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1. Solution differential

Gl = 2@ +u ,where u(x,0) = 6¢ " is
ox ot

3R TR THRIUT % = 2% +u R B
Wafeh u(x,0) = 6e > 8-
(a) 6e—(2x+3t)

(C) 66 (3x+4t)
Ans. (d) : 6¢ ¥

of partial equation

(b) 6e—(3x+4t)
(d) 66 —(3x+2t)

Given @=2@+u
ox ot

Let u = X(x)T(t), where X is a function of x only and T
is a function of t only.
Now given equation can be written as,

0 0
&(X(X)T(t)) = 25(X(X)T(t)) + X(x)T(t)

or T(t)dix(X(x)) = 2X(x)%(T(t)) +X(x)T(t)

On separating the variables we have,

1dX 2dT
———=——+1=C

Xdx Tdt
= id—X=C &gd—TH:C

X dx T dt
L Xy g 4T, T CT
dx d 2 2

:>DX—CX=0&DT—(%—%)T=O

=AE ism-C=0&A.E.ism- (%—%j =0

= m=C :>m=%(C—l)

!
Loy
= X = ae™ = T = be?

Then we get from u = X(x)T(t)
I
u=ac™ be

Cx+l(C—I)l
=u= abe 2

-3
Because u(x, 0) = 6e ™ we have from above
-3
6e " = abe™

= ab=6&C=-3
ENE
Thus u=6e 2
= u=6e " which is the required solution.

2. Transformation of differential

equation

2 2

(%}L(Z_\;] =0 into polar form r, 6 in R’
y

o’v v

TG 3TqeheT THIHTUT =t pe =0 &

X

where v=v (x, ), is
U g T or, 6 W (S0 R RPH ®)
WﬁEVEv(x,y).

Laplace

(a) 6_2\/+1@+L6_2V_0
o’ ror r? oo
v 1ov 1 d%
p Ly _lov 1oV
®) o' ror rt oo’
o v 10y 10
o’ ror oo’
v 1ov 1 d%
g Ly ov 1ov_g
@ o’ ror r’oe?
v lov 1 d%
Ans.(a): —+-——+5—=
(@) > ror r? 00

Laplace's equation is given by

v\ (o’
P + Py - 0
0x oy
Here x, y are cartesian coordinates in plane.

2 2
The expression 6_\2/ + 8_\2/ is called Laplacian of v.
ox oy
Laplacian of v = v(x, y) in polar coordinates r, O
defined by x =1 cos 0, y =r sin 0; thus

r= x> +y?, tan@ =2
X

By the chain rule we obtain
Vx =V Iy T Vg O
Subscripts denoting partial derivatives.
Differentiating once more with respect to x gives
Vix = (Vili)x + (Vo )x
= (Vr)xrx + Vil'xx + (Ve)xex + Veexx
= (Vrrrx + Vreex) Ix T VI (Verrx+ Veeex )ex+ Veexx (1)
Also, by differentiation of r and 6 we find

1
rx:%=§,9x= 2(_)(_};]__%2
Jxi+y 1+(zj
X
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Differentiating again we obtain

r—xr, 1 x> ¥y 2 2xy
™ P :__—3:r—39exx:_y 3 rx:r—4

r ror r
Substituting all these expressions in the equation (1).
Assuming continuity of the first and second partial
derivatives we have v,y = vq, and by simplifying

2

2 2
X Xy y y Xy
Vix = 5 Vp =25 Vgt 5 Ve T3V, + 21V,
r r r r r
Similarly
y Xy X ? Xy
Vyy = S5V, +2—5Vo+—F Vg +—Vr—2—=-v
) 06 0
yy r2 jeg r3 r4 r} r4

By adding we obtain the Laplacian of v = v(x,y) in

polar coordinates

o’v lov 1 0%

2t Tt T

o ror r 00
o’v
2 W

2
Thus, Laplace's equation KZX—VJ+£ jz 0 into polar

coordinates is
v 1ov 10>
PR ey
or~ 2o r 00

3. The solution of the Volterra integral equation
y(x)=1 +_[0x(x-t)y(t)dt, when yy(x) =0, is
IR AT THteRTIT
y(x)=1+[ (x-t)y(t)dt, SEH yo(x) = 0 T
& -

(a) y (x) =sinh x
(c) y(x) =sinx

(b) y(x) =cosx
(d) y(x)=coshx

Ans. (d) : y(x) = coshx
Given y(x)= 1+ ["(x—t)y(t)dt and yo(x) =0
On comparing with y(x) = f(x) + k.[oxk(x,t)y(t)dt we

obtain
fix)=1,A=1,K(x,t)=x—t
The n™ order approximation is given by

¥a(¥) = £00) + 4 [ k(x, D)y, (Ddt
¥a() =1+ [ (x =)y, (0dt
Now n=1 gives

Vi) =1+ ["(x =0y, (de=1
n =2 gives

yao(x) = 1+ IOX(X —t)yl (t)dt
=1+ (x—t)dt

27* 2 2
ST (ORI RS PP S S .
2 2

or

2

0
n =3 gives

yy(x) = 1+ on(x—t)y2(t)dt =1+j0x(x—t)(l+§]dt

2 3
= 1+ x+i—t—t— dt
2 2
xtt |
=1+ xt+—————
6 2 8]
4 2 4 2 4
S PG N S
6 2 8 2 24
X2 X4
=l+—+—
21 41
Similarly we can write
X2 X4 X2n—2
X)) =1+ —+—+.....
¥al) 2! 41 (2n—2)!

Now the required solution y(x) is given by
y(x) = limy, (x)

Which gives y(x) = coshx

4. Laplace transform of Bessel function J;(x) is -
A e J;(x) T ATEATE BT ZATT-
S 1

N (b) 1+——
S

()"

©) 1+% ) 1-—=—

(s +1)3/2 s?+1

(a) 1+

S
Vst +1

Bessel function of the first kind of order n,

Ans. (d) : 1-

Jn(x) =Xn i (_1) X m

2" ml(n+m)!

For n = 0 we obtain the bessel function of order 0

Jo(x) = i—(_l) x

m=0 22m (m')2
i %2 . <4 B %6 .
21y 242 2°(3)°
x> x! x°
:1—2—2+ﬁ—m+ .....
Then Laplace transform of Jy(x) is
1 12 1 4 1 6!
L{om)=1-L 2, 1 & 1 o
U0} = - 5 o 5 ey

—

1 1(1 1.3(1 13501
=- _— —2 +— —4 _— —6 +.....
S 2\s 2.4\ s 24.6\s

1 1Y 1

S S s*+1
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using binomial theorem,
Now we have J (x)=-J(x). Hence Laplace
transform of J;(X) is
L (x)}==L{3 ()} ==[s L{Jo (x)} 1]
—1-—
s*+1
e—4s
5. Inverse Laplace transform of ——— is —
(s+2)
—4s
S SR T WU § —

(s+2)

(a) %(x —4) e H(x-4)

(b) %(x ~4)’ e H(x +4)

(c) (x-— 4)2 e 20

@ (x-4)et?
Ans. (a) : %(x —4)’ e YH(x - 4)
Inverse Laplace transform of T le.

(s+2)
2 . -2x
L1 ! cr=e L1 {%} X _Liagn
(s+2) s 20 2

Now if inverse Laplace transform of f(s) is F(x) i.e.
L1{f(s)} =F(x) then inverse Laplace transform of]

e ®f(s)ie L1 {e’“f(s)} = G(x) where,

F(x-a), x>a

G(x) ={

0 , X<a
—4s l _4)? o 2(x-4)
thenL'l{ e 3}= 2(x 4) e ,X >4
(s+2)'] o . x<4
= J(x=4)' e OH(x-4)

6. The solution of the Fredholm linear integral
equation

u(x)+J‘01x(e’“—l)u(t)dt=e"—x is
Wegen @ Waw  wweer |
u(x)+J‘01x(e’“—l)u(t)dt=e"—x7=h'l'%?|'%-
(a) u(x)=1 (b) u(x)=¢"-x
(¢) u(x)=3 (d) u(x)=e¢"
Ans. (a) :u(x) =1
Given, u(x) + J: x(e" —=Du(t)dt =e* —x

Let u(x) = 1 then given equation becomes

1
1+ Jox(ex‘ —Ddt=¢e"-x

xt 1
L.H.S.=14{xe —xt} =l+¢' —x—l=¢" —x=RHS.
X
0
Hence the exact solution of the given integral equation is
ux)=1
7. The Homogeneous integral equation
1
d(x) =2 (3x—2)t9(t)dt = 0 has
T AHTRA THHIUT i,
(a) One characteristic number.
TS el T 7
(b) Two characteristic number.
2 sl e 2|
(¢) Three characteristic number
= stfircemft w21
(d) No characteristic number
FIE Al Fen T 2
Ans. (d) : no characteristic number
. 1
Given, ¢(x)= kj0(3x —2)tp(t)dt
1
or o(x) =2 (3x-2) jo td(t)dt
1
Let C= jo td(t)dt
Then  ¢(x)=AC(3x-2)
and o(t)=AC(3t-2)

Hence C = L:?»Ct(?at —2)dt

3 27!
c=xc[e -],
or C=0
Thus ¢(x) = 0, which is zero solution. Hence for any A,
equation has only zero solution ¢(x) = 0. Therefore,

equation does not possess any characteristic number or
eigenfunction.

8. The Resolvent Kernel R (x, t; A) of the Volterra
. . _ X 3(x-t)
integral equation  y(x) —1+7\J.0 e Vy(t)dt
shall be,

AT TR FHIHTT y(x)=1+2[ ey (t)de
T farereer A1 R (x, t; A) Bt-
a) e MED b) eCME
(©) RELAC () RELACS)
Ans. (d) : @
The kernel k(x,t) = ’*
Iterated kernels k,(x,t) are given by
kl(xyt) = k(X,t)

kn(x,t) = j k(x,2)k,,(z,t)dz,n =2,3......

or

kix,0 =
& n= 2 gives

ka(x,t) = J.:k(x,z)kl(z, t)dz

X —2) 32— X 3(x—
= I e e dz =™ ‘)I dz=e""(x-1)
t t
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n =3 gives

k(0 = [ k(x,2)k,(z,0) = [ 07 (2 1)e"* Vdz

2
X Xx—t
= = ¢ t)J‘ (z t)dz Xt )( 2!)
Similarly we can write.
n-1
Ka(x,t) = &**~ 0 (320 ,n=123...
(n-1)t”

Resolvent kernel
R(x,t;A)=

DAk, (%, 1) =K (%, 1) + Ak, (X, 1) + Ak, (X, 1) + ..

m=1
Q300 [}“(X B t):|2

R PRICE) K(X—t)+

+..
1! 2!
2

- A(x—t
= e““{HMX t)+[ ( )] +]

I! 2!
= @30 gMx=) _ @3(x=0+A(x-) _ e(3+x)(x—t)
9. Which is not the Euler-lagrange equation for

variational problems/f=T U ¥ s it Rt
TOETe & AT STer i wefieRtur T §-

o f)g)
dx\ay') oy
0 < (6"} 2
x*\ oy ) oy
gp_df .0 |_
© dx[p yay,j 0
p Fp  ,p  ,p
d —y" =0
Dy mey Vory Y ay”

Ans. (b) : d—z % |_2 =0
dx“\oy ) oy'
Let J[y] be a functional of the form-
b
L p(x,y,y')dx.

defined on the set of the functions y(x) which have
continuous first derivatives in [a,b] and satisfy the
boundary condition y (a) = A, y(b) = B.

Then a necessary condition for J[y] to have an
extremum for a given function y(x) is that y(x) satisfy
Euler-Lagrange equation

@——( 6pj (1)
oy dx\oy'

do_op dx op dy dp dy'
dx oOx dx dy dx oy' dx
dp 6p+8p 8p

dx ox oy oy

Now

)

d op d(op) Op
d —y —|=y'—| — |+—y"—G
o dx[y 6y'j Y dx[&y'j oy O
from (i) and (ii) we obtain
d d 0 0 0 d(o
do_dfy.op) b, O dfo
dx dx 8y 0x oy dx\ oy’
SN P 89 % _p_i k)
dx oy dx ay
:i p_y'a_p —6—p=0 (from(l))
dx oy') ox
Now, on expanding (1) we have-
@_ aZp d_X_ aZp d_y_alpdyv_
0y oOxdy'dx Oydy'dx oy"” dx
2 2 2
or @_ap'_ ,89'_ ..81'3220
Jy 0Oxdy' "~ 0yoy dy
10. A surface that is every where tangent to both

flow velocity and vorticity is called/JaTg a7 Ta
wftrer G ot welst Tl et € -

(a) a steady tube/Tsh 3TARad! eit

(b) an angular tube/Tsh iofr Toit

(c) a vortex tube /T A el

(d) None of these /gTH T g T

Ans. (¢) : a vortex tube.

A vortex line is a curve drawn in the fluid such that the
tangent to it at every point is in the direction of the
vorticity vector. The vortex lines drawn through each point
of a closed curve constitute the surface of a vortex tube.
Hence, a surface that is every where tangent to both

flow velocity and vorticity is called a vortex tube.

