.5 g kg of dihvdrogen is..... [JEE Main 2020, 4 Sep Shift-I] | Mass of NaClO₃ = 20 × 106.5 = 2130 g

215. Ferrous sulfate heptahydrate is used to fortify 217. Which one of the following has maximum foods with iron. The amount (in grams) of the number of atoms? salt required to achieve 10 ppm of iron in 100 (a) 1 g of $Ag_{(s)}$ [Atomic mass of Ag = 108] kg of wheat is..... (b) 1 g of $Mg_{(s)}$ [Atomic mass of Mg = 24] Atomic weight : Fe = 55.85; S=32.00, O=16.00 (c) 1 g of $O_{2(s)}$ [Atomic mass of O = 16] [JEE Main 2020, 8 Jan Shift-I] (d) 1 g of $Li_{(s)}$ [Atomic mass of Li = 7] Ans. FeSO₄. 7H₂O (m = 277.85) **NEET-2020** $PPM = \frac{Mass of iron}{Mass of wheat} \times 10^6$ Ans. (d): Number of atoms in 1g of Li = $\frac{1}{7} \times N_A$ $\Rightarrow 10 = \frac{\text{Mass of iron}}{100 \times 10^3} \times 10^6$ $=\frac{1}{7}\times 6.023\times 10^{23}$ \Rightarrow Mass of iron = 1 gm $= 0.86 \times 10^{23}$ Molecular mass of FeSO₄ 7H₂O is 277.85 55.85 gm iron is present in 277.85 gm of salt Number of atoms in 1g of Ag = $\frac{1}{108} \times N_A$ 1 gm iron is present in = $\frac{277.85}{55.85}$ = 4.97 gm of salt Number of atoms in 1g of Mg = $\frac{1}{24} \times N_A$ Which one of the following will have the largest 216. number of atoms? (a) 1g Au(s)(b) 1g Na(s)(d) $1g \text{ of } Cl_2(g)$ (c) 1g Li(s)(e) $1g \text{ of } O_2(g)$ Number of atoms in 1g of $O_2 = \frac{1}{22} \times N_A \times 2$ Kerala-CEE-2020 **Ans. (c) :** No. of moles = $_$ weight in gram $=\frac{N_A}{16}=0.37\times10^{23}$ molecular weight Max. number of atoms are present in 1g of Li. (i) 1 g Au (s) $= \frac{1}{107}$ mol atom of Au 218. 2KHCO₃ \rightarrow ...+ CO₂ + H₂O find amount of gases formed (in lit). $=\frac{1}{197} \times 6.022 \times 10^{23}$ When amount of KHCO₃ is 33 gm. (a) 5.6 (b) 11.2 $= 0.005076 \times 6.022 \times 10^{23}$ = 0.005076 × 6.0 × 10^{23} $\approx 0.0305 \times 10^{23} = 3.05 \times 10^{21}$ (c) 7.39 (d) 22.4 **JIPMER-2019** Ans. (c) : (ii) 1 g Na (s) $= \frac{1}{22}$ mol atom of Na $2KHCO_3(s) \longrightarrow K_2CO_3(s) + CO_2(g) + H_2O$ $n = \frac{33}{100}$ 0.165 0.166 $=\frac{1}{23} \times 6.022 \times 10^{23}$ Total moles of gas (0.165 + 0.165) mol Total volume of gas = 0.33×22.4 L $= 0.0434 \times 6.022 \times 10^{23}$ $= 0.26 \times 10^{23} = 2.6 \times 10^{22}$ = 7.39 L 219. The mass of AgCl precipitated when a solution (iii) 1 g Li (s) $=\frac{1}{7}$ mol atom of Li containing 11.70g of NaCl is added to a solution containing 3.4 g of AgNO₃ is [Atomic mass of Ag = 108, Atomic mass of Na $=\frac{1}{7}\times 6.022\times 10^{23}$ = 23] (a) 5.74g (b) 1.17g $= 0.1428 \times 6.022 \times 10^{23} \\= 0.860 \times 10^{23} = 8.61 \times 10^{22}$ (c) 2.87g (d) 6.8 g Karnataka-CET-2019 (iv) 1 g Cl₂ (g) = $\frac{1}{71}$ mol atom of Cl₂ Ans. (c): $NaCl + AgNO_3 \longrightarrow NaNO_3 + AgCl$ $=\frac{1}{71} \times 6.022 \times 10^{23} = 8.48 \times 10^{21}$ $m.wt. \Rightarrow 58.5g \quad 170g$ 85g 143.5g $G.wf. \Rightarrow 11.72g \ 3.4g$ (v) 1 g O₂ (g) = $\frac{1}{32}$ mol atom of O₂ 170g AgNO₃ will give 143.5g AgCl Then, 3.4 g AgNO₃ will give x g AgCl $x = \frac{3.4 \times 143.5}{170}$ $=\frac{1}{32} \times 6.022 \times 10^{23} = 1.188 \times 10^{22}$ So, 1 g Li(s) has the largest no, of atoms. $x = 2.87 \,\mathrm{g}$

220. 0.1 mole of XeF_6 is treated with 1.8 g of water.	33.05 moles of $O_2 = 1.28$ moles of O_3
The product obtained is	Thus the total no. of moles present originally was
(a) XeO_3 (b) XeO_2F_2	$= 33.05 \text{ of } O_2 + 1.28 \text{ of } O_3$
(c) $XeOF_4$ (d) $Xe + XeO_3$	= 34.4 moles.
Karnataka-CET-2019	
Ans. (c) : When 0.1 mole of XeF_6 is treated with 1.8 g	224. In a mixture of 1 g H_2 and 8 g O_2 the mole
of water. The product obtained is XeF_4	fraction of hydrogen is :
\therefore moles of water =	(a) 0.667 (b) 0.5
	(c) 0.33 (d) None of the above
$\frac{\text{Given mass of water}}{\text{molecular mass}} = \frac{1.8}{18} = 0.1 \text{ mole}$	Manipal-2019
When 0.1 mole of XeF_6 react with 0.1 mole of H_2O then	Ans. (a) :
XeOF ₄ and HF are formed	• No. of moles of $H_2 = \frac{1}{2} = 0.5$
reaction involved as follows:	$\frac{1}{2}$
$XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$	8
221. The number of moles of electron required to	• No. of moles of $O_2 = \frac{8}{32} = 0.25$
reduce 0.2 mole of $Cr_2O_7^{-2}$ to Cr^{+3} is	52
	• Total moles of H_2 and $O_2 = 0.5 + 0.25$
(a) 1.2 (b) 6 (d) 0.6	= 0.75
(c) 12 (d) 0.6	No. of mass of H_2
Karnataka-CET-2019	• Mole fraction of $H_2 = \frac{\text{No. of mass of } H_2}{\text{Total moles}}$
Ans. (a) : From given reaction:-	
$C_{r_{2}O_{7}}^{+6} \rightarrow 2Cr^{+3}$	$\bullet = \frac{0.50}{0.75} = 0.667$
- ,	0.75
1 mole required 6 mole of electrons 0.2 mole requires	225. Two electrolytic cells are connected in series
$\frac{0.2 \times 6}{1}$ =1.2 mole of electrons.	containing CuSO ₄ solution and molten AlCl ₃ . If
1	in electrolysis 0.4 moles of 'Cu' are deposited
222. In a lead-acid battery, if 1 A current is passed	on cathode of first cell. The number of moles of
to charge the battery for 1 h, what is the	'Al' deposited on cathode of the second cell is
amount of PbSO ₄ converted to PbO ₂ ? (Given	-
data: $1F = 96500 \text{ C mol}^{-1}$)	(a) 0.6 moles (b) 0.27 moles
(a) 0.0373 moles (b) 0.0186 moles	(c) 0.18 moles (d) 0.4 moles
(c) 0.0093 moles (d) 0.0268 moles	MHT CET-02.05.2019, Shift-III
(e) 0.0400 moles	Ans. (b) : Given,
Kerala-CEE-2019	Number of moles of Cu deposited $= 0.4$ moles
Ans. (b) : Given,	According to Faraday's second law.
$i = 1A, T = 1h = 60 \times 60 = 3600sec$	
Charge = $1 \times 3600 = 3600 \text{ C}$	$\frac{\text{Weight of Cu deposited}}{\text{Weight of Al deposited}} = \frac{E_4 \text{ wt.of Cu}}{E_4 \text{ wt.of Al}}(i)$
$PbSO_4 + 2e^- \times PbO_2$	Weigth of Al deposited E_4 wt. of Al
	weight
$Moles = \frac{Charge}{21000000000000000000000000000000000000$	\therefore No. of moles = $\frac{\text{weight}}{\text{molecular weight}}$
2×96500	molecularweight
$=\frac{3600}{1000}$	\therefore weight of Cu = 0.4×63.5
$-\frac{1}{193000}$	63.5
= 0.0186 moles.	0.4×63.5 $\frac{05.5}{2}$
223. On passing silent electric discharge through	Now, from E _q (i), $\frac{0.4 \times 63.5}{\text{weight fo Al deposited}} = \frac{\frac{2}{2}}{\frac{27}{2}}$
oxygen in an ozonizer, 5.5 mol% of oxygen is	weight to Al deposited $\frac{27}{2}$
converted to ozone. How many moles of O_2 and	3
O_3 result when 35 moles of O_2 is originally	$0.4 \times 63.5 \times 9$
present?	\therefore weight of Al deposited = $\frac{0.4 \times 63.5 \times 9}{31.75}$ = 7.2g
(a) 33.0 (b) 34.4	
(c) 35.0 (d) 31.8	Number of moles of Al deposited = $\frac{7.2}{27} = 0.27$ moles
(e) 31.0	27
Kerala-CEE-2019	226. A cold drink bottle contains 200 mL liquid, in
Ans. (b) : Given, 5.5 mol% of O_2 is converted into O_3 .	which CO_2 is 0.1 molar. Considering CO_2 as an
	ideal gas the volume of the dissolved CO ₂ at
$\therefore 35 - \frac{35 \times 5.5}{100} \text{ moles of } O_2$	S.T.P is
100 ~	(a) 22.4 L (b) 0.224 L
35×5.5 2	(c) 2.24 L (d) 0.448 L
$=\frac{35\times5.5}{100}\times\frac{2}{3}$ mole of O ₃	
100 2	MHT CET-02.05.2019, Shift-III