11.  Solution of the initial value problem u' = —2tu’
u(0) =1 with h = 0.2 on the interval [0, 1] is
YRR |1 Q&M u' = 2tu’ u(0) = 1 FaIfeh
A [0,1] T h=02HTTA &

(a) u(0.2)=u,=0.8615241
(b) u(0.2)=u;=0.7615241
(¢) u(0.2)=u;=0.9615241
(d) u(0.2)=u,=0.5615241

Ans. (¢) : u(0.2) ~ u; =0.9615328.
The Runge-Kutta formula (fourth-order) for
f(t,u) = —2tu’ is given by

u(0.2) ~u,= ugt — [k +2k, + 2k, +k, |
k1 = hf(to,l,lo) = 0

k2 = hf(to

where

LI +5j =hf(0.1,1)=-0.04
272

ky = hf(t0 +%,u0 +%j
=hf(0.1,0.98) =-0.038416
ky=hf(t,+h,u, +k;)
=hf(0.2,0.961584) =-0.0739715
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Thus,
u(0.2) ~u; = 1+— [O 0.08—-0.076832 — 00739715]

~ 0. 9615328

12. Solutlon of the difference equation A’ y; +3Ay;—
4y; = j* with initial conditions
Yo=0,y;=2,is
3 Aly; + 3Ay; —4y; = | & T

Qﬁﬁﬂiﬁuﬁﬁﬁly0=0,yz=
(@ y;=

2%

0[63( 3)+32(2)' ~40f° -60j-95 |

®) vy, :%[32(2)J 407 —+60j—95}

32
160

@ vy, :%[63(—3)j ~32(2)' - 4077 - 60§95

Ans. (¥) 1 (A*+3A-4)y;=0

A’ +3A — 4 =0 (Auxiliary oquation)

[“A=E-1]

(E-1’+3(E-1)-4=0
—2E+1+3E-3-4=0

E°’+E+1-3x1-4=0

E°+E+1-3-4

E’+E-6=0

E’+(3-2)E-6=0

E(E+3)-2(E+3)=0

(E+3)(E-2)=0

E=2,-3 ‘

y; = C;2' + C, (-3), Which is C.F. of given difference

equation.

(©) y,=——[63(-3)' —40}> —60j-95]

Given, y,=0,y,=2
= y=C2'+C(-3)
C1 + Cz =0
and y,=C; 2>+ C, (-3)
2 :4C1 + 9C2
= 2:—4C2+9C2
= 5C,=2
C2:2/5
C,=-2/5
=2
Now, P.I. = —
¢(E)

Let, *=Aj"+Bj+C.............
=AjG-1)+Bj+C
=A(G-)+Bj+C
= (A)+j(B-A)+C
L A=1
B-A=0
B=1landC=0
o 2=+ [from (ii)]

P 4]

PI =
A’ +3A-4

P +]
A +3A -4
_ i+

__4(1_[A2+3A
el

[A2+3A
+

4
2
1+3A+A—
4 4

)

A? +3A
4

2
j+
A, .
+—|j+]

]

A* +3A
4

16

2
+EA+
4 1

= j(fﬂ’)

13

J2+j+‘3‘(23+1)+£( )}

0

8

1

AI»— G N N
1

/_\/_\\I

+3+++
2]]

§)

(8J +20j+19)

+5 +
2]

So, the complete solution of the given difference
equation=C.F. + P.L.

, 1
= (-2/5)21+2/5 (-3) ——(8F +20j+19
(-2/5) (-3) 32(1 j+19)

:_22j+2(_3)1_w
5705 32
| —64.2+64(=3) —(8] +20j+19)5
160
| —64.2'+64(-3)' (405" +100j+95)
160

Turbulence problem particularly depend on the
term of the Navier Stokes equations which is the

TeI T, Afaer Rad aHten & e ug
W fergoen ®a & smenfia gt ¥, 9% §-

(a) rate of change term /<X gfRadd 18

(b) convection term/HegH U

(c) source term/BId g

(d) diffusion term /fEUT Ug

Ans. (d) : diffusion term

Fluid flow which is unsteady, irregular, seemingly
random, and chaotic is called turbulent. The
characteristic feature of turbulent flow is that the fluid
velocity varies significantly and irregularly both in
position and time. Turbulence, is the result of diffusion

13.
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in the flow. Diffusion is related to the stress tensor and
to the viscosity of the fluid. Hence diffusion term of the
Navier Stokes equations are particularly needed to
describe turbulence problem.

14.

The Lagrangian for a charged particle in a

electromagnetic field is-/SAeREATAEEH &5 o
AT T F AT ST §-
(@) L=T-q¢+q(v.A)
(b) L=T+qd +q(v.A)
() L=T-q¢—q(v.A)
(d) L=T+qp—q(v.A)
Ans.(a):L=T—-qd + q(v.A)
A charged particle of charge q and mass m moving in

an electric field Eand a magnetic field B ,classically is

subjected to the force Facting on the particle which is
given by the Lorentz force law i.e.

F= qE +qvx B
where v is the instantaneous velocity of the particle.
If Ais the vector potential and ¢ the scalar potential,
then the magnetic field Band electric field E are
written in terms of A and ¢ as

B=VxA

=~ 0A

E=-Vo¢- r
We assume that A and ¢ are function of the position
vector T and time i.e. ¢ = ¢(7,t)and A= K(;,t). The
lagrangian of the system is written as

L=T-U

where the kinetic energy T and the velocity dependent
potential energy U are given by

-1 o2
T= Hmv
U= q¢—qf/.;\.
Thus the lagrangian L of a charged particle in an
electromagnetic field is written as
L= %m\?z —qd+qv.A

The classical path of the charged particle is given by the
principle of the least action with the lagrangian
described above.

15.

The constraints on bead on a uniformly
rotating wire in a force free space is

g Wed aufE ¥ uewdwe guffg ar s w
wfeemer ¢ -

(a) Rheonomous /REaig

(b) Scleronomous /AfET=HH

(¢) No Constraints /g Sfdaw &

(d) None of these /378 | &g &

Ans. (a): Rheonomous

A straight wire is pivoted at the origin and is arranged
to swing around in horizontal plane at a constant
angular speed ®. A bead of mass m slides frictionlessly
along the straight wire. Generalized coordinates of the
bead at radial position r is given by

X =rcos0, y =rsin0
with 6 = ot. Hence time dependent constraint. Thus, the

system is Rheonomous.

16. Except at origin where r = 0, the vortex flow is,

Tt foig o stfafieh, W&l r = 0 witre? yare €

(a) rotationalﬁ{”ﬁq (b) laminar/3TeIs8
(c) irrotational / H{Uffq (d) turbulent/SeA i

Ans. (c¢) : irrotational

Vortex flow is defined as the flow of a fluid along a
curved path or the flow of a rotating mass of fluid is
known as vortex flow.

When no external torque is required to rotate the fluid
mass the flow is called free vortex flow. Hence in a free
vortex flow total mechanical energy remains constant.
there is neither any energy interaction between an out-
side source and the flow. The fluid rotates by virtue of]
some rotation previously imparted to it or because of]
some internal action.

Now, constancy of total mechanical energy in the entire
flow field implies the irrotationality of the flow.

Hence, free vortex flow is irrotational except at r = 0
which in practice is impossible.

Vortex flow is irrotational every where except at the
point r = 0, where the velocity is infinite. Therefore, the

origon, r = 0 is a singular point in the flow field.

17. Using Runge-Kutta method of order 4 for the

following initial value problem
% =x’+y’,y(1)=0 the value of y(1.1) shall be
X

TR Hife § Tn-gwn fafr g = urives
U qHET %:xz-i-yz,y(l):O & T y(.1)
X

hT AT AT

(a) 0.110
(c) 0.119

(b) 0.117
(d) 0.101

Ans. (b) : 0.117

Here jy x*+y?, y(1)=0,h=0.1 and f(xo, yo) = 1

o=
Fourth- order Runge-Kutta formula is given by
y(1.1) = y0+%(k1 +2Kk, +2k, +k,)

where k; = hf(xoyo) = 0.1(1) = 0.1

k= hf(xo-kg,yo +%) =0.1£(1.05,0.05)

=0.1105
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k; = hf(xﬁ%,yo +%) =0.11(1.05,0.05525)
=0.1105
k4 = hf (xgth, yot+ks) = 0.1f(1.1, 0.1105)
=0.1222

Thus

y(1.1)=0+ %(0.1+2(0.1 105) +2(0.1105) + 0.1222)

=0.1116
~0.117

18. Using Euler's modified method. the value of
y(0.02) for the differential equation

? =x>+ y,y(O) =1 and taking h = 0.01 is.

X

Jfger |onfra fafr & wanT | y(0.02) 1w

T eraeRer wefieRTuT & foTw @@ h = 0.01 T
dy _ . —1enm

T dx_X +y,y(0)=1

(a) y(0.02)= 12020  (b) y(0.02) = 1.0250
(¢) y(0.02)=1.0201  (d) y(0.02) = 1.0203

Ans. (d) : y(0.02) = 1.0203

Here j—y:xz +vy,y(0)=1and taking h = 0.01, f(Xyo)
X

=1
By Euler's formula we have
¥(0.01)© = y(0)+hf(xoy,) = 1.01
Further x; = 0.01 and f(x;, y(0.01)”) = £(0.01,1.01) =
1.0101
Now by iteration formula we have

y(0.0)" = y(0) + %[f(xo,yo +£0x,,5(0.0) )|

=1.0100
Again,
h
y(0.01)? = y(0) + E[f(xo,yo)+ £(x,,y(0.0)")]
=1.0100

Next with x;= 0.01, y; =1.0100 and h = 0.01 we
continue the procedure to obtain y(0.02) i.e. the value of
y when x = 0.02.
By Euler's formula,
¥(0.02)® =y (0.01)+hf(x,y;) =1.0201
f(x1,y(0.02)”) = £(0.01,1.0201) = 1.0202
By iteration formula we have

¥(0.02)V=y(0.01) + %[f(xl,yl) +(x,,y(0.02)") |

~ 1.0201
Again,

Y(0.02)® = y(0.01) +%[f(x1,y1) +£(x,,y(0.02)") ]

~ 1.0203.

19. The number of basic variables in a

transportation problem are at the most
URaeT THE | gel =1 sl ITfirehan e €
(a) m+n-1 (b) m—n+1
(¢) m+n+1 (d) m—n-1
Ans. (a) :m+n-—1
The number of basic variables in mxn balanced
transportation problem is at most m +n —1.
20. Solution of the following game problem.

e B TWeT & EA ©

Player B

Player A

(a) (%4,%4)(%4,0’%4)":7%4
®) (%4,0’%4)(%4,%4)”7%4
© (%4,%4’%4)(%4,%4)V:7%4

(d) None of these /g4 REEIHE]

Ans. (b) : (%4’()’%4)(%4,%4)\/ - 7%4
[=s]

=
¥
= _
Player A B, B, Row Minimum
A2 T 2
4. 13 5 3
Al 2 2
Column 1 7
Maximum '

maximin = 3 and minimax = 7 and clearly no saddle
point. The value of the game v lies between 3 and 7 i.e
3<v<T.
Let py, p2, p3 and q;, q, be the probabilities of selecting
strategies A, Ay, A; and By, B, by player A and player
B respectively.
Then,
291 +7qp<v
3 +5qx<v
11q; +2q, v
qtq=1
q1, 9220
£+7& <1
v v
3 + BLE <1
v v

\% \%

and
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and &+&:l
vV vV v
Let d xlandq—2 =X, (%)
v

. o1
Therefore the problem is to maximize — = x; + X,

v
subject to
2X1 + 7X2 <1
3X1 + 5X2 <1
11X1 + 2X2 <1
X1, X, 20
Now using Simplex method
After introducing slack variables
Max Z =x; + X, + 0S; + 0S, + 0S;
subject to
2X1+7X2+81:1
3X1 + 5X2 + 82: 1
11X1 +2X2+ S3 =1
and X1, X2, S], Sz, S3 >0
G |1 1 0 0 0
B CB X X1 X2 S] Sz S Min
B 3 Ratio
Xp
X]
Sy 0 1 2 7 1 0[O0 1
2
0.5
S, 0 1 3 5 0 1 0 1
3
0.33
33
S; 0 1 1] 2 0 0 1 1
11
0.09
09—
7= Z; 0 0 0 0|0
0
Z -1 [-1]0 010
Nk
G

Negative minimum Z; —C; is -1 in column 1 and
minimum ratio is 0.0909 in row 3, so entering
variable is x; & leaving variable is S;.

.. The pivot element is 11.

8
11
3
8 49
S, 0 = 0 » 0 1 - i
1 n 1 1
8
)
0.1633
1
11
1 ) 1 2
X1 1 — 1 = 0 0 _
11 1 11 1
!
11
0.5
Z=
1 Z; 1|2 | o 0 L
- 11 11
11
o 1
ZC | 0 oo 0 =

. - . 9 .
Negative minimum Z; - Cj is 1 in column 2 and

minimum ratio is 0.1233 in row 1, so entering
variable is X, & leaving variable is S;.

.. The pivot element is Z—f .

Itera
tion- G 1 1 0 0 0
3
Min
B Cg X X1 X2 N S, S3 ratio
1 ? 0 1 2 0 _i
X3 —
7 73 73
S. 0 13 0 0 _ﬁ 1 _2
- 7 73 73
5 2 7
X1 1 — 1 0 73 0 _
73 73
Z:
5
14 /2 I T O T - I
— 73
73 73
Zi-C 0 0 i 0 >
] -
73 73

C; 1 1 0o | o 0
B | | X5 | % | % | S | S | s rlft‘lg
9
11
7
73 2 | —
9 - -= | n
S, o | 2 o |l 0 "
11 9
73
=0.1233

Since all Z; - C; >0
The, optional solution is arrived with value of
variables as :

5
X|=—, X, =— &
1773773
Max Z= —
73

Hence, back substituting from (*) gives optimal

[i,ij and optimal
1414

strategies for player B

10
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9 5
strategies for player A= | —, 0, — |.
sies Tor Py (14 14)

Hence the solution of the given game problem is
59 73

[7050) ()
_70:_ T |VT
14 14) 1414 14

21. If either the primal or the dual problem has a
finite optimal solution then the other problem

also has/afg foet T5a ereren g @wem &
Hiftra geaw g1 & a9 gEdt guen & oft-

(a) a finite optimal solution./HIfd 3TaH & &M
(b) an infinite optimal solution./3THIfAd &aH g

(c) no optimal solution. /TE TBAH T TG Fm
(d) None of these/3H g w7 T

Ans. (a) : a finite optimal solution.

For every linear programming problem, there is a
corresponding unique linear programming problem
called the dual of the original problem called primal
problem.

If the optimal solution of either problem (primal or
dual) is known then the optimal solution of the other is
also available.