Ans. (d) : Number of moles of CO_2 in 200 ml solution Ans. (a) : Given, 0.504g of H_2 is liberated by 20g of the metal = molarity \times volume (in L) So, 1.008g H₂ is liberated by $\frac{20 \times 1.008}{1000}$ $=0.1 \times \frac{200}{1000} = 0.02$ 0.504 = 40g of the metal. volume of 0.02 mole of CO_2 at $STP = 22.4 \times 0.02$ = 0.448 L 40g metal combines with 8g of oxygen So, 2.0g of metal combines with $=\frac{8\times 2}{40}$ g How many gram of sodium (atomic mass 23 u) 227. is required to prepare one mole of ethane from methyl chloride by Wurtz reaction? = 0.4g of oxygen (a) 2 (b) 23 Amount of metal oxide = Mass of metal + Mass of (c) 11.5 (d) 46 oxygen = (2.0 + 0.4) = 2.4 gMHT CET-02.05.2019, Shift-II 231. At S.T.P. the volume of 7.5 g of a gas is 5.6L. Ans. (d): Wurtz reaction-The gas is $2CH_3Cl + 2Na \xrightarrow{Dry ether} CH_3 - CH_3 + 2NaCl$ (a) NO (b) N_2O (c) CO (d) CO_2 Ethane WB-JEE-2019 \Rightarrow 2 moles of sodium metal reacts to give 1 mole of Ans. (a) : We know, ethane. 22.4 L volume of S.T.P. contain 1 mole weight of 2 moles of $Na = 23 \times 2 = 46$ g Then, 5.6 L volume at S.T.P contain The volume of 1 mole of any pure gas at 228. $=\frac{1}{22.4} \times 5.6 = 0.25$ mole standard temperature and pressure is always equal to And, (a) 0.022414 m^3 (b) 22.414 m^3 (c) 2.2414 m^3 (d) 0.22414 m^3 No. of mole = $\frac{Mass}{Molecular weight}$ MHT CET-02.05.2019, Shift-II Ans. (a) : The volume of 1 mole of any pure gas at Molecular weight = $\frac{7.5}{0.25}$ = 30 standard temp. and pressure (STP) is equal to 22.414 L $1L = 0.001 m^{2}$ From the given option NO has molecular weight 30. \therefore 22.414 L = 0.022414 m³ Hence, correct option is 'a' 229. Which of the following gases has the density 1.8 gm/lit at 27 °C temperature and 760 Torr 232. 1.2 g of Mg is treated with 100mL of 1M pressure? H₂SO₄. Molar concentration of the H₂SO₄ (a) O_2 (b) CO_2 solution after complete reaction will be (c) NH_3 (d) SO_2 (a) 0.20 M (b) 0.005 M **Tripura JEE-2019** (c) 0.10 M (d) 0.5 M Ans. (b) : Given, CG PET -2019 P=760 Torr $=\frac{760}{760}=1$ atm Ans. (d) : $Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$ $T = 27^{\circ}C = 27 + 273 = 300 K$ 24g (98g = 1 mol)1.2g Mg reacts with $= 0.5 \text{ mol } H_2SO_4$ d = 1.8 g/L H_2SO_4 taken = 100 mL of 1 M H_2SO_4 $PV = \frac{m}{M}RT$ = 0.1 mol H_2SO_4 left = 0.1 – 0.05 $M = \frac{mRT}{VP} \Longrightarrow M = \frac{dRT}{P}$ = 0.05 mol in 100 mL solution $[H_2SO_4] = 0.05 \times 10 = 0.5 M$ $M = \frac{1.8 \times 0.0821 \times 300}{1}$ The volume of ' 10 vol' of H₂O₂ required to 233. M = 44g / moleliberate 500mL O₂ at NTP is (a) 125mL (b) 500mL Molar mass of gas = 44g/mole(c) 50mL (d) 100mL So, gas is CO_2 molar mass 44 g/mole. CG PET -2019 230. 20 gm of a metal produces 0.504 gm $H_2(g)$ on Ans. (c) : 10 vol of H_2O_2 means that reaction with dilute H₂SO₄. Calculate the 10 L O_2 can be liberated from 1 L H_2O_2 receivable amount of metal oxide from 2 gm of 1 L O₂ liberated from $\frac{1}{10}$ L H₂O₂ same metal. (a) 2.4gm (b) 2.2gm 500 mL O₂ liberated from = $\frac{500}{10}$ mL H₂O₂ (c) 2.8gm (d) 2.6gm **Tripura JEE-2019**

$= 50 \text{ mL H}_2\text{O}_2$	$Fe(SO_4)_3$ doesn't oxidize
10 vol. H_2O_2 means that 1 mL H_2O_2 gives 10 mL O_2 .	
Thus, 50 mL H_2O_2 will give 500 mL O_2 .	Total moles of KMnO ₄ = $\frac{3}{5} + \frac{6}{5} + \frac{1}{5} = 2$
234. The volume strength of 1 M H ₂ O ₂ is (Molar	5 5 5
mass of $H_2O_2 = 34 \text{ g mol}^{-1}$)	237. In the reaction of oxalate with permanganate in
(a) 16.8 (b) 22.4 (c) 11.25	acidic medium, the number of electrons involved in producing one molecule of CO ₂ is
(c) 11.35 (d) 5.6	(a) 2 (b) 5
[JEE Main-2019, 12 Jan Shift-II] Ans. (c) : The balanced reaction	$\begin{array}{c} (c) & 1 \\ (c) & 1 \\$
	[JEE Main 2019, 10 Jan Shift-II]
$2H_2O_2 \rightarrow 2H_2O + O_2$	Ans. (c) : As given in question, Reaction of oxalate
-1 -2 0 (Oxidation state of O)	with permanganate in acidic medium
2 moles of H_2O_2 give 1 mole of O_2	$5C_2O_4^{2-} + 2MnO_4^{-} \rightarrow 10CO_2 + 2Mn^{2+} + 8H$
1 mole of H_2O_2 will give 11.2L of O_2 gas	N factor $(4-3) \times 2 = 2 - (7-2) = 5$
Volume strength of $H_2O_2 = 11.2 \times molarity$	$5C_2O_4^{2^-}$ ions transfer $10e^-$ to produce to molecules of CO_2
For 1 M H_2O_2 volume strength is 11. 2 L.	So, number of electron involved in producing 10
235. A solution of $Ni(NO_3)_2$ is electrolysed between	molecule of CO_2 is 10.
platinum electrodes using 0.1 Faraday	Thus, number of electron involed in producing 1
electricity. How many moles of Ni will be	molecules of CO_2 is 1.
deposited at the cathode? (a) 0.20 (b) 0.10	238. For the following reaction, the mass of water
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	produced from 445 g of C ₅₇ H ₁₁₀ O ₆ is : 2C ₅₇ H ₁₁₀ O ₆ (s)+163O ₂ (g)→114CO ₂ (g)+110H ₂ O(<i>l</i>)
[JEE Main 2019, 9 April Shift-II]	(a) 490 g (b) 495 g
Ans. (d) : Ni $(NO_3)_2 \rightarrow Ni^{2+} + 2NO_3^-$	(c) 445 g (d) 890 g
$Ni^{2+} + 2e^- \rightarrow Ni$	[JEE Main 2019, 10 Jan Shift-II]
	Ans. (b) : Given equation
2. eq. of Ni ²⁺ will be discharged from 2F	$2C_{57}H_{110}O_6(s)+163O_2(g)\rightarrow 114CO_2(g)+110H_2O(l)$
0.1 eq. of Ni ²⁺ will be discharged from 0.1 F	Moles of $C_{57}H_{110}O_6(s) = \frac{445}{890} = 0.5$ moles
No. of eq. = No of moles \times (n - factor) 0.1 = No. of moles \times 2	070
	$2C_{57}H_{110}O_{6}(s) + 163O_{2} \rightarrow 114CO_{2}(g) + 110H_{2}O(I)$
No. of moles of Ni = $\frac{0.1}{2}$ = 0.05 mol.	$nH_2O = \frac{110}{4} = \frac{55}{2}$
$\frac{2}{236}$. In order to oxidise a mixture of one mole of	4 2
each of FeC ₂ O ₄ , Fe ₂ (C ₂ O ₄) ₃ , FeSO ₄ and Fe ₂	No. of moles of $H_2O = \frac{\text{given mass}}{\text{molar mass}}$
$(SO_4)_3$ in acidic medium, the number of moles	molar mass
of KMnO ₄ required is (a) 2 (b) 1	Given mass = No. of moles \times molar mass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_ 55,19
[JEE Main 2019, 8 April Shift-I]	$=\frac{55}{2}\times 18$
Ans. (a) :	= 495 g
$FeC_2O_4 + KMnO_4 \rightarrow Fe^{3+} + CO_2 + Mn^{2+}$	239. 5 moles of AB ₂ weight 125×10^{-3} kg and 10 moles
v.f. = 3 v.f = 5	of $A_2 B_2$ weight 300×10 ⁻³ kg. The molar mass of $A(M_2)$ and molar mass of $B(M_2)$ in kg mol ⁻¹ are
$1 \times 3 = \text{mole} \times 5$	A(M _A) and molar mass of B(M _B) in kg mol ⁻¹ are (a) $M_A = 10 \times 10^{-3}$ and $M_B = 5 \times 10^{-3}$
Mole = $\frac{3}{5}$	(b) $M_A = 50 \times 10^{-3}$ and $M_B = 25 \times 10^{-3}$
$\frac{1}{5}$	(c) $M_A = 25 \times 10^{-3}$ and $M_B = 50 \times 10^{-3}$ (c) $M_A = 25 \times 10^{-3}$ and $M_B = 50 \times 10^{-3}$
$Fe_2(C_2O_4)_3 + KMnO_4 \rightarrow Fe^{3+} + CO_2 + Mn^{2+}$	(d) $M_A = 5 \times 10^{-3}$ and $M_B = 10 \times 10^{-3}$
v.f. = 6 v.f = 5	[JEE Main 2019,12 April Shift-I]
$1 \times 6 = \text{mole} \times 5$	Ans. (d) : 5 moles of AB_2 weight 125 g
6	
Mole = $\frac{6}{5}$	$= \frac{\text{weight in g}}{\text{number of moles}} = \frac{125}{5} = 25$
$FeSO_4 + KMnO_4 \rightarrow Fe^{3+} + SO_4^{2-} + Mn^{2+}$	\therefore AB ₂ = 25 g/mol
v.f. = 1 $v.f = 5$	
$1 \times 1 = \text{mole} \times 5$	$5 = \frac{125}{M_A + 2M_B}$
1	$M_A + 2M_B = 25$
$Mole = \frac{1}{5}$	$M_A + 2M_B = 25$ 10 mole of A_2B_2 weight 300 g
5	10 more of A2D2 weight 500 g