22, If
A =

]

corresponding to any negative

(zj —cj)all elements of the column X; are

negative or zero (<0), then the solution under
test will be

afy feredft momToEw A =(z,-¢,) % W,
wieWH X; o Al srETa HUTHSE AT I
(<0) B e THeTT & ST T BI-
(a) Bounded /9Ras
(b) Unbounded/3aT8
(c) Suboptimal/3UTETH
(d) No solution/®Tg g &

Ans. (b) : Unbounded.

Under the simplex method the leaving variable is
determined by using a ratio test for every constraint row

. . b . .
i, compute the ratio —, if a;; > 0 where column s is the
a.

pivot column. That is ,we divide the right hand side of]
each constraint by the element in the pivot column of]
the same row, but only if the denominator a; is strictly
positive in value.

Now if for any tableau ¢; — z; indicates that a nonbasic
variable should enter the basic, but no ratios can be
computed for the constraints because every constraint
coefficient in the pivot column is either zero, or
negative, the problem is unbounded. Increasing the
value of the entering variable improves the objective

23. For an LPP,
Maximum Z = 6x, — 4x,
Subject to : x;+x; <2
Xtx, > 4
XXy 20
If has -
LPP & fog
Maximum Z = 6x; — 4x,
Subject to : x;+x, <2
Xtx, > 4
XX, 20
goriar &
(a) No solution due to inconsistent system of
constraints. /3TETA Nfda =L & HROT Hig
T T |
(b) No solution due to consistent system of
constraints./47d JfAa ST F FT §A Tel |
(¢) Infinite many solution./3{ =1 3H B |
(d) LPP is unbounded./ LPP 3%&e 2 |
Ans. (a) : No solution due to inconsistent system of]
constraints.
Given system of constraints are inconsistent because

X1+X2§2andX1+X224

can not happen simultaneously i.e. there is no feasible
region between them, so there is no solution to the
given inconsistent system.

24. If the prime p > 7, then how many consecutive

quadratic residues (mod p ) will be

gfg AT p > 7 9 (mod p ) ¥ TeRa~ shitreh
et staviw gt ?
(a) Two/al

(c) Four/@X

(d) None of these/3TH g w8 T

(b) Three/d

function without limit.

Ans. (a) : Two
Definition- The Legendre Symbol

p
is assigned the value of 1 if a is a quadratic residue of p.

Otherwise, it is assigned the value of —1.
Proposition- For any prime p > 5 there exists integer 1
< a < p-1 for which [Ej

=(a_+1]=1,
p p

That is there are consecutive quadratic residues of p.

11
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Proof - Since x* = 1, x> = 4 and x* = 9 have solution for
all p > 5 then consider x’= 2, X’ = 5, x> =10.

Now for p > 5; ged(2,p) = 1, ged(5,p) = 1 so ged(10,p)
=1 and because if p is an odd prime and ged (ab, p) = 1
then at least one of a, b or ab is a quadratic residue of p.
We have at least one of 2, 5 or 10 must be a quadratic
residue of p.

If [zj =1, then 1 and 2 are consecutive residues.
p

If (éj =1, then 4 and 5 are consecutive residues.
p

If (m] =1, then 9 and 10 are consecutive residues.

p

Thus , the above showed that at least one pair of
consecutive residues for p > 5.

25.

If p is an odd prime and if g is a primitive root
(mod p ), then (%j =

Tfe p Ten foawm srursar aen afy g T gdT g
(mod p )%3[ GE) (gj =

r
(a) 1
(c) £1
(d) None of these/TH T Hig T
Ans. (a) : -1
If g is a primitive root modulo p then order of g modulo
pisd(p)=p-1i.e.

®) 1

gP' =Imodp
= plg"'-
Pl Pl
= p[g2 —lj[gz +1]
Pt Pt
Now if plg 2 —1then we have g 2 =1 (mod p) which

contradicts that g is primitive root modulo p.
Hence we must have,
p-1

g7+1

p-1

p =g ? =-1(mod p).

For an odd prime p and an integer g relative prime to p

p-l
we have [gj =g

=—1(modp
. (mod)

where [gj denotes the Legendre symbol.
p

Note : An educated guess can be made that the

examiner had intended to ask the (Ej =-1
p

26. Ifpis prime, then (a +b)’ =

gfq MU &, O (a+ b)P =

(a) a°+ bP(mod p) (b) a”+ b"(mod N)

(c) a’—b’(mod p) (d) a”—b" (mod N)

Ans. (a) : a8° + bP (mod p)

Now if p is a prime , then

PC,; =0 (mod p) for 1< i< p-1

Thus by binomial theorem we have

(atb)” ="Caa’+" Cia"'b+...+" C _jab"" +" C b’
=aP + b® (mod p)

Let a and b belong to set S, Let R be an

equivalence relation on S. Then ,R,, if and only

if

ald b EYTaT S W ¥l R T S ¥ ToIar Hae B

ad aRb qﬁr aﬁa El'ﬁ‘ ’

(a) [a]r # [blr

(c) [a]r = [b]r
Ans. (d) : [a]g = [b]r
Proposition- An equivalence relation on a set S
determines a partition of S.
Given an equivalence relation, one defines a partition
this way : The subset that contains a is the set of all
elements b such that ,Ry,. This subset is called the
equivalence class of a.

= [alk= {beS|,R,}.

Claim- The subset of S that are equivalence classes of]

partition S.

Proof- The reflexive axiom tells us that a is in its

equivalence class. Therefore the class [a]g is non empty,

and since a can be any element, the union of the

equivalence classes is the whole set S.

If [a]g and [b]r have an element in common, say d. If x

is in [b]r then ,R,. Since d is in both sets, ,Ry and yRg,

and the symmetry property tells us that 4R, So we have

aRq, Ry, and pR;. Two applications of transitivity show

that ,R,. and therefore that x is in [a]g showing that

[blr < [a].

Similarly ; it can be shown that [a]r < [b]z.

Hence, we get that [a]gr = [b]r.

28. A positive integer which has more divisors than

any smaller positive integer is called _

T&h OIS Ui 6T Eiksrell

ferelt st Bt uATeHeR UUl WA Wt oSTuam

atfres A €, wead 8-

(a) Highly Composite Number/3=d 59 &A1

(b) Ramanujan Composite Number/THIIST HIST
q&7

(c) Harshad Composite Number /388 =T G
(d) Hardy Composite Number/gel 9sa T

Ans. (a) : Highly Composite Number.

An integer n > 1 is termed highly composite if it has
more divisors than any preceding integer ; in other
words, the divisor function 1 satisfies ©(m) < t(n) for all
m < n. The first 10 highly composite numbers are
2,4,6,12,24,36,48,60,120 and 180.

27.

(b) [alr <
(d) [alr =

12
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29. If a positive integer on a given base is divisible by

the sum of its digits on the same base called as
few T 3MUR W aATw YUt wEEn afe iRt
% AN W I MYUN W 9T A Al §E
FHEETA -
(a) A Ramanujan Number /THISH &
(b) A Harshad Number/gSg G
(c) A Hardy Number /3l &
(d) None of these /374 T g T
Ans. (b) : A Harshad Number
A base b Harshad number (or Niven numbers) is a
positive integer that is divisible by the sum of its base b
digits. For example, in the decimal number system,

1729 is a Harshad number since 1+7+2+9 = 19, and
1729 = 19x91.

30. If2"-15=x"then

g 2" - 15=x"aa

(@ n=2orn=4/n=23Yd n=4

(b) n=40orn=6/n=43Ydn=6

(c) n=2o0rn=8/n=23YqIn=3§

(d) n=40orn=8/n=43gdIn=28
Ans.(b):n=4o0orn=6
If2"— 15 = x*; x is an integer then either n =4 orn =6
because ifn=4;2"-15=1andifn=6;2"— 15 =49.
31. Suppose that H, K are cyclic groups of order

m, n respectively. Then HxK will be cyclic if

WFﬁﬁQﬁEH,KW: m,nﬁﬁﬁ%?ﬁlﬁ'&r

WUE € | 99 HxK ¥ehid ghm, afe

(a) m, n are even integers./ m, n ¥4 ‘IﬂTﬁE Gl

(b) m, n are odd integers / m, n fas® ‘IUT\-T’E El

(c) m, n are odd prime numbers / m, n fawH

T TEATT & |
(d) m, n are relatively prime numbers. / m, n
ST HEATE 8

Ans. (d) : m, n are relatively prime numbers
Proposition : Let H and K be finite cyclic groups of]

order m and n respectively. Then HxK is cyclic if and
only if m and n are relatively prime.

Proof- Assume HxK is cyclic. Because |H|=mand
|K|=n, SO |H><K|=mn.

Suppose ged(m,n) = d and (h, k) is a generator of HxK.
Since (h, k)™ = ((h™) "9,k")™) = (emex), we have

- mn
mn = |(h,k)| < S

Thus, d = li.e. m & n relatively prime numbers.

32. If G is an abelian group and the action of G on
itself by conjugation is the trivial action g.a = a
for all g, aeG then for each acG the conjugacy
class of a is,

afg G T et 9E & 3N §gwfi g G &
o W TR weft g, aeG & fow ges vt ga
=a@,ﬂﬂmaeGaﬁmaWﬁ?ﬂﬂTaﬁ
B -

(a) {a} (b) {G}

() a{G} |

(d) None of these / §T4 T FE T
Ans. (a) : {a}
For an element a of a group G its conjugacy class is the
set of elements conjugate to it

{gag': geG}

If G is an abelian then every element is in its own
conjugacy class :

ga=gag =aforallge G

33.  Suppose there exist 5 groups of order p’q=12

then
T e TR (p’q = 12) &I & 5 |8
fiaeT © ¢ T,
(a) One of which is non-abelian. /378 T TS M-
A B
(b) Two of which are non-abelian./ 3TH g
Ee Cild
(c) Three of which are non-abelian./ 378 T =
-3t 21
(d) All five are non-abelian. / Tt dr=i 3T9-STaelt
2
Ans. (¢) : Three of which are non-abelian.
Structure Theorem for finite abelian groups dictates that
any abelian group of order 12 can be written as a
product of cyclic groups.
So, any abelian group of order 12 can be written as
0,0 5 x0 ¢,0 4 x0 5,0, x0 5, x0 5,
Clearly U, x0;=0,=0,x0,x0;=0,x0g

and [J, =00, x4

Hence, there are only two isomorphism classes a groups
of order 12 which are abelian.

Note : The examiner should have specified that groups
of order 12 upto isomorphism class.

34.

Let the sets of rationals and reals numbers be
denoted by Q and R respectively.
Choose the correct answer .

e fafsg for a3k arafaes gt &

AYTeAl ST THAYT: Q AT R FRT FTEAT =T 1

T S S T -

(a) Q is both a subring and an ideal of R / Q g
R &1 3YaEd q TUrSTae aei |

(b) Q is a subring but not an ideal of R / Q g R
F1 TG T OIS A |

(¢) Qs an ideal but not a subring of R/ Q g R
I TUTSITEC W SYFed TRl |

(d) Q is neither a subring nor an ideal of R/ Q T

@ R P YIS A & [UrSTEed 2|

13
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Ans. (b): Q is a subring but not an ideal of R

The set of rational numbers under the usual addition and
multiplication of real numbers is a commutative ring
with unit element. Hence, Q is a subring of R. Q is not
an ideal of R because for any rational number r and real
number /2 neither r+/2 nor v2 r belongs to Q.

3s. Let F be a field of integers modulo 11, then the
polynomial x* + x + 4

T fo AU 11 o Uil @ & F €, 9@
TEUE X" +x +4

(a) is reducible over F/ F W T&g 2|
(b) is irreducible over F/ F W 3r@s+g 2|

(c) has prime factor over F/ F W 31957 0H TS
T 2l

(d) None of these /g4 REEIHE]

Ans. (b) : is irreducible over F

A polynomial of degree 2 or 3 over a field F is reducible

if and only if it has a root in F.

Now field of integers

={0,1,2,3,4,5,6,7,8,9,10}

and p(x) = x>+ x + 4 (mod 11)

Observe that P(0)=0+0+4 (modll)=4
P(l)=1+1+4(mod 11)=6
P2)=4+2+4(mod 11)=10
P(3)=9+3+4(mod 11)=5
P(4)=16+4+4 (mod 11)=2
P(5)=25+5+4(mod 11)=1
P(6)=36+6+4 (mod 11)=2
P(7)=49+7+4 (mod 11)=5
P(8)=64+8+4 (mod 11)=10
P(9)=81+9+4(mod11)=6
P(10)=100+ 10+ 4 (mod 11) =4

Hence the polynomial x> + x + 4 is irreducible in [

modulo 11 7

since it has no rootin U |, .
36.

Every Homomorphic of a group is isomorphic

to

TE % Yedieh THTER, goaehr 8 ¢ -
(a) cyclic group /Tshia e &

(b) quotient group /ferHmT e Ed

(c) normal subgroup /FHH IUHIG &
(d) none of these/3TH ¥ &g Ter

37. If G is a finite group and O(G) = p", where p is
prime number and n is positive integers, then
I G T ufftrd wHg € 991 O(G) = p" W&l p
3TTST TEAT § AT n TATH YUITek § 7,

(a) Z(G) #{e} (b) Z(G) = {e}

(c) Z(G) =G

(d) None of these / 38 T HiE T

Ans. (a) : Z(G) # {e}

Groups whose orders are positive powers of a prime p
are called p-groups.

Theorem- The center of a p-group is not the trivial
group.

38. If V(F) and W(F) are finite dimensional vector
spaces of dimensions n and m respectively.
Then the space L(V,W) is finite dimensional of
the dimension

Tfe V(F) 3R W(F) a9 n AR m fomr <&
uRiftre ferfir wfeer wwfy 81 a9 q0i® LV,W)

ferg foram &t ufftra feadter &2

(a) m+n (b) mxn

(¢) m—n @ =
n

Ans. (b) : mXn
Let V and W be vector spaces over the field F. Let S

and T be linear transformations from V into W. The
function (S + T) defined by

(S +T)(v)= S(v)+T(v) for all ve V(F)

is a linear transformation from V into W. If ¢ is any
element of F. The function cS defined by

(cS)(v) = c¢S(v) for all ve V(F)
is a linear transformation from V into W. The set of all
linear transformation from V into W, together with
addition and scalar multiplication defined above, is a
vector space over the field F denoted by L(V,W)
Theorem- If V and W are of dimensions m and n ,
respectively, over F, then the space L(V,W) is of]

- dimension mn over F.
Ans. (b) : quotient group - -
Theorem- Let ¢: G — G' be a surjective group 39. The system_of linear equations
homomorphism with kernal K. Xx-y+z=2
_ G x+y-z=0
The quotient group G = X is isomorphic to the image G'. 6x — 4y +4z=11
To be precise, let 6 : G — G be the canonical map. : ot
There is a unique isomorphism ¥ : G —G' such that X-y+z=2
¢ =WYoo Xty—-z= 0
PO 6x -4y +4z=11
L) ——— Lrlf 2} .. .
’ '\\ b (a) has trivial solution /= el @l 21
TN : s (b) has unique solution /g g &l 2l
L 110 .
S (c) is consistent /4T 21
where o(g) = Kg. (d) is inconsistent /3TETd 81
14 YCT



Ans. (d) : is inconsistent
The system of linear equations
I -1 1]|x 2]
AX=B=|1 1 -1|y|=|0
6 4 41|z 11
1 -1 1 2]
Augmented matrix A'=|1 1 -1 0 | isto be row-
6 -4 4 11]
reduced.
Now
1 -1 1 2 1 -1 1 2
11—10%02—2—2
6 -4 4 11 ' 0 2 -2 -1
1 -1 1 2
B2k 510 2 2 2
0 0 0 1
We observe that Rank(A) =2 and Rank(A:b) =3
» Rank(A) # Rank (A:b) and hence given system is
nconsistent.

40. IfC([a,b])is the space of continuous real

valued function defined on the closed interval
[a,b] of real line then

L(x)= Lbf(x)dx defines the.

g arEfaes I@T & Hgd ’AaUA [a,b] T
TRy aidfaes W @dd weld Sl @H(E

C([a.b]) B @

L(x) = f(x)dx afwfire st &-

(a) function L on C([a,b])/C([a,b]) ™ ®eL
(b) linear function L on C([a,b])/C([a,b]) W

s B L

(c) linear functional L on C([a,b])/C([a,b])‘T(
g Her® L

(d) transformation L on C([a,b])/C([a,b])‘T(
BT L

Ans. (¢) : linear functional L on C([a,b])

Let [a, b] be a closed interval on the real line and let
C([a,b]) be the space of continuous real-valued
functions on [a,b].Then

b
L(x) = j f(x)dx
defines a linear functional L on C([a, b]) because

Lb(f +g)(x)dx = Lbf(x)dx + j:’ g(x)dx and

[Paf(xdx = [ F(x)dx

for every f, geC([a, b]) and for every a.e Field
a—ic b-id
—(b+id) a+ic

41. The matrix { } will be unitary if

and only if
a—ic b-

« [—(b+id) a-+ic

}mmmm

’
(@) a=b*+cP—d’=1 (b)-a’+b’—c*+d*=1
(c) a®+b*+ P+ d*=1(d)a*+b*+ P+ d* = 1
Ans. (¢):a’+ b+’ +d =1
} is unitary then

b-id
If{
a—-ic b-id
det . . =
H—(bﬂd) a +1CD

(b+id) a+ic
- (a—ic)a+ic)+ (b +id)(b—id) =1
S al+d+bi+di=
42.

a—ic

Orthonormal set of vectors in an inner product
space is/3TiaR K| wary o Rl TETHTT

it Weer greT &

(a) Linearly dependent Afgeha: iy

(b) Linearly independent/ faehd: i

(c) Neither dependent nor independent/q i
A 7 & @

(d) None of these /gT4 REEIHE]

Ans. (b) : Linearly independent

Proposition- If {v;}is an orthonomal set in an inner
product space, then the vectors in {v;} are linearly
independent.

Proof- Suppose that a,v;+to,vo+..to,v, = 0 therefore 0
= (o Vi+opvot..F oV, Vi) = oy (Vi, V) ... 0 (Vi, Vi)
Since(vi,vi) =9; this equation reduces to a; = 0 . Thus
the v;'s are linearly independent.

43. If {a,B} is an orthonormal set in an inner
product space then distance between o and B is
AR U TARY W GO AR AT
o} @ Ao TEpF AT R
(a) 0 (b) 1
(©) 2 @ V2

Ans. (d) : \2

Distance between o and B = d(a,B) = "(X —B"z

(o—B,o—B)
- J(a a—B)—(Ba—B)
= \/ (a,0) —(B,o)+(B.B)

:,/a,oc+[3,[3:\/§

By symmetricity of inner product space.

15
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44. The rank, index and signature of a cannonical
form polynomial

2 2 2 2 .
X; —4x5 +6x5 +2X,X, —4x,X; +2X; —6x,X,is

Tafea( sfeeret ) Y g
X; —4x3 +6X] +2X,X, —4X,X, +2X; —6x3x47=§f
wIfe, urdieh Te fofgenr 2 -

(a) 4,1,-2 (b) 3,2,1

(c) 3,3,3 (d) 2,2,2

Ans. (*) : The given polynomial is:
P(x) = X; —4X; +6X] +2X,X, —4X,X; +2X; —6X,X,
The polynomial can be expressed as:

P(x) = x"AX,
Where x = [X;, X3, X3, x4]T and A is the symmetric
matrix of coefficients. The matrix A is constructed as:

1 1 -2 0
1 4 0 0
A=
-2 0 6 3
0 0 -3 2

The eigenvalues of A determine the rank, index, and
signature.
1. The number of non-zero eigenvalues.
2. The number of negative eigenvalues.
3. The difference between the number of positive and
negative eigenvalues.
We calculate the eigenvalues of A to proceed. Let me
compute them.

{~4.21,-0.34, 1.49, 8.06}
1. The rank is the number of non-zero eigenvalues, are
non-zero, so the rank is 4.
2. The index is the number of negative eigenvalues.
Here, there are 2 negative eigenvalues (— 4.21, —0.34).
3. The signature is the difference between the number of]
positive and negative eigenvalues. There are 2 positive
eigenvalues (1.49, 8.06) and 2 negative eigenvalues, so
the signature is 2 —2 = 0.
The correct option is 4, 2, 0.

45.

Let the function g(t) > 0 be integrable on [a, oo,
and for each fixed xe I the function h(x,t) is

integrable. If |h(x,t)| < g(t) then the integral
£(x)=["h(xt)dt,is

=T ff &= g(t) > 0 STEWE [0, oo WX
AATHANT & Wk o xe 1 & @ wee
h(x,t) FOEREHE &1 ARh(x, 1) <g(t)F @A

waTRer f(x)= [ h(x,t)dt

(a) convergent on1/1 T 3R 21
(b) not convergent on I/ T T IR 7 21

Ans. (a): absolutely convergent on I
If |h(x,t)| <g(t)then
[“I(x.t)|de<["g(t)dton1

Now g(t)> 0 is integrable on [a,0) and for each fixed x

€ I the function h(x,t) is integrable then by comparison

principle, f(x) = r h(x,t)dt converges absolutely on I.

46. If the integral f f(x)dx exists as an improper

Riemann integral for a non negative function
f(x) which increases in (—oo, 0] and decreases in

[0, o), then i I:Of (x)e?™™dx equals to

T RO HeT f(x) St 6 (—o0, 0] | ST 3T
0, o) Tear &, & fag =fe
ToTEe [ f(x)dx W AR T o e

wATRe % S A, @Y [ f(x)e ™ dx %
TSR EAT -
@ Y f(m")+fm)

n=—w

() Z f(m*)—F(m")
i f(n+ )+f(n")

(c) pa) 3

Z“’: f(n")—f(n")

(d) P 5

Ans. (¢) : The given integral involves a non negative
function f(x), which satisfies the following property.

1. f(x) increases on (—oo, 0]
2. f(x) decreases on [0, )
3. The improper Riemann integral

Jjo f(x)dx exists

we are tasked with evaluating
Z J f(X)efhtinde
n=-o0 *

the term Jm f(x)e>"™dx corresponding to the Fourier

transformation of f(x) denoted by f(n) thus the

i £(n)

(c) uniformly convergent on I / I W UHhHHAM
I 21 where
(d) not uniformly convergent on I/ I 9T THHATA fn) = ® £(x).e 2™ dx
AT T 2 J.
16 YCT



by applying the Poisson summation

i £(n) = Z £(m)

Thus the problem reduces to evaluating the summation

0

2. f(m)

m=-0

The value of Z f(m) is determined by the continuity

and behavior of f(x) at the integer based on the option
provided the correct result is

iw f(n*)+f(x)

2
47. For the function f(x,y) defined as
2
Xy~ .
—if (x,y)#0
f(x,y)={x*+y" (xy) at the origin
0 Jif(x,y)=0

directional derivative

T fx,y) S 6 3@ UeR uRwifa § -
Xy2

fx,y)=1x"+y"’
0 ,afg(x,y)=0
3% gt forg W feen, staemert o -
(a) exists and f(x) is continuous. / &= g w
FeT f(x) T 2
(b) exists and f(x) is not continuous. / &= 2
Td %o f(x) Fad T8 2
(c) dose not exists and f(x) is continuous. /
fde 78 € U8 B f(x) Fad 2|
(d) dose not exists and f(x) is not continuous./
R T & T B f(x) Fad T 2
Ans. (b) : exists and f(x) is not continuous.
Let u= (cosh, sind).

af(x,y)#0

Then directional derivative at the origin
f(tcosO, tsin0)—1£(0,0)
t

D,f(0,0) = lim (—o0 < t <)
t—

t* cosOsin’ O

= lim
-0 t*cos’ O+t sin* 0
: cosOsin’

= lm— g
0 cos“0+t"sin" O

cos0.sin’0 sin’O

cos’ 0 cosO

Now, if cos 6 # 0 then directional derivative at origin
exists.

If cosB = 0 then sin6 # 0 so the D,f(0,0) = 0.
Thus directional derivative at origin exists.

Now, if we put x =my?®and let y — 0, we get

4
lim 2H11y i ?1
y>0m7y +y m +1

which is different for different value of m.

2
. X

lim zy 7
(x,y)>(0,0) X~ +y

Hence the does not exist.

Thus, f(x, y) is not continuous at origin.
48.

If T is a continuous linear transformation of

Banach space B onto Banach space B' then.

i T A1g VH{E B &1 9-1E WHE B' W €dd

Raer wuiawer & v -

(a) T is an open mapping./ T T& faga ufafemor
2

(b) T is a closed mapping. / T T Hga Hfdfemor
2

(c) T is open as well as closed mapping. / T fegd
% Trg-qry Ggq sfafeEor o 21

(d) None of these /3 ¥ &g & |

Ans. (¢) : T is open as well as closed mapping.

Open Mapping Theorem dictates that a linear
transformation T of banach space B onto banach space
B' must be open.

The graph of a continuous linear transformation T of]
banach space B onto banach space B', denoted by G(T):

G(T) = {(x,y)|y = T(x)} cBxB'

is closed in B x B'.
Note :The official answer key released by the
commission says (a).
49.

If A and B are disjoint sets, then

afy A 4o B 16T AYwTT § a9 -

(a) m*(AUB)< m*(A)+m*(B)

(b) m*(AUB)= m*(A)+m*(B)

(c) m*(AUB) = m*(A)+m*(B)

(d) None of these /3TH T g Tl

Ans. (¢) : m*(AUB) = m*(A)+m*(B)

Definition- Let m* be an outer measure on a set X. A

subset A — X is Caratheodory measurable with respect
to m*, or measurable if

m*(E) = m*(E N A) + m*(E N A°)
for every subset E — X. Thus, a measurable set A splits
any set E into disjoint pieces whose outer measures add
up to the outer measure of E.

If A is measurable and A N B = ¢ (disjoint), then by
taking E = A U B, we see
m*( A U B) =m*(A) + m*(B).
Metric d is known as pseudo metric if -
R d, BeH IR et §, Afe-
() dx,y)=0=>x=y
(d) dix,y)=0=x=y

50.

17
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(c) x=y=>dx,y)=0
(d) none of these / §T4 REEIHE]

Ans. (¢):x=y=dx,y)=0

Difinition- A pseudometric on a set X is a non-negative
real-valued function d:XxX—R which satisfies the
following conditions

(a)ifx =y, thend(x,y)=0

(b) d(x,y) = d(y.x) (symmetry)

(c) d(xy) £ d(x, z) +d(z,y) (tringle inequality), where
X,y,z are arbitrary elements of X.

In pseudometric it is not required that d(x,y) = 0 implies
X=Yy.

51.

Valueoflim( ! + ! +...+ ! jis-
noe\ln+1 n+2 n+n

lim[ L S jaﬁrm@m-
e\n+l n+2 n+n
(a) log% (b) log 1
(c) log2 (d) log4
Ans. (¢) : log 2
. 1 1 1 Rl
we have lim + ot =lim) —
nooln+l n+2 n+n/ m=Sn+r
21 ! 1 1 11
Now Iim) —=1lim) —| — |=
n%w;n_}_r naw;(l_krj[nj '[01+X
n
= 10g(l+x)|:)
= log2.

52. Every single valued differentiable function f(z)

of complex variable z, in a domain D, satisfy

AR TR z AT Uk Thel W TR
T f(z) (Toh FETT § ) W hIAT §-

(a) Laplace's equation/dTeITs FHISHOT

(b) Legendre's equation /ﬁ'ﬁr_\fz’ GHfteRuT

(c) Laguerr's equation/ﬁﬁ( IR

(d) Liouvile's equation/fareTifaret s

(c) non-isolated singularities /ﬁ%l’ﬁ?ﬁ fafermran
(d) isolated /fél"ﬁrvh
Ans. (d) : isolated
Theorem- Suppose f is a holomorphic function in a

region Q that vanishes on a sequence of distinct points
with a limit point in Q. Then f is identically 0.