$=\frac{\text{weight in g}}{\text{number of moles}}=\frac{300}{10}=30$	Ans. (a): HNO ₃ solution = 63% w/w
$-\frac{1}{\text{number of moles}} -\frac{1}{10} -\frac{30}{10}$	$\frac{1}{1003} \text{ solution} = 0.5 \% \text{ w/w}$ $Density = 1.4 \text{ g/mL}$
$\therefore A_2B_2 = 30 \text{ g/mole}$, ,
300	$Molarity = \frac{\% w / w \times d \times 10}{M_{Solute}}$
$10 = \frac{300}{2M_A + 2M_B}$	
$2M_{A} + 2M_{B} = 30$	$M = \frac{63 \times 1.4 \times 10}{63} = 14 M$
	63
\therefore Molar mass of A, (M _A) = 5 g or 5 × 10 ⁻³ kg	
\therefore Molar mass of B, (M _B) = 10 g or 10×10^{-3} kg	244. Haemoglobin contains 0.33% of iron by weight.
240. Total number of atoms in 44 g of CO ₂ is	The molecular weight of haemoglobin is approximately 67200. The number of iron
(a) 6.02×10^{23} (b) 6.02×10^{24}	atoms (at. Wt. of Fe= 56) present in one
(c) 1.806×10^{24} (d) 18.06×10^{22}	molecule of haemoglobin is
J & K CET-(2019)	(a) 6 (b) 1
Ans. (c) : 44 gram CO_2 mean $44/44 = 1$ mole of the	(c) 2 (d) 4
CO ₂ .	AIIMS-27 May, 2018 (E)
1 mole CO ₂ implies total of 6.022×10^{23} molecules of	Ans. (d) : Given, % of Iron = 0.334 %
CO_2 . 1 molecules of CO_2 has 3 atoms.	Molecular weight of the haemoglobin = $67200 \text{ g} / \text{mol}$
Therefore total atoms in 44 grams of CO ₂ has $(6.022 \times 10^{23}) \times 3 = 18.066 \times 10^{23}$ atoms = 1.806×10^{24}	Weight of the Iron = 56 g
atoms	The number of iron atoms =
241. The amount of water (g) produced by the	Molecular Weight of haemoglobin ×% of iron
combustion of 32 g of methane is	$100 \times$ Atomic weight of Iron
(a) 18 g (b) 36 g	$=\frac{67200 \times 0.334}{4}=4$
(c) 54 g (d) 72 g	=0.200000000000000000000000000000000000
Assam CEE-2019	
Ans. (d) : $CH_4(g) + 2O_2 \rightarrow CO_2 + 2H_2O$	245. 100 mL brandy contains 40 mL ethanol. The mole fraction of water is
As per stoichiometric equation, 16 g of methane	(a) 0.6 (b) 0.667
produces 36 g of H_2O	(c) 0.26 (d) 0.425
\therefore 32 g of methane will produce = $\frac{36}{16} \times 32 = 72$ g H ₂ O.	CG PET -2018
10	Ans. (a) : Volume of water = $100 - 40 = 60$ mL and
242. Which one of the following is the lightest?	Volume fraction ∞ mole fraction
(a) 0.2 mole of hydrogen gas (b) 6.023×10^{22} molecules of nitrogen	Volume fraction of water = $\frac{\text{Volume of water}}{\text{Total volume}}$
(c) 0.1 g of silver	Total volume
(d) 0.1 mole of oxygen gas	$=\frac{60}{100}=0.6$
AIIMS 25 May 2019 (Evening)	$=\frac{100}{100}=0.6$
Ans. (c):	246. If 0.05g of urea is dissolved in 5 g of water, then
Weight	(a) Its molarity will be greater than molality
(a) Moles = $\frac{\text{Weight}}{\text{Molecular weight}}$	(b) Its molality will be greater than molarity
Weight of $H_2 = mole \times molecular wt.$	(c) Molarity and molality will be same(d) Its normality will be 50/60
$= 0.2 \times 2 = 0.4 \text{ g}$	
(b) 6.023×10^{23} represents 1 mole	CG PET -2018
Thus 6.023×10^{-22} will represent 0.1 mole	Ans. (b) : Molarity = $\frac{\text{Number of moles of solute}}{\frac{1}{2}}$
Weight of $N_2 = 0.1 \times 28 = 2.8$ g	Volume of solution (in L)
(c) Weight of Silver = $0.1 \times 28 - 2.8 \text{ g}$	And Molality = $\frac{\text{Number of moles of solute}}{\text{Many of solution (in las)}}$
(d) Weight of oxygen = $32 \times 0.1 = 3.2$ g	Mass of solution (in kg)
Thus from the above, silver is lightest.	Mass of solute (urea) and solvent (water) remain in
243. Calculate molarity of a 63% w/w HNO ₃	changed, during the calculations of molarity and
solution if density is 1.4g/mL:	molality.
(a) 14 M (b) 12 M	Then volume of solution and contain water molecules. (\therefore In case of volume of solution, it has both solute and
(c) 10 M (d) 8 M	solvent)
AIIMS 26 May 2019 (Evening)	Thus, molality will be greater than that of molarity.

 247. How many grams of Cl₂ gas will be obtained by the complete reaction of 31.6 gm of potassium permanganate with hydrochloric acid? [Mole mass of KMnO₄ = 316 gm/mol] (a) 71 (b) 17.75 (c) 35.5 (d) 142 	251. 1.2 g of Mg (at. mass 24) will produce MgO equal to : (a) 0.05 mol (b) 40 g (c) 40 mg (d) 4 g Manipal-2018
GUJCET-2018	Ans. (a) : Mg + $\frac{1}{2}$ O ₂ \rightarrow MgO
Ans. (b): $2KMnO_4 + 16HCL \rightarrow 2KCl + 2MnCl_2 + 8H_2O + 5Cl_2$ Moles of 31.6 gm of potassium permanganate $= \frac{31.6 \text{ gm}}{316 \text{ gm}/\text{mol}} = 0.1 \text{ mole}$	From the above equation 1 mol of Mg reacts to give 1 mol of MgO. Number of moles of Mg in $1.2 \text{ g} = \frac{1 \times 1.2}{24} = 0.05 \text{ mol of Mg}$
	2.
0.1 moles of potassium permanganate will give	The number of moles of MgO = 0.05 mol
$\frac{5}{2} \times 0.1 = 0.250$ moles of chlorine.	252. The Avogadro number or a mole represents : (a) 6.02×10^{23} ions
The molar mass of $Cl_2 = 71$ g/mole The mass of $Cl_2 = 71$ g/mole $\times 0.250$ mol = 17.75 g	(b) 6.02×10^{23} atoms (c) 6.02×10^{23} molecules
248. Two solutions NaCl and CH ₃ COOH are	(d) 6.02×10^{23} entities
prepared separately. The molarity of both is	HP CET-2018
0.1 m and osmotic pressure p_1 and p_2 respectively. The correct relationship between osmotic pressure is	Ans. (b): Avogadro's number is the number of particles/atom in one mole of any substance. $N_a = 6.023 \times 10^{23}$ atom.
(a) $p_1 = p_2$ (b) $p_1 > p_2$	253. To a 4 L of 0.2 M solution of NaOH 2 L of 0.5
(c) $p_2 > p_1$ (d) $p_1 \neq p_2$	M NaOH are added. The molarity of resulting
JCECE - 2018 Ans. (b) : NaCl is a salt made up of strong acid and	solution is : (a) 0.9 M (b) 0.3 M
strong base that completely dissociates to give 2 ions.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
As we know osmotic pressure is directly proportional to	Manipal-2018
i (Van't Hoff factor) i.e. $\pi \propto i$. So, $P_1 > P_2$.	Ans. (b) : Given,
249. 1.0 g of Mg is burnt with 0.28 g of O_2 in a closed vessel. Which reactant is left in excess	$M_1 = 0.2 M$; $V_s = 4 L$
and how much?	$M_2 = 0.5 M$; $V'_s = 2 L$
(a) Mg, 5.8 g (b) Mg, 0.58 g	$M_{1} = M_{1}V_{s} + M_{2}V_{s} = 0.2 \times 4 + 0.5 \times 2$
(c) O ₂ , 0.24 g (d) O ₂ , 2.4 g Karnataka-CET-2018	$M_{\text{total}} = \frac{M_1 V_s + M_2 V_s}{V_s + V_s} = \frac{0.2 \times 4 + 0.5 \times 2}{4 + 2}$
Ans. (b) : The burning of Mg occurs as follows:	
$2Mg + O_2 \rightarrow 2MgO$	$=\frac{0.8+1.0}{6}=\frac{1.8}{6}=0.3$ M
Moles 212	254. If 20 g of CaCO ₃ is treated with 100 mL of 20%
Molar mass of Mg = 48g and $O_2 = 32g$	HCl solution, the amount of CO ₂ produced is : (a) 22.4 J
32 g of oxygen, needs 48 g of Mg	(a) 22.4 L (b) 8.80 g (c) 4.40 g (d) 2.24 L
0.28 g of oxygen, needs = $\frac{48 \times 0.28}{32}$	Manipal-2018
= 0.42 g of Mg	Ans. (b) :
Mg left (in excess) = $1 - 0.42 = 0.58g$	$CaCO_3 + 2HCl \rightarrow CaCl + CO_2 + H_2O$
250. Mass % of carbon in ethanol is	100g 73g 44g 100 mL of 20% HCl solution = 20g HCl
(a) 52 (b) 13	$CaCO_3$ is the limiting reactant 100g of CaCO ₃ gives 44g
(c) 34 (d) 90	CO_2
(e) 80 Kerala-CEE-2018	20g CaCO ₃ gives $\frac{44}{100} \times 20 = 8.80$ g of CO ₂ .
Ans. (a) : Molecular mass of $C_2H_5OH = 46.00$	
[Atomic mass of $C = 12$, $H = 1$, $O = 16$]	255. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. H ₂ SO ₄ . The evolved
46.00 of C_2H_5OH is contain, $C = 24g$	gaseous mixture is passed through KOH
Mass % of Carbon = $\frac{\text{Molar mass of carbon}}{\text{Molar mass of ethanol}} \times 100$	pellets. Weight (in) g of the remaining product at STP will be
	(a) 1.4 (b) 3.0
$=\frac{24\times100}{46}$	$\begin{array}{c} (a) & 1.1 \\ (b) & 2.8 \\ (c) & 2.8 \\ (c) & 4.4 \\ (c) & 4.4 \\ (c) & 1.1 \\$
$= 52.17\% \approx 52\%$	NEET-2018
	2 VCT