Proof- Suppose that zy € Q is a limit point for the
sequence {w,}” and that f{wi) = 0. First, we show that

f is identically zero in a small disc containing z,.
Choose a disc D centered at z, and contained in Q, and
consider the power series expansion of f in that disc

f(z) = ian (Z -z, )"

n=0

If f is not identically zero, there exists a smallest integer
m such that a,,# 0. But then we can write

f(z) = an(z-20)".(1+ g(z-2))
where g(z—z,) converges to 0 as z—z,,.
Taking z = wy # 7, for a sequence of points converging
to zy, we get a contradiction since a(w — zg)" # 0 and
1+g(wi— 7o) # 0, but f(wy) = 0.

Let U denote the interior of the set of points where f(z)
= 0 Then U is open by definition and non-empty. The
set U is also closed since if z,€ U and z,—z, then f(z) =
0 by continuity, and f vanishes in a neighborhood of z
by the argument above.
Hence z€U. Now if we let V denote the complement of|
U in Q, we conclude that U and V are both open ,
disjoint, and

Q=UuV.
since Q is connected we conclude that either U or V is
empty.
Since zy € U, we find that U = Q and the proof is
complete.
A complex number z, is a zero for the holomorphic

function if f(zg) = 0. In particular, above theorem
(analytic continuation) shows that the zeros of a non-

Ans. (a) : Laplace's equation trivial holomorphic function are isolated.
Let f{z) = u(x, y) T iv(x, y); Vz=x+iy e Dc Cbeal| 54 A function f(z) has no singularity in the finite
51'ngle Vé}lued functl'on of complex Varlable z. If f(z) is part of the plane but has a pole of order m at
dlfferentlable funct{on then u and v satisfy Cauchy - infinity. then ,
Riemann equatlon(s1 L.e. et Taer W gt o & T EEH 1(z) =t
uy =vyand vy =—u A .
where subscrigts denote parytial derivative. wrE & adt & ﬁﬁ AR W m Rl
Now, we have uy = vy and vy, = —uy, (partially w1 Th mg}ﬁ’
differentiating) (a) f(z) is a polynomial of degree m. / f(z), m Id
= Laplace's equation ; u, + u,, = 0 is satisfied. FI Th dgus 21
53.  Zeros of an analytic function f(z) are (b) f(z) has zero of order m. / f(z), T YA m FHife
T ATATHH et oh I B ¢ - F 2
(a) Simple zeros/HTERUT = (c) f(z) has singularity. / f(z) faf==ar WA |
(b) Isolated singularities /frgh fafeme (d) None of these/3TH ¥ H1E el |
18 YCT



Ans. (a): f(z) is a polynomial of degree m.
If f is entire then f has a pole of order m at infinity if|
and only if the function g defined on C\{0} by g(z) =

1 . . .
f (—j has a pole of order m at 0 i.e. there exists an entire
z

function h such that

f(lj =g(z) = h(—j) and h(0) # 0.
z z
Now |f(z)| = fi <Mlz|" whenever |z]>1

z

where M = max

‘Z‘Sl

h(2)

Now if r > 1 and k > m, then with y(t) = re" we have

7 (0)|- % L%dw‘

_ﬁjzn f(re“)

“2nilh () ire"dt
Kl o
< py J.Oz f(re‘)‘dt
k! i
< Ey 2n 522; f(re‘)‘
< k!k 2nMr™
2nr
_ MK!
k-m

r
Since k > m it follows by letting r — oo that £(0) = 0.
Summarizing that if k > m then £(0) = 0. This implies
that the power series representation of f at 0 is in fact a
polynomial with degree < m. Now the degree equals m
follows from that h(0) = 0.

55. Value of integral j zdz , where C is

g (9—22)(z+i)
the circle |z|:2 (Using Cauchy's integral

formula) equals to -

jme,aﬁﬁscqa

. (9—22)(z+i)
|7 =2 %, (isft TuTeher G GNT ) SHIEK R -
(a) m/2 (b) /3
(c) m/5 (d) /7
Ans. (¢) : ©w/5

Given I zdz ; C is the circle |Z| =2.

C(9—Z2)(Z+i)

Cauchy's integral formula :
1 f(2) .
f(a) = —,J.—dz for any point a € D.
2nigz-a
So, we have
1 zdz z
f-i)= —|——;f(2z)=
) 2nic(9—zz)(z+i) (z) (9—22)
- -2mi’ :J- zdz
(9_(_1)2) C(9—Z2)(Z+i)
e A
c(9-7*)(z+i) 5

solog(1+x2)
56. Contour integration J- ————y~dx  gives
0 (1+x)
value equals to,
piicecie) U (g THTEHET )
»log(1+x°
) g(—z)dx T T BT § -
0 (1+x)
(a) mlog2 (b) —nlog2
T T
c) —log2 d) ——log2
(c) ~log (d) —>log

Ans. (a) : log2

log(z+1
Let i%dl =£f(z)dz

,where C is the contour consisting of a large semi-circle
y of radius R in the upper half of the plane and the part
of the real axis from x =—R to x =R.

By residue theorem, we get

if(z)dz = J:RRf(X)dX +J.f(z)dz = 21tiZ:R+

Let, z= Reie, we get

[t(z)dz sj0“|

log(Reie+ i).Riei9| o

1+R2e |

i
i0

logReie|+log(l+

<[ o dee

[ [R?e +1] = [R% —(~1)| 2 |R* | - |-1| = R* -1]

<[’ R(logR+0) R log[l—kieiej do
o T RP-1 R R

—>0asR—> o

19
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2
Now, since lileggR:IimlogR. Iz{ =0
R—o0 R _1 R—® R R _1
R i
and lim———|log(1+—e™)[=0
i g( R )

Hence when R— oo, we get

[ f(x)dx=2miy R".
Now f(z) has a simple pole at z = +i and a logarithmic
singularity at z = —i of which z =1 lies inside C.
Residue of f(z)(at z = 1)

) . log(z+i) log2i 1 [ in}
~lim(z— Y
s s T R

Therefore J'w w

dx = n[log2+l—n}
= X" +1 2

Equating real parts, we have

o1 log(1+x2)
J' i W

dx =mlog?2
=2 1+x’ g
»log(1+x*
Hence jo %dx =mnlog2

57.  Value of integration J'Ozne“’se.cos (sin6—nb)do =

2n 0 .
HHTheT okl UTH -L e“*".cos(sin®—nB)d6 =

(b) 2n/|n
(d) 2mni

(a) 2mi/n
(c) 2n/n

Ans. (b) : 2n
n!
Consider I = J.zn ¢** cos(sin®—n6)do
0
= Real part of J.Oznemse.e’(“e’““e)ide

2n . )
=Real part OfJ'O eosOising b g0

z=¢"

dz =ie’de
_ L - . 0
=Real part of J.O e’ e "do <do=dz/ie

do=dz/iz

Zn — enie

= Real part oflj%dz
itz

= Real part of lJ.f (z)dz ; ¢ = unit circle
i

Clearly f(z) has a pole of order (n+1) at the origin
The residue of (z) at the origin

1| d
= — e
n!l dz" | |

_1
n!
Hence I = 2. 1i:2—n
in! n!

Equating real and imaginary parts,

J.heme cos(sin@—nH)do = 2
0 n!

and [ "e*"sin(n0-sing)do =0

58. If an entire function is bounded then it is
Ty welsr qveifres wer uftag aar §, oo
(a) |f (Z)| >M
(b) Constant / fadis
(c) Analytic/ 3¥aifdie
(d) None of these/ TT4 T g T

Ans. (b) : Constant.
Liouville's Theorem- Let f be an entire function that is
bounded then fis a constant function.

Proof :f is bounded i.e. there is a real number M > 0
such that|f (z)| <M for all z belonging to domain of f.

Let a, beC. Consider y(0,R) for a large R. By Cauchy
Integral formula, we have

1 f(z) 1 f(z)
fa)-t(o)|=|n [ g L Iy
| (a) ( )| ZniJ-y(O,R)Z—a “ ZTCi'[Y(O)R)Z_b ’

assuming a, b is in interior of y(0,R). We have
|z—a| >R —|a|;Vz € y(O,R)*

|Z—b| ZR—|b|;Vzey(0,R)*

1 f(z)(a-b) q

z_mLm,R)(z—a)(z—b)
|f(z)||a - b|

<
21 Jy(0,R) |Z —a”z —b|

<Mfa-bl[ ]
2n 10R)|z—a|jz—b|

Now,|f (a)—f (b)[= z

|dz]

1 1
2R o

1 1
=—M]l|a-bl—+—<2nR
2 R (R o)
:M|a—b| !
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al
AsR 5o | 1-= —>1&(R—|b|)—>oo
R
So |f (a)- b)| becomes arbitrarily small & hence
f(a) = f(b) i.e. fis a constant function.

59. If (X, 1) is a topological space, then which one is

not true?

e (X, 1) witafaes w@fy &, o

feffer @ e ad i ¢ ?

(a) A complete regular space is regular./Th ‘Iﬂ'f
Tq gufvey &d 7 |

(b) Every subspace of a T,— space is a T;— space./
T, 9uf¥ IUquly U T- §EE @ |

(c) Every metric space is a T|— space./ﬂ?“}ai HEED
Ay TH T, A 21

(d) Every metrlc space is a Housdorff

space./JI% WW@MW%

Ans. (a) :

Let X be a topological space. Suppose that one-point
sets are closed in X. Then X is said to be regular if for
each pair consisting of a point x and a closed set B
disjoint from {x}, there exist disjoint open sets
containing x and B respectively.

A space X is completely regular if one-point sets are
closed in X and if for each point x, and each closed set
A not containing X, there is a continuous function

f: X — [0,1] such that f(x) = 1 and f(A) = {0}.

A completely regular space is regular, since for given
f, the sets

fl([o,%D and f{[%,lD are disjoint open sets

about A and x,.

Every T,- space (Hausdorff space) is T;- space
From the definition of T, (Hausdorff) space-
»x,yeX:x#y:JA,Bet:xeA,yeB:AnB=¢

so JAet:xeA,y¢A andiBet:yeB,x¢B.

which is precisely the characterization of T;-space.
Because every subspace of a Hausdorff space is
Hausdorff, we have every subspace of Hausdorff space
is T; - space.

Every metric space is a Hausdorff space because If x
and y are distinct points of the metric space (X,d), we

1 . . .. .
let S:Ed(x,y);then the triangle inequality implies

60. Any infinite subset A of a discrete topological

space X is,/fI~h Wittt afE X &1 g off
A 3T GYTTA A B
(a) not compact /3THgd
(b) compact /Hgd
(c) compact and connected /Hgd Td Helwg,
(d) connected only / Fad Gag
Ans. (a) : not compact.
Take the cover U = {{x}: x € X}
This is clearly an open cover of X because the topology

is discrete and all subsets are open and every p& X is

{pten

A finite subcover is a finite subset of U that together
cover X too but if F is a finite subset of U then it
consists of finitely many singletons {x;},{x,},...{xn} for
some finite N. But X has infinitely many points so there
are infinitely many x ¢ {X;,X,......Xn}, say p. Then p is in
none of the sets of F,and so this finite subset of U is not
a cover of X.

61. The radius of curvature for the curve x =3t, y
=3t z=2t2is
ek x = 3t,y = 3t%, z = 2t° o TOTT Fehar Brewn &
3 2\2 1 2
(a) E(1+2t ) (b) E(1+2t )
© l(1+3t2) () i(1+t2)2
2 2
Ans. (a) : é(1+2t2)2
L@ S

Given curve
r=(3t,3t%,2t)

50, = (3, 6t, 6t%)

& £=(0, 6, 12t)

Now fxi = 18(2t2§—2t}+112)

Now; curvature k = M
Il
_ 18(1+2t2) 2
27(1+2¢)  3(1+2¢)

.. Radius of curvature p = — =% (1+2t%)°.

62. The principal radii at the origin of the surface
that By(x,g) and By(y,e) are disjoint and hence every _p 2 P 2. &
metric space is T-space 22=5x+ dxy +2y" Is
17 . 2 2
|dg 2z = + + ﬁo!—_g e

Not every regular space is completely regular. 2.2% SX' o dxy + 2y & kS R
A topological space is regular if every closed subset and e & -
a point outside of that subset have non-overlapping @) ll (b) 3 1
open neighborhoods. "6 2
A completely regular space is a type of topological 1 1
Space. (C) 278 (d) 175
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Ans. (a) : 1,—

Given 2z = 5x* + 4xy + 2y*

Now %=21=5x+2y
%=22=2x+2y
&_ o’z 0’z
ox* 7 oxdy dyox
At the origin
oo Fi_ Or 0
aX ’ay JaXZ ’axay ayz
2
Now - 15( 2 v (2 2o
0x ox )\ 0y
2 2 2
G= 1+[%] =1, H—IJ{%j J{%j =1
oy ox oy
aZZ 622 62
SoL= o5 _5M_ay S N=OE
H H H

and equation of principal curvature

Hk -K, (EN—2FM+LG)+LN—M2 =0
k:-7k, +6=0

=k,=1,6

gives

1

= Principal radii =1,

64.

The length of the curve given as the

2 2
. . X
intersection of the surfaces 7—%
a

=1, x=a
cosh [Ej from the point (a,0,0) to the point
a

(X,y52).
ﬁ«"Q"TQ‘H’rl@ ————1 x—acosh[ j ED
a’

yfereseT W, fag (a()())ﬁf%ah—gr (X,y,z) T TR
TS & -

6

63. The geodesic on a right circular cylinder is :

e gl S T STeuiad -
(a) Circle /gd

(b) Helix/Bhefet (ferr)

(¢) Line/&@r

(d) Ellipse/drga

Ans. (b) : Helix

Proposition- The geodesics on a right circular cylinder
are helices.

Proof- If the surface of a revolution is a right circular
cylinder, the meridian are generators and the distance
between the meridian and the axis of the cylinder is a
constant a (say).

Hence if y is the angle between the geodesic and the
generator, then by Clairaut's theorem a siny = h where
h is a constant.

. h . .
Thus siny = — so that y is a constant. Hence a geodesic
a

on a right circular cylinder cuts the generators at a
constant angle and therefore it is a helix.

yva’ +b’ xva® +b’
() —— b) ——
b b
a’+b’ xva’ +b?
(© N2 d ——
a a
2 2
AnS. (a) . &
b
2 2
Xy
We have ———=1
a’? b’
and X =ac0shE tzzj
a a
Let x =acosht, y=bsinht, z=at

Clearly both the curves are satisfied.
Let r be the position vector of the point (X, y, z) on the
given curve

r= (acosht)i+ (bsinht)j +atk
At the point (a, 0, 0) we have
acosht=a, bsinht=0,at=0=t=0

i= (asinht)i+(bcosht)]+a12

|f| = \/32 sinh? t + b? cosh? t +a’

= \/az (sinh2 t+ l) +b%cosh’ t

= \/a2 cosh? t +b? cosh? t = (a2 +b? ) cosht
.. Length of the given curve

= [ Jlat = [ Va? + b coshrat

=+/a’+b’ sinht|; =+/a’ +b? sinht
Va? +b?
— Y

b

65.

A subset Y of a topological space (X, 1) is no
where dense if -

forelt wifeerferar wwf® (X, 1) &1 *iE SURTSTA
Y & WX oft wom e g ¥, afy-

(a) Y has empty interior/ Y & fih TR g

(b) Y has empty interior/ Y T T 30=ieR &
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(c) Closure of interior Y is non empty /3= Y
P TS AR &

(d) None of these /374 T g T
Ans. (b) : Y has empty interior.
Let Y be a subset of a topological space (X, 1) then Y is
the closure of Y.
Definition- A subset Y of a topological space (X, 1) is
nowhere-dense in X if Y has empty interior.
66.

How many linearly independent solution may
exist, of a linear homogeneous equation of
order n ?

n wfe & Waw gooE e & fwaa
Raeha: T goT T W & Wehd & 2

(a) More thann/n T 31

(b) n+1 only/n +1 Haa

(c)n—1 only/n—léﬂa

(d) less than or equals to /& FH AT TR

Ans. (d) : Less than or equal to n.
Linear equation of order n

[D"+b,(x)D, , +.....+b, ,(x)D+b,(x) |y =R(x):

iED.
dx

The corresponding homogeneous equation is

[D"+b, (x)D™" +...+b,, (x)D+b,(x) ]y=0
There may exist at most n linearly independent solution of]
above homogeneous equation.

67. Singular solution of the differential equation
(8p°-27)x =12p%y is
TeeheT WHIE (8p’ —27)x =12p’y w1 farferst
T 8-
(@) 4y +x’ =0
(c) 4y —=27x’=0
Ans. (b) : 4y’ +27x° =0

(b) 4y’ +27x° =0
(d) 4y —x’=0

dy

The given equation (8p3727)x :12p2y p= d
X

_2. X
y 3p 4 pz

On differentiating; we get

2 d 9( 1 2xdp
P= | PHX—— |~ 5T~ 3=
3 dx) 4\p° p dx

or Lps 2 _x9p(2, 9 dp)_,,
dx\3 2p’ dx

or lp 1+2—73 _2xdp 1+2—73 =0
3 4p 3 dx 4p
orl 1+2—73 ( —2xd—pij
3 P dx

e . . d
Onmitting the first factor which does not involve d—p, we
X

d 2 1
get p—2x—p= 0 or =dp=—dx.
dx p X
Integrating, we get

2logp = logx + log [ij
4c

or Z—X[ij
P 4c

1

3(x)2
orp==*—| —
P z[cj

Now putting this value of p in the equation required
general solution is

1 3
or ¢?(y+c)=4x>
c(y+e)f=x
Differentiating w.r.t. c ;

(y+c) +2c(y+c)=0

or

or (yte)(y+3c)=0
=>y+c=0
or y+3c=0

y
=c=-yorc=—=
Y 3

When ¢ =—y we have x> =0 or x =0

when ¢ = —?y we have 4y” +27x° =0

These are the required singular solutions.
68.

The general solution of the Partial Differential
2

Equation (y+zx)p—(x+yz)q=x"—y’ is
3T Taeher THIRIT
(y+zx)p—(x+yz)q=x"-y’ T ST & §
(a) o’ +y' + 2, xy+2)=0
(b) 6 +y' ~ 2, xy+2)=0
(©) dx*+y+7, xyz)=0
(d) ¢(xy +yz+zx,xyz) =0

Ans. (b) : (1)()(2 +y -7, xy+2)=0

Given (y-&-zx)p—(x-&-yz)q:xz—y2

Here the Lagrange's auxiliary equations are
dx dy dz

y+7zx :—(x+yz) - x> -y’
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Choosing x,y, —z as multipliers, we get

xdx + ydy —zdz
X(y+2zx) - y(x +yz) - z(x’ =y’) 0
xdx + ydy + (—zdz) =0
= 2xdx + 2ydy — 2zdz =0
Integrating, we get

_ xdx +ydy - zdz

= x>+ y2 —Z=cy, - arbitrary constant.
Now choosing y, X, 1 as multipliers, we get

ydx + xdy + dz _ydx+xdy+dz

y(y+zx)—x(x—i—yz)—i—xz—y2 0
ydx + xdy +dz=0
or d(xy) +dz=0
Integrating, we get
Xy + Z = ¢y; ¢, - arbitrary constant
.. The required solution is
O(x*+ y— 7%, Xy + z) = 0, ¢ being an arbitrary
function.

dz =pdx + qdy = ( Ja —Ejdx+3dy
XVX X X
or xdz = x/gx%dx—zdx+ady

-1
or xdz +zdx =+/a Adx +ady

or d(xz) = 2«/5\/;+ay+b; a and b being
arbitrary constants is the required solution.

70. The singular solution of the differential
equation p’ — 4xyp + 8y2 =0

69. The complete integral of q = (z + px)’ is
q = (z+ px)’ T T FAIHA & -
(a) xy= 2WaVx +ax+b
(b) xy= 2/av/x +ay+b
(c) yz= 2v/a\Jy tay +b
(d) xz= 2aVx +ay+b

Ans. (d) : xz= 23/a/x +ay +b
Given q = (z+ px)’ = f(x,y,2,p.q) = (z + px)’ = q =0
Charpit's auxiliary equations are

dp __dg __dz _dx __dy
f,+pf, f,+qf, -pf —qf, —f, f,
dp __ dq
2p(z+px)+2p(z+px) 2q(z+px)
or
dz dx _dy

—-2px(z+px)+q - -2x(z+px) -1

Taking the second and fourth fractions ldq = 1 dx
q X

. a
Integrating, logq = loga —log x =>q = —

X
substituting this value of q in equation ; we have

(z+p’=2
X
or pxX=—=-2

or p=

TTHA p’ — 4xyp + 8y’ = 0 &1 faferx
TTE -
(a) 4y’ =27x (b) 27y’ = 4x
(c) 27y =4x’ (d) 4y=27x
Ans. (¢) : 27y = 4x’
Given p’—4xyp + 8y* =0
3 2 2
Solving for x, we get x = p 8y = p_+2_y
4yp 4y p
Differentiating w.r.t. y we get
1_pdp_p° 2 2ydp
p 2ydy 4y’ p p’dy
2
o (2] p 1
dy(2y p°) 4y p
ie. @ - P
dy 2y
in which variables are separable. The solution is
2
p-=cy

Eliminating p between this and the original differential
equation we get
3 3 1 3

c2y? —4e2xy? +8y” =0

LICTR DR T

or 5 c (4 c xj =-y

Hence, y= c(x—c)” ; ¢ — arbitrary constant

Now differentiating w.r.t ¢ we have
(c—x)*+2c(c—x)=0

= (c—x)(Bcx)=0

X
= c=Xor ng

Now, when ¢ = x we have
y=0

X
and when ¢ = — we have

X[ 2x 2
ey

or 27y = 4x°
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1. The principal value of log (—1 + 1\/3) is:

log(~1+iy/3 ) &1 7e1 7= R:
(a) log2 —i% (b) log

(c) log 2+i2?7t (d) log

)i
6

2+ik
6

log (-1 +i\/§) = 10g‘—1+i\/§‘ +iarg(-1+

2n
=log2+i1—
&

i/3)

Ans. (¢) : Principal value of log(—1+ i3 ) is given by

3. "An entire function which is bounded on C has

to be constant', what is this well known result
called?

‘“‘uw WUl e W fR ¢ W uReg §, 3R
B, 36 Gy TR Y T ohad &7

(a) Cauchy's Therorem/&13fT 81

(b) Liouville Theorem/ferifaeat e

(c) Morera's Theorem/FRA J8

(d) Taylor's Theorem/2R 0T

Ans. (b) : Liouville's Theorem:- Let f be an entire
function that is bounded on C. Then f is a constant
function.

2 2

2. Letvbe the ellipse X—2+l§—2 =1.Then |
a

mﬁﬁv@aﬁﬁqvx—z+ly)—z=1%,?ﬁ

v

a
j xdz =:
(a) imab (b) mab
(c) ab d 0

xdz =:

4. What is the radius of convergence of the power

series Z (3 +4i)"z"?

urftr  groft i(3+4i)"z“aﬁ sTRraTRar st

firsar o= 82 "
(@ 5 (b) 0
(©) 1/5 (d) 1/4

2 2
Ans. (a) : Given ellipse X—2+%
a

z(@)=acosO+1i bsing, 0<06<2n
Hence dz =-—asinO+ibcosH
do
So, the given integral becomes
2n
I= j Re(z(0))(—asin 0 +
0
2n
I= .[ acosO(—asin0+ib

0
2n

2n
. Iz—azjcosesinede+ijabc
0

0
0 . 2
- fazjtdt+%j(00529+l)d9 {
0 0

(Substituting sinB =t in first integral.)
=0+inab

=1imab.

ibcos0)do

co0s0)do

0s”> 0d6

sinO =t
cos 6d6 = dt

=1is represented by

}

Ans. (c) : Here a,= (3+41)"
Radius of convergence
1
lim |a +1
n—ol a
B 1
B 11113|(3 +4i)|
=1/5

R =

n

5. Which of the following statements is not

z

true? Forz e C,if f(z) = ——,
frafafad @ @ &9 @ &9 9 T8 §7
2 € C% o, afe f(z)=f—zl,?ﬁ:

e —

(a) fis entirely analytic./ f T dvafis 21

(b) The only singularities of f are poles./ f &
T fafeEad e

(c) f has infinitely many poles on the imaginary
axis./2THCTT 37 W f & AT g
b 2|

(d) each pole of f is simple./ f T 8 Teh 3Hd<dh
THAM 2|
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Ans. (a): Here f(z):%; ze C to be analytic at z=
2nmi; n=0, +1,£2.... because denominator =1 vanishes
only where e’=1=¢'""" which
z=2nni;n=0,+1,+£2,....

Hence, f is not an entire function, only singularities of f|
are poles, each pole is simple and f has infinitely many
poles on the imaginary axis.

6. When is the cross-ratio of four points in C
real?

C ¥ 9 forgatt = fereder arguT, awafas® wa
Erm?

(a) two of them lie on a circle/37H g I I El
(b) three of them lie on a circle/37H g = gd W

gives

(c) all the four lie on a circle/S¥ R Fq W &
(d) one of them lies on a circle/37H ¥ TH Id

Ans. (¢) : The cross ratio (z;,2,,23,24) is real if and only
if the four points lie on a circle or on a straight line for
we obtain

=

zZ, —Z zZ,—7Z
— 3 2 3
arg (z1,22,23,24) =arg —arg
z,-2, z,-2,

and if the points lie on a circle this difference of angles
in either 0 or +7, depending on the relative location.

7. Where do all the zeros of z*+ 6z + 3 = 0 lie?
2+ 6z + 3 = 0 % TN I el ei?
(@) |74<2 (b) |7 <1
(©) 1<|z<2 (d) |7>2
Ans. (c) : Let find the range of |z| for the roots of z* +
6z + 3 = 0 mathematically.

Let |z| =r. For a root z, we have:
|| = 6z + 3| < |62] + |3| = 61 + 3.

thus:

f<6r+3
Define:

fir)y=r"-6r-3
we solve f(r) =0 forr>0
Behavior of f(r):
for r=0,f0)=-3<0
As r — oo, f(r) — oo.

critical points: Differentiate f(r)

Solve f'(r)=0

P=2
2
For r > 0, f(r) changes sign near
r=1.2andr~2

Numerical or graphical analysis of
f(r) = 0 confirms:
1<r<2
The roots satisfy 1 <|z| <2
8. Which of the following statements is not true?
frfefiaa # & I o1 %o T TE 82
(a) Zeros of an analytic functions are
isolated./fvcifis e % IEF SMEHALE
2 g
(b) If an analytic function vanishes on a set with
a limit point. then it is identically zero./df%
fovcifies wo T8 = |, o= s g
fog &1, Y & 9 W @ & I A 2
(c) Poles are isolated/3 = s §1
(d) A non-zero analytic function can have zeros
of infinite order. / %ol & 3T
I ¥ T & T 8

f'(r)=4r -6

Ans. (d) : If f(z) is analytic in a region () containing a ,

then

fa) (z—a)+...+ " (a)
1! (n—

where f,(z) is analytic in Q

If f(a) and all derivative f"(a) vanish then

f(z)=f(z)(z—a)"

for any n. Draw a circle C of radius R about a so that C

and its inside are contained in Q. The absolute value

|f(z)| has a maximum M on C; we find

M
R™(R-|z—

q)

n-1 f n
) (z—a) +%(27a)

f(z) = f(a)+

f (z) <

for |z - a| < R.Thus we have

I£(2)| S[|z—a|]
R

=0 |
But T -0 forn—)oo,s1nce|z—a|<R.Here

MR
R—|z—a|

f (z)=0 inside of C.