Ans. (c) According to given equation, 2 moles of KMnO₄ reacts $HCOOH \xrightarrow{H_2SO_4} CO + H_2O$ with 5 moles of SO_2(i) $\therefore 0.10$ moles of KMnO₄ will react with $\frac{5}{2} \times 0.10$ $(COOH)_{2} \xrightarrow{H_{2}SO_{4}} CO + CO_{2} + H_{2}O$(ii) Conc. H₂SO₄ is a strong dehydrating agent moles of SO₂ i.e. 0.25 moles of SO₂ Moles of HCOOH = $\frac{2.3}{46}$ = 0.05 mole Given, SO_2 is produced by roasting of iron pyrite (FeS₂) as: Moles of (COOH)₂ = $\frac{2.3}{46}$ = 0.05 mole $4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$ So, 8 moles of SO_2 will be formed by 4 moles of FeS_2 From reaction (i), 0.25 moles of SO₂ will be formed by $\frac{4}{8} \times 0.25$ Number of CO formed = 0.05 mole From reaction (ii), moles of $FeS_2 = 0.125$ moles of FeS_2 Number of CO formed = 0.05 mole molecular mass of $FeS_2 = 119.98 \text{ g mol}^{-1}$ Number of CO_2 formed = 0.05 mole : Amount of FeS₂ required to give necessary SO₂ Hence, Total CO formed = 0.05 + 0.05 = 0.1 mole $= 119.98 \text{g mol}^{-1} \times 0.125 \text{ mol}.$ KOH pellets absorbs all CO₂, H₂O absorbed by H₂SO₄ = $14.99g \approx 15g \text{ of FeS}_2$ thus CO is remaining product. Thus the weight of the remaining product = $0.1 \times 28 =$ What will be the correct number of total 258. 2.8g electrons in 1.6 g methane ? (b) 6.02×10^{23} (a) 6.02×10^{24} In which case is number of molecules of water 256. (c) 6.02×10^{22} (d) 9.632×10^{23} maximum? (a) 18 mL of water UPTU/UPSEE-2018 (b) 0.18 g of water **Ans. (b):** Given mass of methane = 1.6g (c) 0.00224 L of water vapours at 1 atm and 273 Molecular weight of methane = $12 + 4 = 16 \text{ g mol}^{-1}$ Κ Moles of methane $=\frac{\text{Given mass}}{\text{Molecular mass}}$ (d) 10^{-3} mol of water **NEET-2018** Ans. (a) : 1 moles of water contain = 6.023×10^{23} atom Moles of Methane = $\frac{1.6}{16} = 0.1$ Mass of water = $18 \times 1 = 18g$ (H₂O = 18) (i) Molecules of water In one mole there are 6.02×10^{23} atoms = mole × N_A = $\frac{18}{18}$ × 6.023 × 10²³ = 6.023 × 10²³ In 0.1 mol there are $0.1 \times 6.02 \times 10^{23}$ atoms $= 6.02 \times 10^{22}$ atoms (ii) Molecules of water = mole \times N_A $= \frac{18}{18} \times 6.023 \times 10^{23}$ [No. of electron in $CH_4 = 6+4=10$] Hence, Total number of electrons = Number of electrons present in $CH_4 \times atoms$ present in 0.1 mole $= 6.023 \times 10^{21}$ $= 10 \times 6.02 \times 10^{22} = 6.02 \times 10^{23}$ (iii) Molecules of water = mole $\times 6.023 \times 10^{23}$ 259. The heat of neutralisation of a strong base and $=10^{-4} \times 6.023 \times 10^{23}$ a strong acid is 13.7 kcal. The heat released $= 6.023 \times 10^{-19}$ when 0.6 mole HCl solution is added to 0.25 Molecules of water = mole \times 6.023×10²³×10⁻³ (iv) $N_A =$ mole of NaOH is (a) 3.425 kcal (b) 8.22 kcal $= 6.023 \times 10^{20}$ (c) 11.645 kcal (d) 13.7 kcal From above, It is clear that 18 mL of water has maximum molecules. **WB-JEE-2018** 257. One litre of an acidified solution of KMnO₄ Ans. (a) : containing 15.8 g KMnO₄ is decolourised by $HCl + NaOH \longrightarrow NaCl + H_2O$ passing sufficient amount of SO₂. If SO₂ is produced by roasting of iron pyrite (FeS₂). The $\Delta H = -13.7$ Kcal amount of pyrite required to produce the According to question, necessary amount of SO_2 will be $\underset{0.25 \text{ mol}}{\text{HCl}} + \underset{0.6 \text{mol}}{\text{NaCl}} + \underset{0.6 \text{mol}}{\text{NaCl}} + \underset{0.25 \text{ mol}}{\text{Hcl}}$(i) (a) 15.8 g FeS_2 (b) 15.0 g FeS_2 (c) 7.5 g FeS_2 (d) 7.9 g FeS₂ In equation (i), NaOH acts as a limiting reagent. for 1 UPTU/UPSEE-2018 mole of NaOH and 1 mole of HCl heat of neutralization Ans. (b) 2 KMnO₄ + 5SO₂ + 2H₂O \rightarrow K₂SO₄ + = 13.7 kcal. 2MnSO₄+2H₂SO₄ .:. For 0.25 mole of NaOH and 0.6 mole of HCl, heat of Molar mass of KMnO₄ is 158.034 g/mol neutralization = $13.7 \times 0.25 = 3.425$ kcal. Moles of KMnO₄ = $\frac{15.8g}{158.034 \text{ g/mol}} = 0.10 \text{ moles}$ 260. How many moles of electrons will weigh one kilogram?

(a)
$$6.023 \times 10^{23}$$
 (b) $\frac{1}{9.108} \times 10^{31}$
(c) $\frac{6.023}{9.108} \times 10^{41}$ (d) $\frac{1}{9.108 \times 6.023} \times 10^{61}$
(a) $\frac{6.023}{9.108} \times 10^{41}$ (d) $\frac{1}{9.108 \times 6.023} \times 10^{61}$
(a) $\frac{6.023}{9.108} \times 10^{31}$ (b) 10^{31} kg
No. of mole of electrons = 6.023×10^{22} electrons
= $6.023 \times 10^{32} \times 9.108 \times 10^{-31}$ kg
No. of moles of electrons = $\frac{10^{6}}{9.108 \times 6.023}$ moles
of electrons.
Thus, $\frac{1}{9.108 \times 6.023} \times 10^{9}$ moles of electrons will weight
one klogram.
261. The number of molecules of 8 g of oxygen gas
(a) 6.022×10^{23} (b) $8 \times 6.022 \times 10^{23}$
(c) $\frac{1}{4} \times 6.022 \times 10^{23}$ (d) $\frac{1}{2} \times 6.022 \times 10^{23}$
(e) $\frac{1}{4} \times 6.022 \times 10^{23}$ (d) $\frac{1}{2} \times 6.022 \times 10^{23}$
The number of Moles O₂ in 8g of O₂ = $\frac{8}{32} - \frac{1}{4}$
100 contains = 6.022×10^{23} muber of O₂
The number of molecules of 8 g of oxygen gas at NTP
is $6.022 \times 10^{23} \times \frac{1}{4}$.
262. The 25 mil. of a 0.15 M solution of Clear intractor
the Al(80,0)₂ reacts with all of the aluminium
subplate. Al(80,0)₃ persent in 20 mil. of a 3
3Pb(NO₃)₄(a) + Al₂(SO₄)₅(aq) →
3Pb(NO₃)₂ = Volume < Concentration
in $= 3.7.5 \text{ m.L M}$
And Molar mass of Al₂(SO₄)₂ = $\frac{1}{3} \times 3.75$
Then, $M \times 20 - \frac{1}{3} \times 3.75$
The

Objective Chemistry Volume-I

(a) 1.20×10^{21} (b) 1.20×10^{20} (c) 1.20×10^{22} (d) 2×10^{-3}	268. The mass of CaCO ₃ required to react with 25 mL of 0.75 M HCl is :
AMU-2017 Ans. (b) : Given, mass of $NH_4^+ = 3.6 \text{ mg} = 3.6 \times 10^{-3} \text{ g}$	(a) 0.94 g (b) 9.4 g (c) 0.094 g (d) 0.49 g
-	Manipal-2017
Molar mass of $NH_4^+ = (1 \times 14) + (4 \times 1) = 18 \text{ g}$ [N = 14, H = 1]	Ans. (a) : 1 moles $CaCO_3 = 2$ moles of HCl
No. of moles $= \frac{\text{Given mass}}{\text{Molar mass}}$	No. of moles of HCl = $\frac{MV}{1000} = \frac{0.75 \times 25}{1000} = 0.01875$ moles
$=\frac{3.6\times10^{-3}}{18}=0.2\times10^{-3}$ moles	NO. of moles of CaCO ₃ = $\frac{1}{2}$ × number of moles of HCl
No. of electrons in 3.6 mg of NH_4^+	$=\frac{1}{2} \times 0.01875 = 9.375 \times 10^{-3}$
= Moles × Avogadro Number = $0.2 \times 10^{-3} \times 6.023 \times 10^{23}$	Mass of $CaCO_3 = No$ of moles × Molar Mass
$= 1.2 \times 10^{-0} \text{ electron of } \text{NH}_4^+$	[Molar mass of $CaCO_3 = 40+12+16\times3 = 100$]
	$= 9.375 \times 10^{-3} \times 100 = 0.9375g$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	269. What is the quantity of hydrogen gas liberated when 46 g sodium reacts with excess ethanol? (Given atomic mass of Na = 23) (a) 2.4×10^{-3} kg (b) 2.0×10^{-3} kg (c) 4.0×10^{-3} kg (d) 2.4×10^{-2} kg MHT CET-2017
Ans. (c) : Molecular weight of $H_2SO_4 = 98 \text{ mg} = 98 \times 10^{-3} \text{ g}$	Ans. (b) : The reaction of ethanol with water is as follows-
	$2C_2H_5OH(1) + 2Na(s) \rightarrow 2C_2H_5O^-Na^+ + H_2(g)$
No. of moles = $\frac{\text{weight}}{\text{mole. wt.}}$	
	Moles of Na (46g) = $\frac{Mass}{Molecular weight} = \frac{46}{23} = 2 \text{ mol}$
$=\frac{98\times10^{-3}}{98}=10^{-3}\mathrm{moles}=0.001\mathrm{mol}$	Here, 2 moles of Na will give 1 mole of H.
1 mole H ₂ SO ₄ = 6.022×10^{23} molecules	The molecular weight of Hydrogen
$0.001 \text{ moles} = 6.022 \times 10^{23} \times 0.001$	$=\frac{\text{Mass of hydrogen}}{\text{Moles of hydrogen}}=\frac{2}{1}=\text{g mol}^{-1}$
$= 6.022 \times 10^{20} \text{ molecules}$ If 3.01×10 ²⁰ molecules are removed	· ·
then,	Thus, quantity of hydrogen gas librated = 2 g = 2×10^{-3} kg
Remaining molecules = $6.022 \times 10^{20} - 3.01 \times 10^{20}$	-2×10 kg
$= 3.01 \times 10^{20}$	270. The number of grams/weight of NH ₄ Cl
No. of moles = $\frac{3.01 \times 10^{20}}{6.022 \times 10^{23}}$	required to be added to 3 liters of 0.01 M
	NH ₃ to prepare the buffer of pH=9.45 at temperature 298 K (K _b for NH ₃ is 1.85×10 ⁻⁵)
$=\frac{1}{2}\times 10^{-3}=0.5\times 10^{-3}$ moles	(a) 0.354 gm (b) 4.55 gm
267. One mole of an unknown compound was	(c) 0.455 gm (d) 3.55 gm
treated with excess water and resulted in the	$\frac{\text{UPTU/UPSEE-2017}}{\text{Ans. (a) + Given pH = 0.45}}$
evolution of two moles of a readily combustible gas. The resulting solution was treated with	Ans. (a) : Given pH = 9.45 K _b for NH ₃ is 1.85×10^{-5}
CO_2 and resulted in the formation of white	
turbidity. The unknown compound is	$pOH = pK_b + log \frac{[NH_4Cl]}{[NH_3]}$
(a) Ca (b) CaH_2 (c) Ca (OH) ₂ (d) Ca(NO ₃) ₂	
(c) $Ca (OH)_2$ (d) $Ca(NO_3)_2$ (e) $CaSO_4$	\Rightarrow pOH=-logK _b +log $\frac{[NH_4Cl]}{[NH_3]}$
Kerala-CEE-2017	$(:: pK_b = -\log K_b)$
Ans. (b) : The unknown compound is CaH_2 or calcium hydride	Also, $pOH = 14 - pH = 14 - 9.45 = 4.55$
$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2$	and log $\frac{[\mathrm{NH}_4\mathrm{Cl}]}{[\mathrm{NH}_3].\mathrm{K}_b} = \log 3 \approx 0.470$
(2 mole)	
readily combustible H_2 gas	Thus $\log 10^{14}$ (1.10 ⁹ 1.2) [NH ₄ Cl]
$Ca (OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$ White turbidity.	Thus, $\log 10^{14} - (\log 10^9 + \log 3) \approx \log \frac{[\text{NH}_4\text{Cl}]}{[\text{NH}_3].\text{K}_b}$
wind turbuity.	