We show now that f(z) is identically zero in all of Q.
Let E; be the set on which f(z) and all derivatives
vanish and E, the set on which the function or one of]
the derivatives is different from zero. E; is open by the
above reasoning and E, is open because the function
and all derivatives are continuous. Therefore either E;
or E, must be empty. If E, is empty, the function is
identically zero. If E; is empty f(z) can never vanish

together with all its derivatives.
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Assume that f(z) is not identically zero. Then, If f(a) = 0
jthere exists a first f(a) which is different from zero,
then a is a zero of order h and hence there are no zeros
of infinite order.
In this context, an analytic function has the same local
behavior as a polynomial, and so we can write

fz) = (z—a)" fi (2)
where f;, (z) is analytic and fi(a) # 0.
Since, fi,(z) is continuous, f,(z) # 0 in a neighborhood of
a and z = a is the only zero of f(z) in the neighborhood
so, the zeros of an analytic function which does not
vanish identically are isolated.

If 1i£ralf(z) =00, the point a is said to be a pole of f(z),
and we get f(a)= . More precisely, to every a
€ Q there shall exist a neighborhood
|z—a| <9, contained in Q, such that either f(z) is
analytic in the whole neighborhood, or else f(z) is
analytic for 0 < |z fa| < §, and the isolated singularity is

a pole.
Only zero function can have zeros of infinite order.

9. Two norms ||||1 and||.||2 on the same vector space

X are equivalent if and only if there are positive
real numbers a and f such that for x e X:

fret @fger sme®m X W & yEW
(norms)|/|, and|/, Fwgem TR Al AT Faw
Tfe & AT Tt o3 p3A
YR ¢ T x e X : o feTw:

@ x|, <[xll, <Blx], dyofx], <[K], <B[x||
© ax], <[xll, <Blx[, @ o], <[], <B[x],

Ans. (a) : Two norms defined on the same vector space
are said to be equivalent if the topologies induced by
these two norms coincide.

The topologies induced by the

norms||.||(l) and||.||(2) on a vector space X coincide if,

two

and only if, the identity mapping
LAy = ]y
is an isomorphism i.e. there exist two constants K; > 0
and K, > 0 such that
"Xu(z) <K, "X"a) and"x"(l) <K ”Xn(z)

for all x € X . On setting o = Kl_1 and B = K, we get

that two norms are equivalent if, and only if, there exist
two constants o > 0 and > 0 such that, for allx € X ,

O‘"X"(l) < ”X”(z) < l3"X"(n'
Which of the following is true?
Freferfaa ¥ & SA-11 we g &7
(a) An inner product space is a Banach space
/U SR U STH 1 SNH B ¢ |
(b) An inner product space is a Hilbert space

/U TR U STHET e ST g 2|

10.

(c) A Hilbert space is a complete inner product
space/Ush SThIRT Teh TTf R U
BT &1

(d) Every Banach space is a Hilbert space
/I TAE ST T fFeae ehre & |

Ans. (¢) : An inner product space is a normed vector
space.
Definition- A Hilbert space is a Banach space whose

norm comes from an inner product.

11.  Which of the following statemnets is true?
frefafiaa & @ SF-91 wew 7 §7
(a) I, space is not a topological space.
/13T Teh | (topological) STRIST &t

(b) f,, p=2is a Hilbert space./[, p=2Th feead
ST 2

(c) I, p#2is not a Banach space./l, p#2 9
ST T 2|

(d) /, space is Hilbert space./ /,31ThI¥T Th feeee
T E

Ans. (d) : Consider sets of real (or complex) sequences
X:(Xla X2, X35.05 Xy
Let 1< p <oo. we define the space

A :{X i“|xi|p <oo}
i=1

Then /, is a Banach space.
Now, consider the space /, for x and y € /,,define

(x,y) = Z XY
i=1

Where x = (x;) and y = (y;) are real sequences. Again, if]
the base field is C, then we define

(x,y)= Z}: XY
This makes /, into a Hilbert space.
12. The norm of an identity operator is:
AR (identity) Heheh T YUY 3:
(a) 1 () 0
(c) 10 (d) 2
Ans. (a) The norm of the identity operator,

[:X—>Xislie |L]|=1.

13. Let X and Y be normed spaces over the same

field F and T:X—>Y is a bounded linear
operator. Let N(T) denote the null space Then
which of the following statements is correct?

o fomn ff X 3R Y ts & &5 F o yardi
(normed) 3T & AT T:X > Y Tk sferd
Y&l denrer &)1 | foran fos N(T) 9= 3treRtsT
o T wear g1 o fFrafafaa o @ «iE ar
HYT T &7
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(a) N(T)={¢}

(b) N(T) is an open set/ N(T) Teh Gl HH=IH 2

(c) N(T) =X

(d) N(T) is closed set/ N(T) Th o= HH==T 2
Ans. (d) : The null space N(T) is closed.
Proof- Let x eN(T)cXand a
e N(T)with x, s x asn— .
We have 0 = T(x,). Taking n—>ocoand using
||T(xn )— T(x)|| < ||T|| X, — x|| , we get 0 = T(x) and hence
xe N(T)
So, N(T) is closed.
14.

sequence X,

A continuous function f:X —>Y of topologial
spaces preserves a property P if f(A) satisfies P
whenever, A satisfies. Which of the following
are not preserved by f?

(i) Compactness

(ii) Connectedness

(iii) Openness

witarfa TR 1 T dad ®wer £:X — Y 07 &
TR e , A f(A),P I GIE HIAT § W
weft A, PRl HE wEaT ¥ fAfeies § € @9

W o g Gera gt ford A &7
(i) H&ar

(i) ¥Tegdl

(iii) Tergrera

(@) (1) (b) (i)

(c) (), (i1) (d) (iii)
Ans. (d) :Consider a continuous function £ X—Y
defined by f(x)=x* and A is the open interval (-1, 1)
then f(A) is the interval [0,1) which is not open.

Connectedness- The image of a connected space under a
continuous map is connected.

PROOF. Let :X—> Y be continuous map; Let X be
connected. Consider the case of a continuous subjective
map (by restricting its range to the space ZcC Y)

Suppose Z=A UB is a separation of Z into two disjoint
nonempty sets open in Z. Then g ' (A) and g’ (B) are
disjoint sets whose union is X; they are open in X
because g is continuous, and non-empty because g is
subjective. Therefore, they form a separation of X,
contradicting the assumption that X is connected.

Compactness- The image of a compact space under a
continuous map is compact.
Proof- Let f:X — Y be continuous; Let X be compact.

£ (A, T(AD)
cover X. Then the sets A, ...... , A, cover f(X)

15. Let X be an infinite set with discrete topology,
then which of the following is true?
= o fafaws dftfa & g § ww era
aqeeg &, A frefafaa § @ w9 ar wmeT
T 2?2
(a) X is connected/ X 95 g
(b) X is compact/ X G&d 2
(c) Every function from X to another topological
space is continuous/J&% HH X T
HRefy gufy ®, gad 2|
(d) X is not a T;-space/ X, meT,-Faf¥ & 2
Ans. (¢) : Let X be an infinite set; the collection of all
subsets of X is a topology on X, called the discrete
topology. Every function from X with discrete topology

is continuous because any subset of X is open, so the
pre image of every subset of the co-domain is open.

16.

Let X be countably infinite discrete topological
space which is homeomorphic to the subspace y
of I with usual topology. Then which of the
following can be Y?

HQ
(i) Z
(iii) {l;n € N} O] )
n
(iv) N
U @ X ek o 3 faferes dftefa €, st
o wmT wRafa & W & 0 SUEgs=A Y ©
A § Peffer A SR Y @
Hehal §7?
(a) (i), (iii), (iv) (b) (1), (ib), (iii)
(©) (1), (iib), (iv) (d) (i), (iv)

Ans. () : A homeomorphism is a bijection f:X— Ysuch
that f: X— Y and f' : Y— X are both continouous.
Spaces X and Y are homeomprphic.

Now if space X is countably infinite topological space
homeomorphic to the subspace Y of R with usual
topology then Y can be any one of [J,[] or[] ; countable
sets of R.

Now Let X={0} U {l/n:ne N} as a subspace of R and
consider N with the discrete - topology (inherited from
R). Consider the bijection f:N — X defined by f(0)=0
and f(n) = 1/n. f is continuous. The inverse bisection is
not continuous. {0} is open, but the image f({0}) = {0}
is not open in X. This is because any open ball around 0

in R contains some 1/n.

Let Q be a covering of the set f(X) by sets open in Y.||17.  Let X be an uncountable set. Then which of the
The collection following collections T of subsets of X is not a
- topology?
f'(A)AeQ pology

_ , {(),| } . UE W X T& UHE dgeed g oar
isa collectlon'of sets covering X; these sets are open in Prafefas & @ S9-91 X % .
X because f is continuous. Hence, finitely many of] R R . >
them, say qug T Th wreerfa &t %I
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(a) T =P(X), then power set of X

() T={X,p}
(c) T=(AcX | A=X or XA is countable}

(d) T={AcX|X-Aiscountable}

Ans. (¢) : If X is any set, the collection of all subsets of]
X is a topology on X, called the discrete topology.

The collection of X and ¢ only is also a topology on X,
called the indiscrete topology, or the trivial topology.
Let Q2 be the collection of all subsets A of X such that
X—A either is countable or is all of X. Then Q is a
topology on X.

Now T={AcX:Ais finite or A=X}
topology, even though¢,X eQ, any infinite proper
subset Y < X can be written as the union

y=U1y}

Each {y} is in Q, but their union Y is not contained in
Q.
18.

is not a

What does the tychonoff Theorem assert?

FENATFER (Tychonoff) WHI SRIT I <aT &7
(a) Product of compact spaces is compact/Hgd
Tufst &1 U Hed g 8|
(b) Product of  connected spaces is
connected/TT5 FAfE H1 U Frelg g B
(c) Product of  Hausdorff  spaces is
Hausdorff/gI3dsih THIET & T0H IR™US(h
g 21
(d) Product of normal spaces is normal/HH
TafEEt &1 OE e S 2
Ans. (a) : Tychonoff Theorem- An arbitrary product of]
compact spaces in compact in the product topology.
19. The equation of a normal plane at a point of a
space curve x = Xx'(s) is:
STHIIT Th X' = x'(s) & T g W o
THreRToT §:
() p (X' =x)=0
(¢) b'(X'—x")=0
(d) None of the above/39gwh H & HIE el
Ans. (b) : Let X' = x' (s) be a point on the curve and X'
be the position vector of any point on the plane . Then
(X'x') lies in the normal plane since (X—x') is
perpendicular to t'; tangent vector, we get t' (X'—x') = 0
as the equation of the normal plane.

20. A necessary and sufficient condition that a
given space curve is a plane curve is that:

& T U NeRTT Ak R WU gk BN %

(b) (X' —x)=0

ferg smavarer iR vate wfeerr &:
(a) t=0 (b) K=0
(c) 1=K (d) KK'=r1'

Ans. (a) : Let us take the curve to be a plane curve,
since the curve lies in a plane, the osculating plane at
every point of the curve is the plane containing the

So d_b= 0= db =0. Hencet = db =0 at all points of]
dx ds s
the curve.

Conversely let T =0 at all points of the curve.

Now 1= =0=Db is a constant vector and so for

s
any vector R,

i(r.b) = E.b + r.@ =tb+rb'
ds ds ds

> t.b. = 0 and b'= 0 we have di(r.b) =0 for any point r
s

on the curve.

Hence r-b = constant = ¢ (say). If r = (x(s), z(s)) and b
= (by, by, b3), then r-b= c gives xb; + yb, + zb; = ¢
which shows that r(s) = (x(s), y(s), z(s)) lies on the
plane b; X + b,Y + b;Z =c.

A necessary and sufficient condition that a given curve
be a plane curve is that torsion of the curve vanishes i.e.

curve itself, so that the binormal b is constant.

T = 0at all points of the curve.
21.

If 7 is torsion of a curve x'= X' (s) in space at a
point and t', p', b' are fundamental unit vectors,

then 1 is defined as:
Il SRIT dh x' = x'(s) & Tt ]%Fg w

TS & aen ¢, p, b' Hifeter gents |iwr &1, A
7 Uy §

dp'
b
(b) s

dt
(@) s

db’
(©) &

(d) None of the above/@"ﬂ‘r’ﬁ 79 FE T

Ans. (¢) : The arc-rate of rotation of the osculating

. ;. db’ . .
plane is expressed by b‘:d— whose magnitude is the
S

torsion T.
db’
So, T=|—
ds
22. The equation of tangent plane at a point

(Xi, ) on the surface F(x')=0,i=1,2,3,is:

waE F(x)=0,i=1,2,3,% T& fog (x;)w
w9t qeh T FHteRTT §:
() (x' —xt' =0 (b) (xi—x\)p'=0

i iRk — i i 6_F=
() (x'—xy)b'=0 (d) (x XO)axi 0

Ans. (d) : The equation of the tangent plane to a surface
F(x) = 0 at a point (xg), where i = 1, 2, 3 is derived

from the face that the gradient vector VF at (xg) is

perpendicular to the tangent plane.
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The equation of the tangent plane is:
OF (i i\
Y x) =0,
Which corresponds to option (d):

23. If k; and k; are principal curvatures at a point

on the surface, the Gaussian curvature K at
that point is:

Tfg wag o fohet forg & T&T 9 FshaTt k3T
k, 8t g % W forg ot ey aghar &

(@) 2(k, +k,)

(©) yki+k; (d) kik,

Ans. (d) : If k; and k, are principal curvature, at a point
on the surface, the Gaussian curvature K is defined as
K:klkz.

The principal radii of curvature of the surface:

(m%&ﬁh)

24,

z . Z
Xcos — = ysin—
a a

are equal to:

qdes
z . Z
Xcos — = ysin—

a a
it Fehal ol T&T ATl SRTeR §:

+x2+y2+a2 x> +y’ —a’

(a) (b) *

2 2 2
(c) iu
a

(d) None of the above/@ﬁ’tﬁ T 9 & T

Ans. (a) : Let us first find the parametric representation
of the given surface.