Objective Chemistry Volume-I

10 ¹⁴ [NH.Cl]		Ans. (c) : Given Mass of $H_2SO_4(w) = 4.9g$
$\frac{10^{14}}{10^9 \times 3} \approx \frac{\left[\mathrm{NH}_4\mathrm{Cl}\right]}{\left[\mathrm{NH}_3\right]\mathrm{K}_{\mathrm{b}}}$		Volume of solution (V)= 100mL
		Molar mass (M)=98
Or $\frac{10^4 \times [\text{NH}_3] \text{K}_b}{10^9 \times 3}$		Molarity (C) = $\frac{W \times 1000}{M \times V}$, $\therefore C = \frac{4.9}{98} \times \frac{1000}{100}$
10 / 5		$M \times V \qquad 98 100$ Molarity = 0.5M
$= [NH_4Cl] \approx \frac{10^{14}}{10^9 \times 3} \times 0.01 \times 1.85$	$\times 10^{-5}$	Normality (N)= $Z \times$ molarity (C)
$= 0.354 \mathrm{gm}.$		where, Z= equivalent factor
271. The yield of acetanilide	in the reaction (100%	For $H_2SO_4(Z=2) \Rightarrow 0.5M$
conversion) of 2 moles of		\therefore Normality =2×0.5=1N
acetic anhydride is		274. 1 g of a carbonate (M_2CO_3) on treatment with
	(b) 135 g (d) 177 ~	excess HCl produces 0.01186 mole of CO ₂ . The molar mass of M_2CO_3 in g mol ⁻¹ is
(c) 67.5 g	(d) 177 g WB-JEE-2017	(a) 1186 (b) 84.3
Ans. (b) :		(c) 118.6 (d) 11.86
	NHCOCH. + CH.COOH	[JEE Main-2017]
$C_{6}H_{5}NH_{2} + (CH_{3}CO)_{2}O \longrightarrow C_{6}H_{5}$ Aniline Acetic anhydride	Acetanilide Aceticacid	Ans. (b) : Given chemical equation. $M_2CO_3 + 2HCl \rightarrow 2MCl + H_2O + CO_2$
Int. 2 1	0 0	1 gm $0.01186 mol$
Final 1 0	1 1	From the above chemical eq^n .
Thus acetic anhydride is the limi		$nM_2CO_3 = nCO_2$
Molar mass of $C_6H_5NHCOCH_3$ d		$\frac{1}{\text{Molar mass of } M_2 \text{CO}_3} = 0.01186$
$= 12 \times 8 + 9 \times 1 + 14 \times $ = 96 + 9 + 14 + 16 = 133		Molar mass of M_2CO_3
Amount of acetanilide formed =		Molar mass of $M_2 CO_3 = \frac{1}{0.01186}$
$= 1 \text{ mol} \times 135 \text{ g mol}^{-1} =$		0.01186 M = 84.3 g mol ⁻¹
272. 0.50 mol of $BaCl_2$ is mi		275. At 25°C consider the density of water is 1 g/L
Na ₃ PO ₄ to get Ba ₃ (PO ₄ Ba ₃ (PO ₄) ₂ of obtained are		and that of propanol to be 0.925g/L what
	(b) 0.2 mol	volume of propanol will have same number of
	(d) 0.05 mol	molecules as present in 210 mL of water?(a) 757 mL(b) 825 mL
	BCECE-2017	(c) 646 mL (d) 437 mL
Ang (a) + Delenced equation	Assam CEE-2014	J & K CET-(2017)
Ans. (c) : Balanced equation $BaCl_2$ and Na_3PO_4 is as follows:	ioi leaction between	Ans. (a) : Given, density of water = $1g/L$
$3BaCl_2 + 2Na_3PO_4 \longrightarrow Ba_3(PO_4)$	$O_{4})_{2}$	and Density of propanol = 0.925 g/L
+ 6NaCl		$Density = \frac{Mass}{Volume}$
3 moles of BaCl ₂ react with 2 m 1 mole of Ba ₃ (PO ₄) ₂	notes of Na_3PO_4 to give	For water :
0.5 moles of $BaCl_2$ will react w	with $(2/3) \times 0.5 = 0.33$	$1 = \frac{18}{1000}$ (molar mass of water = 18 g mol ⁻¹)
moles of Na ₃ PO ₄		$I = \frac{1}{V_{H_2O}}$ (motar mass of water = 18 g mot)
Available moles of $Na_3PO_4 = 0.2$		$V_{\rm H_{2}O} = 18 \text{ L}$
So, Na ₃ PO ₄ is the limiting reager Now, 2 moles of Na ₃ PO ₄ give 1		For propanol :
So, 0.2 moles of $Na_3(PO_4)2$	(1 0 4/2	
Hence maximum number of	moles of $Ba_3(PO_4)_2$	$0.925 = \frac{60}{\mathrm{V}_{\mathrm{propanol}}}$
formed = 0.1		[Molar mass of $CH_3CH_2CH_2OH = 60 \text{g mol}^{-1}$]
273. 4.9 g of H_2SO_4 is present the molarity and normal		$V_{\text{propanol}} = 64.86 \text{ L}$
be	my of the solution will	
Molarity	Normality	Ratio: $\frac{V_{\text{propanol}}}{V_{\text{HoO}}} = \frac{64.86}{18}$
(a) 1M	0.5 N	$V_{\rm H_2O} = 3.603 \times V_{\rm H_2O}$
(b) 1M	0.25 N	
(c) 0.5M (d) 2M	1N 3N	$V_{\text{propanol}} = 3.603 \times 210$
(u) 21M	JIN	= 756.63
	CG PET -2017	= 757 mL

Objective Chemistry Volume-I

276. Dissolving 120 g of urea in 1000 g of water gave	
	Ans. (d) : Given,
a solution of density 1.15 g/mL. The molarity of	$n_1 (CH_3OH) = 5.2 \text{ mol}$
the solution is	1000g
(a) 1.78 M (b) 2 M	$n_2 (H_2O) = \frac{1000g}{18g/mol} = 55.56 mol$
(c) 2.05 M (d) 2.22 M	5
JCECE - 2017	\therefore $n_1 + n_2 = 5.20 + 55.56$
Ans. (c) : Given, Mass of urea = 120g	= 60.76 mol
Molar mass of urea = $120 + 1000 = 1120$ g	\therefore X _{CH₂OH} = mole fraction of CH ₃ OH
Density of solution = 1.15 g/mL	-
	$= \frac{\mathbf{n}_1}{\mathbf{n}_1 + \mathbf{n}_2} = \frac{5.2}{60.76} = 0.086$
Volume of solution = $\frac{\text{mass}}{\text{density}} = \frac{1120}{1.15} = 973.15 \text{mL}$	$n_1 + n_2 = 60.76 = 0.000$
density 1.15	280. The molality of 90% H ₂ SO ₄ solution is [density
Walarita W×1000	= 1.8 g/mL
$Molarity = \frac{W \times 1000}{M \times Volume(in mL)}$	(a) 1.8 (b) 48.4
$=\frac{120\times1000}{60\times973.15}=2.05$ M	(c) 91.8 (d) 94.6
	COMEDK-2017
The molarity of the solution is 2.05M	Ans. (c) : Given,
277. How much CO_2 is produced on heating of 1 kg	[density = 1.8 g/mL]
of carbon?	Sstrength of $H_2SO_4=90\%$
	and mass of solvent $=100 - 90 = 10$ g
(a) $\frac{11}{3}$ kg (b) $\frac{3}{11}$ kg	Now, Molality= Moles of solute dissolved in
(c) $\frac{4}{3}$ kg (d) $\frac{3}{4}$ kg	1000 g of the solvent = $\frac{90 \times 1000}{98 \times 10} = 91.8$
(c) $-\frac{1}{3}$ kg (d) $-\frac{1}{4}$ kg	98×10
NDA (II)-2017	281. 6g of a non-volatile, non-electrolyte X dissolved
Ans. (a) : We know that, $C+O_2 \rightarrow CO_2$	in 100 g of water freezes at -0.93°C. The molar
	mass of X in g mol ⁻¹ is $(K_f \text{ of } H_2 O = 1.86 \text{ K kg})$
12 g of C produces = 44 g of CO_2	mol ⁻¹)
So, $\frac{12}{1000}$ kg of C produces = $\frac{44}{1000}$ kg of CO ₂	(a) 60 (b) 140
1000 1000 1000 1000 1000 1000 1000 100	(c) 180 (d) 120
44 1000	AP-EAMCET – 2016
$\therefore 1 \text{ kg of C produces} = \frac{44}{1000} \times \frac{1000}{12} \text{ kg of CO}_2$	Ans. (d) : Given that–
11	$K_{\rm f} = 1.86 \text{ K kg mol}^{-1}$
$=\frac{11}{3}$ kg	
3	W = 6 gm
5	AT = 0.029C
Hence, $\frac{11}{3}$ kg of CO ₂ produced on heating 1 kg of	$\Delta T_{\rm f} = -0.93^{\circ} {\rm C}$
5	$\Delta T_{\rm f} = -0.93^{\circ} \mathrm{C}$ W' = 100 gm
Hence, $\frac{11}{3}$ kg of CO ₂ produced on heating 1 kg of carbon.	$\Delta T_{\rm f} = -0.93^{\circ} \mathrm{C}$ W' = 100 gm
Hence, $\frac{11}{3}$ kg of CO ₂ produced on heating 1 kg of carbon. 278. The compound C ₆ H ₁₂ O ₄ contains	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \qquad \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$
Hence, $\frac{11}{3}$ kg of CO ₂ produced on heating 1 kg of carbon. 278. The compound C ₆ H ₁₂ O ₄ contains (a) 22 atoms per mole	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \qquad \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times W'}$
Hence, $\frac{11}{3}$ kg of CO ₂ produced on heating 1 kg of carbon. 278. The compound C ₆ H ₁₂ O ₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \qquad \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \qquad \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \qquad \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \qquad \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \qquad \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H ₂ O in one litre is
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H_2O in one litre is (a) 50.5 (b) 55
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O NDA (II)-2017 Ans. (c) : Given, C₆H₁₂O₄ 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H_2O in one litre is (a) 50.5 (b) 55 (c) 55.05 (d) 55.55
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O NDA (II)-2017 Ans. (c) : Given, C₆H₁₂O₄ Molar mass of C in C₆H₁₂O₄= 6×12=72 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H_2O in one litre is (a) 50.5 (b) 55 (c) 55.05 (d) 55.55 SRMJEEE - 2015, 2010
 Hence, 11/3 kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O NDA (II)-2017 Ans. (c) : Given, C₆H₁₂O₄ Molar mass of C in C₆H₁₂O₄= 6×12=72 Molar mass of H in C₆H₁₂O₄= 1×12=12 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H_2O in one litre is (a) 50.5 (b) 55 (c) 55.05 (d) 55.55 SRMJEEE - 2015, 2010 Ans. (d) : A appropriate unit of measurement for
 Hence, 11/3 kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O NDA (II)-2017 Ans. (c) : Given, C₆H₁₂O₄ Molar mass of C in C₆H₁₂O₄= 6×12=72 Molar mass of H in C₆H₁₂O₄= 1×12=12 Therefore, mass percent of C is six times as compared 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H₂O in one litre is (a) 50.5 (b) 55 (c) 55.05 (d) 55.55 SRMJEEE - 2015, 2010 Ans. (d) : A appropriate unit of measurement for water's density is gram per milliliter or 1 gram per
 Hence, 11/3 kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O NDA (II)-2017 Ans. (c) : Given, C₆H₁₂O₄ Molar mass of C in C₆H₁₂O₄= 6×12=72 Molar mass of H in C₆H₁₂O₄= 1×12=12 Therefore, mass percent of H. 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H₂O in one litre is (a) 50.5 (b) 55 (c) 55.05 (d) 55.55 SRMJEEE - 2015, 2010 Ans. (d) : A appropriate unit of measurement for water's density is gram per milliliter or 1 gram per cubic centimeter (1g/cm ³) i.e.
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O NDA (II)-2017 Ans. (c) : Given, C₆H₁₂O₄ Molar mass of C in C₆H₁₂O₄= 6×12=72 Molar mass of H in C₆H₁₂O₄= 1×12=12 Therefore, mass percent of C is six times as compared to the mass percent of H. 	$\Delta T_{f} = -0.93^{\circ}C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H₂O in one litre is (a) 50.5 (b) 55 (c) 55.05 (d) 55.55 SRMJEEE - 2015, 2010 Ans. (d) : A appropriate unit of measurement for water's density is gram per milliliter or 1 gram per cubic centimeter (1g/cm ³) i.e. Density of water = 1 g/cc
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O NDA (II)-2017 Ans. (c) : Given, C₆H₁₂O₄ Molar mass of C in C₆H₁₂O₄= 6×12=72 Molar mass of H in C₆H₁₂O₄= 1×12=12 Therefore, mass percent of C is six times as compared to the mass percent of H. 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H₂O in one litre is (a) 50.5 (b) 55 (c) 55.05 (d) 55.55 SRMJEEE - 2015, 2010 Ans. (d) : A appropriate unit of measurement for water's density is gram per milliliter or 1 gram per cubic centimeter (1g/cm ³) i.e.
 Hence, 11/3 kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O NDA (II)-2017 Ans. (c) : Given, C₆H₁₂O₄ Molar mass of C in C₆H₁₂O₄= 6×12=72 Molar mass of H in C₆H₁₂O₄= 1×12=12 Therefore, mass percent of C is six times as compared to the mass percent of H. 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H₂O in one litre is (a) 50.5 (b) 55 (c) 55.05 (d) 55.55 SRMJEEE - 2015, 2010 Ans. (d) : A appropriate unit of measurement for water's density is gram per milliliter or 1 gram per cubic centimeter (1g/cm ³) i.e. Density of water = 1 g/cc and
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O NDA (II)-2017 Ans. (c) : Given, C₆H₁₂O₄ Molar mass of C in C₆H₁₂O₄= 6×12=72 Molar mass of H in C₆H₁₂O₄= 1×12=12 Therefore, mass percent of C is six times as compared to the mass percent of H. 279. A 5.2 molal aqueous solution methyl alcohol, CH₃OH is supplied. What is the mole fraction of methyl alcohol in the solution? (a) 0.05 (b) 0.10 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H₂O in one litre is (a) 50.5 (b) 55 (c) 55.05 (d) 55.55 SRMJEEE - 2015, 2010 Ans. (d) : A appropriate unit of measurement for water's density is gram per milliliter or 1 gram per cubic centimeter (1g/cm ³) i.e. Density of water = 1 g/cc and
 Hence, 11/3 kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O NDA (II)-2017 Ans. (c) : Given, C₆H₁₂O₄ Molar mass of C in C₆H₁₂O₄= 6×12=72 Molar mass of H in C₆H₁₂O₄= 1×12=12 Therefore, mass percent of C is six times as compared to the mass percent of H. 279. A 5.2 molal aqueous solution methyl alcohol, CH₃OH is supplied. What is the mole fraction of methyl alcohol in the solution? (a) 0.05 (b) 0.10 (c) 0.18 (d) 0.086 	$\Delta T_{f} = -0.93^{\circ}C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H_2O in one litre is (a) 50.5 (b) 55 (c) 55.05 (d) 55.55 SRMJEEE - 2015, 2010 Ans. (d) : A appropriate unit of measurement for water's density is gram per milliliter or 1 gram per cubic centimeter (1g/cm ³) i.e. Density of water = 1 g/cc and Density of water = $\frac{Mass of water}{Volume of water}$
 Hence, ¹¹/₃ kg of CO₂ produced on heating 1 kg of carbon. 278. The compound C₆H₁₂O₄ contains (a) 22 atoms per mole (b) twice the mass percent of H as compared to the mass percent of C (c) six times the mass percent of C as compared to the mass percent of H (d) thrice the mass percent of H as compared to the mass percent of O NDA (II)-2017 Ans. (c) : Given, C₆H₁₂O₄ Molar mass of C in C₆H₁₂O₄= 6×12=72 Molar mass of H in C₆H₁₂O₄= 1×12=12 Therefore, mass percent of H. 279. A 5.2 molal aqueous solution methyl alcohol, CH₃OH is supplied. What is the mole fraction of methyl alcohol in the solution? (a) 0.05 (b) 0.10 	$\Delta T_{f} = -0.93^{\circ} C$ $W' = 100 \text{ gm}$ $\therefore \Delta T_{f} = \frac{K_{f} \times W \times 1000}{M \times W'}$ $0.93 = \frac{1.86 \times 6 \times 1000}{M \times 100}$ $M = \frac{1.86 \times 6 \times 10}{0.93}$ $M = 120$ 282. The number of moles of H_2O in one litre is (a) 50.5 (b) 55 (c) 55.05 (d) 55.55 SRMJEEE - 2015, 2010 Ans. (d) : A appropriate unit of measurement for water's density is gram per milliliter or 1 gram per cubic centimeter (1g/cm ³) i.e. Density of water = 1 g/cc and Density of water = $\frac{Mass of water}{Volume of water}$

· · · · · · · · · · · · · · · · · · ·	۱ <u>٫ </u>
Mass of water	Ans. (a) : Given, cost of sugar = ₹ 50 kg
No. of moles = $\frac{\text{Mass of water}}{\text{Molecular weight}}$	Molar mass of sugar = $12 \times 12 + 1 \times 22 + 11 \times 16$
Woleculai weight	= 342g
No of molog $=$ 1000 gm 55.5 mol	[C = 12, H = 1, O = 16]
No. of moles = $\frac{1000 \text{ gm}}{18}$ = 55.5 mol	\therefore Cost of 1000 g of sugar is Rs. 50
10	
283. What weight of HCl is present in 155 mL of a	$\therefore \text{ Cost of 342g of sugar} = \frac{50}{1000} \times 342$
0.54 M solution?	1000 1000 1000 1000 1000 1000 1000
(a) 3.06 g (b) 6.12 g	=₹.17.1
(c) 1.53 g (d) 0.30 g	287. A man writes his biodata with carbon pencil on
AMU-2016	the plane paper having mass 150 mg. After
Ans. (a): Given,	writing his biodata, he weighs the written
V_s (HCl) = 155 mL = 0.155 L	paper and find its mass is 152 mg. What is the
$n(HCl) = V_s(HCl) \times C(HCl) = 0.155L \times 0.540M$	number of carbon atoms present in the paper?
= 0.0837 mol.	(a) 1.0036×10^{20} (b) 5.02×10^{20} (c) 1.0036×10^{23} (d) 0.502×10^{20}
Molecular weight = 36.4 g/mol	
$m(HCl) = n(HCl) \times M(HCl)$	Manipal-2016
$= 0.0837 \text{ mol} \times 36.5 \text{ g/mol}$	Ans. (a) : We know,
$= 3.05505 g \approx 3.060 g$	Mass of C-atoms = $152-150 = 2mg$
284. If 27 g of water is formed during complete	Molar mass of C-atoms = $12g = 12000mg$
combustion of pure propene (C_3H_6), the mass	
of propene burnt is	12000 mg of carbon contains = $\frac{6.022 \times 10^{23}}{12000} \times 2$
	$12000 \text{ mg of carbon contains} = \frac{12000}{12000} \times 2$
(a) $42 g$ (b) $21 g$	$= 0.0010036 \times 10^{23}$
(c) 14 g (d) 56 g	$= 1.0036 \times 10^{20}$ atoms.
(e) 40 g	
Kerala-CEE-2016	Therefore, the number of carbon atoms present in $1.002(-10^{20})$ structure
Ans. (b) : Given,	1.0036×10^{20} atoms.
H_2O (formed) = 27g	288. The concentration of a solution can be
Reaction,	expressed in molarity, normality, formality and
	molality. Among them, which mode of
0	
$C_3H_6 + \frac{9}{2}O_2 \longrightarrow 3CO_2 + 3H_2O$	expression is the most accurate for the all
$C_{3}H_{6} + \frac{9}{2}O_{2} \longrightarrow 3CO_{2} + \frac{3H_{2}O_{3\times18=54}}{(3\times18=54)}$	expression is the most accurate for the all conditions?
	expression is the most accurate for the all conditions? (a) Molarity (b) Formality
The mass ratio between C_3H_6 and H_2O	expression is the most accurate for the all conditions?
The mass ratio between C_3H_6 and H_2O = 42:54	expression is the most accurate for the all conditions?(a) Molarity(b) Formality(c) Normality(d) Molality
The mass ratio between C_3H_6 and H_2O	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H_2O require = 42g C_3H_6	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016
The mass ratio between C_3H_6 and H_2O = 42:54	expression is the most accurate for the all conditions?(a) Molarity(b) Formality(c) Normality(d) Molality
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H ₂ O require = 42g C_3H_6 \therefore 27g of H ₂ O require = $\frac{42 \times 27}{54}$	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{Moles \text{ of solute}}{Mass \text{ of solvent in kg}}$
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H ₂ O require = 42g C_3H_6 \therefore 27g of H ₂ O require = $\frac{42 \times 27}{54}$ = 21g. C_3H_6	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H_2O require = 42g C_3H_6 \therefore 27g of H_2O require = $\frac{42 \times 27}{54}$ = 21g. C_3H_6 285. A silicon chip used in an integrated circuit of	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{Moles of solute}{Mass of solvent in kg}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three
 The mass ratio between C₃H₆ and H₂O = 42:54 ∴ 54g of H₂O require = 42g C₃H₆ ∴ 27g of H₂O require = 42×27/54 = 21g. C₃H₆ 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number 	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{Moles of solute}{Mass of solvent in kg}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three
 The mass ratio between C₃H₆ and H₂O = 42:54 ∴ 54g of H₂O require = 42g C₃H₆ ∴ 27g of H₂O require = 42×27/54 = 21g. C₃H₆ 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : 	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature.
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H ₂ O require = 42g C_3H_6 \therefore 27g of H ₂ O require = $\frac{42 \times 27}{54}$ = 21g. C_3H_6 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H_2O require = 42g C_3H_6 \therefore 27g of H_2O require = $\frac{42 \times 27}{54}$ = 21g. C_3H_6 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total
The mass ratio between C_3H_6 and H_2O = 42:54 $\therefore 54g \text{ of } H_2O \text{ require} = 42g C_3H_6$ $\therefore 27g \text{ of } H_2O \text{ require} = \frac{42 \times 27}{54}$ $= 21g. C_3H_6$ 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144×10^{20} atoms (b) 18×10^{20} atoms (c) 21×10^{20} atoms (d) None of these Manipal-2016	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = Moles of solute Moles of solute Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained
The mass ratio between C_3H_6 and H_2O = 42:54 $\therefore 54g \text{ of } H_2O \text{ require} = 42g C_3H_6$ $\therefore 27g \text{ of } H_2O \text{ require} = \frac{42 \times 27}{54}$ $= 21g. C_3H_6$ 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144×10^{20} atoms (b) 18×10^{20} atoms (c) 21×10^{20} atoms (d) None of these Manipal-2016 Ans. (d) : Given,	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = Moles of solute Moles of solute Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What
The mass ratio between C_3H_6 and H_2O = 42:54 $\therefore 54g \text{ of } H_2O \text{ require} = 42g C_3H_6$ $\therefore 27g \text{ of } H_2O \text{ require} = \frac{42 \times 27}{54}$ $= 21g. C_3H_6$ 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144×10^{20} atoms (b) 18×10^{20} atoms (c) 21×10^{20} atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = Moles of solute Moles of solute Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the
The mass ratio between C_3H_6 and H_2O = 42:54 $\therefore 54g \text{ of } H_2O \text{ require} = 42g C_3H_6$ $\therefore 27g \text{ of } H_2O \text{ require} = \frac{42 \times 27}{54}$ $= 21g. C_3H_6$ 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144×10^{20} atoms (b) 18×10^{20} atoms (c) 21×10^{20} atoms (d) None of these Manipal-2016 Ans. (d) : Given,	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = Moles of solute Moles of solute Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H_2O require = 42g C_3H_6 \therefore 27g of H_2O require = $\frac{42 \times 27}{54}$ = 21g. C_3H_6 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022 × 10 ²³ atoms	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ²
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H_2O require = 42g C_3H_6 \therefore 27g of H_2O require = $\frac{42 \times 27}{54}$ = 21g. C_3H_6 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022 × 10 ²³ atoms	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ² (a) 99.65 g mol ⁻¹ (b) 18 g mol ⁻¹
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H_2O require = 42g C_3H_6 \therefore 27g of H_2O require = $\frac{42 \times 27}{54}$ = 21g. C_3H_6 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022×10^{23} atoms Then, 5.68 mg of silicon contain $\frac{6.022 \times 10^{23}}{28000} \times 5.68$	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ² (a) 99.65 g mol ⁻¹ (b) 18 g mol ⁻¹ (c) 134.1 g mol ⁻¹ (d) 105.74 g mol ⁻¹
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H_2O require = 42g C_3H_6 \therefore 27g of H_2O require = $\frac{42 \times 27}{54}$ = 21g. C_3H_6 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022×10^{23} atoms Then, 5.68 mg of silicon contain $\frac{6.022 \times 10^{23}}{28000} \times 5.68$ = 0.00122 × 10 ²³ = 1.22 × 10 ²⁰ atoms	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ² (a) 99.65 g mol ⁻¹ (b) 18 g mol ⁻¹ (c) 134.1 g mol ⁻¹ (d) 105.74 g mol ⁻¹
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H_2O require = 42g C_3H_6 \therefore 27g of H_2O require = $\frac{42 \times 27}{54}$ = 21g. C_3H_6 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022×10^{23} atoms Then, 5.68 mg of silicon contain $\frac{6.022 \times 10^{23}}{28000} \times 5.68$	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ² (a) 99.65 g mol ⁻¹ (b) 18 g mol ⁻¹ (c) 134.1 g mol ⁻¹ (d) 105.74 g mol ⁻¹ UPTU/UPSEE-2016 Ans. (c): Given,
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H_2O require = 42g C_3H_6 \therefore 27g of H_2O require = $\frac{42 \times 27}{54}$ = 21g. C_3H_6 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022×10^{23} atoms Then, 5.68 mg of silicon contain $\frac{6.022 \times 10^{23}}{28000} \times 5.68$ = 0.00122 × 10 ²³ = 1.22 × 10 ²⁰ atoms	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ² (a) 99.65 g mol ⁻¹ (b) 18 g mol ⁻¹ (c) 134.1 g mol ⁻¹ (d) 105.74 g mol ⁻¹ UPTU/UPSEE-2016 Ans. (c): Given, $P_{total} = 99.652 \text{ kP}_a$
The mass ratio between C_3H_6 and H_2O = 42:54 \therefore 54g of H_2O require = 42g C_3H_6 \therefore 27g of H_2O require = $\frac{42 \times 27}{54}$ = 21g. C_3H_6 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022×10^{23} atoms Then, 5.68 mg of silicon contain $\frac{6.022 \times 10^{23}}{28000} \times 5.68$ = 0.00122 × 10 ²³ = 1.22 × 10 ²⁰ atoms The number of Si atoms present in this chip is = 1.22 × 10 ²⁰ atoms	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ² (a) 99.65 g mol ⁻¹ (b) 18 g mol ⁻¹ (c) 134.1 g mol ⁻¹ (d) 105.74 g mol ⁻¹ UPTU/UPSEE-2016 Ans. (c): Given, $P_{total} = 99.652 \text{ kP}_{a}$ $P_{water} = P_{B} = 85.140 \text{ kP}_{a}$
The mass ratio between C ₃ H ₆ and H ₂ O = 42:54 ∴ 54g of H ₂ O require = 42g C ₃ H ₆ ∴ 27g of H ₂ O require = $\frac{42 \times 27}{54}$ = 21g. C ₃ H ₆ 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022×10^{23} atoms Then, 5.68 mg of silicon contain $\frac{6.022 \times 10^{23}}{28000} \times 5.68$ = 0.00122 × 10 ²³ = 1.22 × 10 ²⁰ atoms The number of Si atoms present in this chip is = 1.22 × 10 ²⁰ atoms 286. Cost of sugar (C ₁₂ H ₂₂ O ₁₁) is ₹ 50 per kg.	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ² (a) 99.65 g mol ⁻¹ (b) 18 g mol ⁻¹ (c) 134.1 g mol ⁻¹ (d) 105.74 g mol ⁻¹ UPTU/UPSEE-2016 Ans. (c): Given, $P_{total} = 99.652 \text{ kP}_a$
The mass ratio between C ₃ H ₆ and H ₂ O = 42:54 ∴ 54g of H ₂ O require = 42g C ₃ H ₆ ∴ 27g of H ₂ O require = $\frac{42 \times 27}{54}$ = 21g. C ₃ H ₆ 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022 × 10 ²³ atoms Then, 5.68 mg of silicon contain $\frac{6.022 \times 10^{23}}{28000} \times 5.68$ = 0.00122 × 10 ²³ = 1.22 × 10 ²⁰ atoms The number of Si atoms present in this chip is = 1.22 × 10 ²⁰ atoms 286. Cost of sugar (C ₁₂ H ₂₂ O ₁₁) is ₹ 50 per kg. Calculate its cost per mol.	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ² (a) 99.65 g mol ⁻¹ (b) 18 g mol ⁻¹ (c) 134.1 g mol ⁻¹ (d) 105.74 g mol ⁻¹ UPTU/UPSEE-2016 Ans. (c): Given, $P_{total} = 99.652 \text{ kP}_{a}$ $P_{water} = P_{B} = 85.140 \text{ kP}_{a}$
The mass ratio between C ₃ H ₆ and H ₂ O = 42:54 ∴ 54g of H ₂ O require = 42g C ₃ H ₆ ∴ 27g of H ₂ O require = $\frac{42 \times 27}{54}$ = 21g. C ₃ H ₆ 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022×10^{23} atoms Then, 5.68 mg of silicon contain $\frac{6.022 \times 10^{23}}{28000} \times 5.68$ = 0.00122 × 10 ²³ = 1.22 × 10 ²⁰ atoms The number of Si atoms present in this chip is = 1.22 × 10 ²⁰ atoms 286. Cost of sugar (C ₁₂ H ₂₂ O ₁₁) is ₹ 50 per kg. Calculate its cost per mol. (a) ₹ 17.1 per mol (b) ₹ 27.1 per mol	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ² (a) 99.65 g mol ⁻¹ (b) 18 g mol ⁻¹ (c) 134.1 g mol ⁻¹ (d) 105.74 g mol ⁻¹ UPTU/UPSEE-2016 Ans. (c): Given, $P_{total} = 99.652 \text{ kPa}_{a}$ $P_{water} = P_{B} = 85.140 \text{ kPa}_{a}$ $P_{liquid} = P_{A} = (99.652-85.140) \text{ kPa}_{a}$ $= 14.512 \text{ kPa}_{a}$
The mass ratio between C ₃ H ₆ and H ₂ O = 42:54 ∴ 54g of H ₂ O require = 42g C ₃ H ₆ ∴ 27g of H ₂ O require = $\frac{42 \times 27}{54}$ = 21g. C ₃ H ₆ 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022 × 10 ²³ atoms Then, 5.68 mg of silicon contain $\frac{6.022 \times 10^{23}}{28000} \times 5.68$ = 0.00122 × 10 ²³ = 1.22 × 10 ²⁰ atoms The number of Si atoms present in this chip is = 1.22 × 10 ²⁰ atoms 286. Cost of sugar (C ₁₂ H ₂₂ O ₁₁) is ₹ 50 per kg. Calculate its cost per mol.	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ² (a) 99.65 g mol ⁻¹ (b) 18 g mol ⁻¹ (c) 134.1 g mol ⁻¹ (d) 105.74 g mol ⁻¹ UPTU/UPSEE-2016 Ans. (c): Given, $P_{total} = 99.652 \text{ kPa}_{a}$ $P_{water} = P_{B} = 85.140 \text{ kPa}_{a}$ $P_{liquid} = P_{A} = (99.652-85.140) \text{ kPa}_{a}$ $= 14.512 \text{ kPa}_{a}$
The mass ratio between C ₃ H ₆ and H ₂ O = 42:54 ∴ 54g of H ₂ O require = 42g C ₃ H ₆ ∴ 27g of H ₂ O require = $\frac{42 \times 27}{54}$ = 21g. C ₃ H ₆ 285. A silicon chip used in an integrated circuit of computer has a mass of 5.68 mg. The number of Si atoms present in this chip are : (a) 144 × 10 ²⁰ atoms (b) 18 × 10 ²⁰ atoms (c) 21 × 10 ²⁰ atoms (d) None of these Manipal-2016 Ans. (d) : Given, Molar mass of Si = 28g = 28000 mg So, 28000 mg of Si contain 6.022×10^{23} atoms Then, 5.68 mg of silicon contain $\frac{6.022 \times 10^{23}}{28000} \times 5.68$ = 0.00122 × 10 ²³ = 1.22 × 10 ²⁰ atoms The number of Si atoms present in this chip is = 1.22 × 10 ²⁰ atoms 286. Cost of sugar (C ₁₂ H ₂₂ O ₁₁) is ₹ 50 per kg. Calculate its cost per mol. (a) ₹ 17.1 per mol (b) ₹ 27.1 per mol	expression is the most accurate for the all conditions? (a) Molarity (b) Formality (c) Normality (d) Molality Manipal-2016 Ans. (d) : Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$ Molality is defined in terms of weight, hence independent of temperature. Remaining three concentration units are defined in terms of volume of solution, they depends on temperature. 289. When a liquid that is immiscible with water was steam distilled at. 95.2°C at a total pressure of 99.652 kPa. The distillate contained 1.27 g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is 85.140 kPa at 95.2°C ² (a) 99.65 g mol ⁻¹ (b) 18 g mol ⁻¹ (c) 134.1 g mol ⁻¹ (d) 105.74 g mol ⁻¹ UPTU/UPSEE-2016 Ans. (c): Given, $P_{total} = 99.652 \text{ kPa}_{a}$ $P_{water} = P_{B} = 85.140 \text{ kPa}_{a}$ $P_{liquid} = P_{A} = (99.652-85.140) \text{ kPa}_{a}$ $= 14.512 \text{ kPa}_{a}$ and $\frac{m_{A}}{m} = \frac{1.27}{1} \Rightarrow \frac{m_{A}}{m} = \frac{p_{A}m_{A}}{m}$

$$\begin{array}{c} \mathbf{M}_{a} = \left(\frac{\mathbf{m}_{a}}{\mathbf{m}_{b}} \right) \left(\frac{\mathbf{p}_{a}\mathbf{m}_{b}}{\mathbf{p}_{a}} \right) \\ \mathbf{M}_{a} = 1.27 \times \left(\frac{85.140\,\mathrm{kP} \times 18\,\mathrm{g}\,\mathrm{mol}^{-1}}{14.512\,\mathrm{kP}_{a}} \right) \\ \mathbf{M}_{a} = 1.27 \times \left(\frac{85.140\,\mathrm{kP} \times 18\,\mathrm{g}\,\mathrm{mol}^{-1}}{14.512\,\mathrm{kP}_{a}} \right) \\ \mathbf{M}_{a} = 134.1\,\mathrm{g}\,\mathrm{mol}^{-1} \\ \mathbf{M}_{a} = 0.1\,\mathrm{g}\,\mathrm{sol$$

296. Solid NaHCO ₃ will be neutralized by 40.0mL of 0.1M H ₂ SO ₄ solution. What would be the weight of solid NaHCO ₃ in gram?	(a) 1.2 atm (c) 2.0 atm (d) 1.0 atm (d) 1.0 atm
(a) 0.672g (b) 6.07g	
(c) 17g (d) 20g	Ans. (b) : $N_2O_4 \rightarrow 2NO_2$ Malac of up recented N $O_2 = 1(1 - 0.2) = 0.8$
JIPMER-2016	Moles of un reacted $N_2O_4 = 1(1 - 0.2) = 0.8$
Ans. (a) :	Moles of $NO_2 = 2 \times 0.2 = 0.4$
	Total moles $(n_2) = 0.8 + 0.4 = 1.2$
$2NaHCO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O + 2CO_2$	$P_{1}/(T_{1}n_{1}) = P_{2}/T_{2} \times n_{2}$
Mole 2mole 1mole ratio =168g =98g	1 P
m- moles of $H_2SO_4 = M \times V_{mL} = 40.0 \times 0.01$	$\frac{1}{300 \times 1} = \frac{P_2}{600 \times 1.2} .$
= 4 m - mole	$300 \times 1 - 600 \times 1.2$
	$P_2 = 2.4 \text{ atm}$
Moles of $H_2SO_4 = M \times VmL = 40.0 \times 0.1 = 4m \text{ mol}$	300. When 4A of current is passed through a 1.0 L,
Also, it can written as m-moles of NaHCO ₃ when neutrolized = $4\times 2 = 8m$ moles	0.10 M Fe ³⁺ (aq) solution for 1 hour, it is partly
neutralised = $4 \times 2 = 8$ m-moles.	reduced to Fe(s) and partly of Fe ²⁺ (aq), Identify
But m-mole = $\frac{W}{W} \times 1000$	the incorrect statement.
m	(a) 0.10 mole of electrons are required to convert
w	all Fe^{3+} to Fe^{2+}
$8 = \frac{W}{84} \times 1000 \Longrightarrow W = \frac{84 \times 8}{1000} \Longrightarrow W = 0.672 \mathrm{g}.$	(b) 0.025 mol of Fe(s) will be deposited
	(c) 0.05 mol of iron remains as Fe^{2+}
297. Which one of the following has different	(d) 0.050 mol of iron remains as Fe^{2+}
number of molecules? (All are kept at normal	BCECE-2015
temperature and pressure)	Ans. (d) : Given,
(a) 3 gram of Hydrogen (b) 48 gram of Oxygen	4 a, 1 hours, 1.0L, 0.10mF_{e}^{+3}
(c) 42 gram of Nitrogen (d) 2 gram of Carbon	
NDA (II)-2016	Number of F = $\frac{\text{It}}{96500} = \frac{4 \times 3600}{96500} = 0.15 \text{ F}$
Ans. (d) : We know that,	96500 96500
$1 \text{ mole} = 6.022 \times 10^{23} \text{ atom}$	Initially mole $Fe^{+3} = b \ 1 \times 0.10 = 0.1$ mole
1g of hydrogen= 6.022×10^{23} atoms	$e^- + F3^{+3} \longrightarrow F^{+3}$
$3g \text{ of hydrogen} = 3 \times 6.022 \times 10^{23} \text{ atoms}$	$1F = 1$ Mole $F3^{+3}$ deposited
3 22	$0.15 \text{ F} = 0.15 \text{ mole F3}^{+3}$ deposited > Initially mole 0.1 mole Fe ⁺³ = 0.1 F electricity = 0.1 mole Fe ⁺²
$\frac{3}{2} \times 6.022 \times 10^{23}$ molecule (: hydrogen is diatomic)	0.1 mole $Fe^{+3} = 0.1$ F electricity = 0.1 mole Fe^{+2}
Now, 16g of oxygen = 6.022×10^{23} atoms	Fe^{+2} 0.1 mole
	$0.05 \text{ F} \rightarrow \text{Fe}^{+2} + 2e^{-} \longrightarrow \text{Fe}$
48g of oxygen= $\frac{3}{2} \times 6.022 \times 10^{23}$ atoms	$0.05 \text{ F} \Rightarrow \text{Fe}^{+2} + 2e^{-} \longrightarrow \text{Fe}$ $2\text{F} = 1 \text{ mole Fe}^{+2}$
1000000000000000000000000000000000000	
(∴Oxygen is diatomic)	$0.05 = \frac{1}{2} \times 0.05$ mole Fe ⁺² 0.025 mole Fe ⁺²
Again, 12g of carbon= 6.022×10^{23} atoms	2
1 22	Fe mole = 0.025 mole
$2g \text{ of carbon} = \frac{1}{6} \times 6.022 \times 10^{23} \text{ molecule}$	$Fe^{+2} \rightarrow 0.1 - 0.025 = 0.05$ mole
	Hence the in correct option (d)
(∴ carbon is monoatomic molecule)	301. The number of Na atoms in 46g of Na (atomic
Hence, 2g of C contain different number of molecules.	weight of $Na = 23$) is
298. The number of oxygen atoms in $4.4g$ of CO_2 is	(a) 6.023×10^{23} (b) 2
(a) 1.2×10^{23} (b) 6×10^{22}	(c) 1 (d) 12.046×10^{23}
(c) 6×10^{23} (d) 12×10^{23}	(d) 12:010 10 J & K CET-(2015)
Karnataka-CET-2016	Ans. (d) : Given,
Ans. (a) : Given that,	Molar mass of Na = 23 g, Given mass = 46 g
Moles of $CO_2 = \frac{4.4}{44} = 0.1$ moles	No. of atoms = $\frac{\text{Given mass} \times \text{N}_{\text{A}}}{\text{Given mass} \times \text{N}_{\text{A}}}$
77	No. of atoms = $\frac{\text{Given mass} \times N_A}{\text{Molar mass}}$
$\therefore \text{ Number of molecules of } CO_2 = 0.1 \times 6.022 \times 10^{23} \\ = 6.022 \times 10^{22} \text{ molecules}$	
	$=\frac{46\times6.022\times10^{23}}{23}$
1 molecule of CO_2 contains 2 oxygen atoms.	
$\therefore \text{Number of oxygen atoms} = 2 \times 6.022 \times 10^{22}$	$= 2 \times 6.022 \times 10^{23}$
$= 12.044 \times 10^{22}$ atoms	$= 12.044 \times 10^{23}$ atoms
$= 1.2 \times 10^{23}$ atoms	\therefore 46 g of Na contains 12.044 × 10 ²³ atoms
299. One mole of $N_2O_{4(g)}$ at 300 K is kept in a closed	302. In order to prepare one liter 1N solution of
vessel at 1 atm pressure. It is heated to 600 K	KMnO ₄ , how many grams of KMnO ₄ are
when 20% by mass of $N_2O_{4(g)}$ decomposes to	required, if the solution to be used in acid
NO _{2(g)} . The resultant pressure is	medium for oxidation?