Xy
sin(z/a) cos(z/a

) =u(say)

Further; — = tan(z/a)sothat(z/a)=tan"' (x/y)
y

Taking, v=tan (x/y)wegetv =z/a=>z=av
Using u and v as parameters, the given surface has the
representation

X=usinv,y=ucosv,z=av

Hence the position vector, r of a point P on the curve is
r=(usinv, ucosv,av)

.. 11=(sinv,cosv,0) and r,= (u cos v,— u sin v,a)

br, xr, = (acosv, —asinv,—u)
PE=r1r=1,F=15=0,G=rr, =u’+a’
PH’=EG-F =u’+a*andhenceH' 0

br, =(0,0,0),r, = (cosv,—sinv,0)

L, = (-usinv,-ucosv,0),r,, =(cosv,—sinv,0).

PHL =1,.(r; Xr,) =0
HM =1,(;xr,)=a
HN =r,, (1, X1,) = —ausinvcosv +ausinvcosv +0 =0

Since H#0, L=0,N=0,m=a/H=—__

u® +a’

The principal curvatures are given by
(EG —F*)K’* —(ENPFM + GL)K + LN-M* =0

2
=W +a)Ke —2 —=0(onsubstituting values)

2 2

u +a

a
>K=4t—7"nw—
(x2 +y2 +a2)

2 2 2
L. .. X"+y +a
= The principal radii are = roTyva

a

25. Let z=z(x,y) be a solution of e _ 1 passing

0x Oy
through (0,0,0) Then z(0,1) is:

=T R 2=2(x,y), f—;% =137 (0,0,0) ¥ TS

TN T & §1 7T 2(0,1) &:
(@) 0 (b) 1
(c) 2 d 3

Ans. (b) : Given 0z _
0x

Let the complete solution be
z=ax+by+c
0z 0z

—=a &—=Dbandsob=1/a
O0x oy

Sz=ax+yla+c.
Now z = ax + y/a + ¢ passes through origin hence c=0.

Thus z = ax + y/a is the required solution.
~z(0,1)=1/a

26. Let f(x, y) be a homogeneous polynomial of
degree n. Then:
of of
X—t+ty—=
ox oy
T T f(x,y) SHETHE Sgue §1
of of
X—+y—=
ox oy
(@ f (b) 2f
(¢) nf (d) (n—D)f

Ans. (¢) : If f (x, y) be a homogeneous polynomial of
degree n. Then

x—+y—=nf

ox "oy
Proof We have

f=x"g(y/x)

of n— n_ -y
n5 S0% 'g(y/x)+x"g (y/x).y
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=nx""'g(y/x) -y X" g'(y/x)

n-1_

g

=X

(y/x)

2w

& % = x"g’(y/x).%
Thus,

of n
X—+y—=nxg

ox oy

27.
area is:

fraifta ofifd a7 T9aer 9k T S9hReT

Ffreha BT Afg o &

(a) Circle/gdq

(b) Hyperbola/3faqiae™

(¢) Rectangular hyperbola /3TREHR 3Tfaae™

(d) Ellipse/draa

Plane curve of fixed perimeter and maximum

28.

Minimum distance between the circle x* + y*=1
and the straight line x + y =4 is:
g X+ y> =1 qAT WA W x+y = 4 o ster f

22 b
(a) 22 ® =
() 242+1 (d) 2v2-1

L

Ans. (d) : The minimum distance between the circle x
+y*=1and line x + y = 4 = (distance of origin from the

line x +y = 4) — (radius of the circle) =22 — 1

Ans. (a) : The perimeter and the area under the curve
are given by

X
Perimeter = Arc length = .[ 1+ y’2 dx
Xy

X
Area under the curve A = .[ ’ y(x)dx.
X1

Using Lagrange multiplier Technique, define a new
F y+7n/1+y'2 and to optimize

Xy )
J. y+Ay1+y'“dx we have
X

functional

@_1 oF Ay’

oy | a_y'_«/l—i-y’z

Euler's Equation:

Al M,
dX [1+y12
= Ay =x+a
1+y'2
= ry' _ l+y'2
X+a
= kzy’z—(1+y'2)(x+a)
= y'z(kz—(x+a)2)=(x+a)
, X+a
= y'=
A2 - X+a)2
= y=—yA —(x-a) +b
= (y—b)zzkz—(x+a)
= (x+a) +(y—b)* =22

Which is a circle.

29.

The surface of revolution of a curve y = y(x) is
22 1+ y ™ )ax

is minimum when the curve is

ek T Ylaad= & AT dae:

2" (y1+y" )ax

=Aau Bt afy ok
(a) parabola/XTcTd
(c) catenary/%@?ﬂ

(b) circle/gd
(d) ellipse/drEaa

Ans. (¢) : Here f =y 1+y’z does not contain x
explicitly thus, the Euler's equation reduces to

of
f—y'— =c(say)
oy
y 1+y|27yviy 1+y12:C
ayl

ie yyl+y” —y'5(1+y'2)’”22y':c

y

NA+y"?)

or y°=c’+c’y"”

or =C

dy_y'-¢

dx c
Separating the variables and integrating, we have

dy

or y'=

X+a

cosh™\(y/c) =

X+a

)

i.e. y—ccosh(
c

Which is centenary.

30.

Fredholm integral equation has a solution:

THERIT THTeheT THRIUT &1 &6 &
(@ ¢(x)=¢" (b) d(x)=e""
(©) o(x)=1 (d) ¢o(x)=logx

Ans. (d): The said Fredholm integral equation is
missing.
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31. Solution of Volterra integral equation
909 =x- [ (x-Do(Hdt
With ¢,(x)=0, is:
T THTGhET THIHIUT Sel(eh T & &
() =X [} (x-o®Odt
SeIfeR @, (x)=0, T EA &
(a) ¢(x)=cosx (b) ¢(x)=—sinx
(c) ¢(x)=e" (d) ¢(x)=sinx

Ans. (d) : Here ¢(x)=x +j'(t —x)o(t)dt

On comparing with y(x)=f(x)+ A j K(x, )dp(t)dt
0

We have f(x)=x, A=1, K(x,t)=(t—x)
Let Kou(x,t) be the m™ iterated kernal. Then
Kl(xat):K(X’t) = (t - X)

and K_(x,1)= jK(x,z)Km(z,t),m =23, ..
t
m =2 gives

K,(x,t)= IK(X,Z)Kl(z,t)dZ = 'X[(Z —x)(t—z)dz
Py 170 =]
—1/2.[((2 x)*dz 1/2{ 3 }

Kz(x,t):%

Next m = 3 gives

:——I(z x)(t—z)dz=— 3

“(Z_ )(<4>} Sl J

B G
K E

(t—x)°
5!

43'1(t 2)'d

Ki(x,t) =

On observing mathematical induction enables us to write

m-1 (t X)zm 1
Q2m-1!’

Now, by the definition of resolvent kernal.

K, (x,t)=(-1) m=1,2,3...

K, (x,t) = ](.K(X,Z)Kz (z,t)dz= ](-(Z _ x){ (t ;'2)3 }dz

R(x,t,A) = me K, (x,t)= ZK (x,1)

m=1
=K, (x,t) + K, (x,t) + K, (x,t) +...
3 5
_t-x _(t-x) +(tfx) N
1! 3! 5!
=sin(t — x)
Finally the required solution is given by

y(x) =f(x) + ij(x,t SVE(HAf = x + ](-tsin(t ~x)dz.

=x+[t(—cos(t—x)[; — jl [cos(t—x)df

=x— X +[sin(t —x)];

= y(x) =sinx

32. Extremal of Ll [y” +12xy]dx with y (0) =0 and

y(1) =1, is along the curve:
yO0) = 0 3R y(1) = 1 Wfde=r & @
I:[y'2+12xy]dxa-7|' ‘siera®’ ( Extremal ) Forer
o5k o WTI-AT (along ) §:
() y=x' (b) y=x'
(© y=x (d) y=x
Ans. (b) : Here F = y?+ 12xy
Euler Lagrange equation:

o _dfoF
dy dx{oy'

12x-2y"=0 or y" = 6x
=>y'= 3x3+ C
=>y= X+ Cx+C'
Applying the conditions y (0) = 0 and y(1) = 1, we get
C=C=0
Thus, y = x° is the required curve

33.  Volterra integral equation has a solution:

e AHTehET THIHIUT T &t &

@ o(x)=(1+x)7"  (b) ¢p(x)=(1-x*)""

© 0 =1+x)" (d) dx)=(1-x>)""
|Ans. (): The said Volterra integral equation is missing. |

34. What are the coordinates of the reflection of
the point (1, 2, 3) in x, y, z space in a mirror
along x, z-plane?

x,y,z Teeheerm= o Th ﬁFg (1,2,3) ol x, z-deT b}

U2 Ues quuT WY farar & Fdotien R B2
(a) (-1,-2,-3) (b) (1,-2,-3)
() (1,-2,3) (d) (-1,2,3)
Ans. (¢) : Reflection r of (x, y, z) about xz-plane is
1 0 Of«x
1x,y,2=|0 -1 0|y
0 0 1|z
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.. The point (1, 2, 3) after reflection along xz-plane is
given by

I 0 0f1 1

0 -1 0f|2]|=

0 0 13 3
Consider two waves of same angular frequency
®, same angular wave number Kk, same
amplitude a travelling in the positive direction

of x-axis with the same speed and with phase
difference ¢ . Then the superposition principle

yields a resultant wave with:

Teh & RV ARERET @, Ush g iU aar
T k, Teh & MW a & & aon w fa=m
HINY S Teh & T HeATal o o T x-378T h
g foom & wmft {1 @ SreImvur fow uew

3s.

TRuHt T AT § 3R e

(a) Amplitude 2a and phase ¢/3TTIH 2a TAT hell
¢

(b) Amplitude 2a and phase (¢/2)/3TIH 2a AT
el (¢/2)

(c) Amplitude 2a cos(¢/2)and phase (¢/2)/3TaH
2a cos(¢/2) qAT el (¢/2)
(d) Amplitude 2a cos (¢/2) and phase ¢/3TH 2a
cos (¢/2) TIT el ¢
Ans. (¢) : Let the two sinusoidal waves with given
conditions be
y, =asinot, y, =asin(ot+¢)

Principle of superposition dictates that the resultant
wave will be given by

y =y y.=asinot+asin(ot + ¢)

= a[sin ot + sin(wt + ¢)]

= a{2sin[mt +$j cosi}
2 2

¢

>)
2
Hence, the resultant wave is of amplitude

= [Za cos gj .sin(ot +

2acos (¢/2)and phase difference g

36. Pick all the correct options in the following
problem:

Consider a particle of mass m in simple
harmonic oscillation about the origin with
spring constant k, then for the Lagrangian L
and Hamiltonian H of the system:

frrferRae wwean # v foreredt a1 gATE St

ot gat forg & AMUR wuT Relies ke
T m geh W AT are i gU Ueh
/T WX feem s o fresrr & oS L aen

et H & fow:

. . 1 ., 1 .,
1) L(x,X) =—mx" ——kx
(1) L(x,%) 3 2

2

=2+ liep s
2m 2 ]
momentum/sTAshigd FaT 8

(i) L(x,%x)= %m}'{z +%kx2 and the generalized

momentum is p=mx /AT ARl HoT &

generalized

(i) L(x,x)= %mxz—%kxz and the generalized
momentum is p =mx /AT SAHHd FaT 8
. SRR TR P
(iv) L(x,x)= 2mx 2kx ,
(a) (1), (i), (iv) (b) (1), (i), (iv)
() (@, (iii) (d) (i), (iii), (iv)
Ans. (¢) : Lagrangian L=T-V

where T and V are kinetic and potential energies.
Lagrangian L of the described system of mass m being

at the end of spring in SHM with spring constant k is
1
Lo - Lie
2 2

Hamiltonian H of the described system is

. . oL .
H =px —L: p-conjugatemomentum= % =mx

2m 2
where we now have H in terms of x and p, with n X's.

H is simply the energy, expressed in terms of x and p.
37. The Euler's equation of motion for the perfect

fluid, with F as the external force per unit mass
of the fluid, is:

afg foreft Tt uqred W wfa g aRmmoT W

T ol S g F A A qul avet uare
ST AT T THIRIOT 8

-

(b) Dq _ f_lvp
Dt p

- -

Dq 2 Dq =
¢) —=pF-V d) p—=F+V
(c) o P p (d) P Dy p

@ 29_pilyp
Dt p

Ans. (b) : The Euler's equation of motion of an in viscid
(perfect)fluid

Dq_ F—le
Dt p
where F is the external force per unit mass of the fluid,

p and p are the pressure and density respectively.
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38. The stream functiony, for a two-dimensional

motion, is:

TatramHt wifer o foTg wamefefdn wemy #:

(a) zero along a stream line/39T8 W # feem A
A

(b) variable along a stream line/9dT8 @ # e
7 =

(c) constant along a stream line/¥dT@ @ # famm
T 3R

(d) None of the above/@"ﬂ?ﬁ T Hig &

Ans. (¢) : For a two dimensional incompressible flow
parallel to the xy-plane in a rectangular Cartesian
coordinate system, let u and v denote the velocity
vectors in the x and y direction respectively.

. . .. Ou Ov
Equation of continuity: — +— =

ox Oy
A function y(X,y,t) defined such that
u= 2% and v=—a—(p
ox

which gives that y satisfies the equation of continuity

ou oOv . .
& +— =0 is known as stream function.

Since wis a point function then
dy = G_de +5_\de =—vdx +udy
ox oy

Now, the equation of stream line
u

v
=— or udy —vdx =0 gives
dx dy Y &

stream line.
= v is constant along a streamline.

thatdy=0on a

39. Let G be a multiplicative group of positive real

numbers and G' be the additive group of real
numbers. Then the mapping

f:G->G'
Given by
f(x)=log x,Vx € G,

182
= faan 6 emtenes arafaes et @
T WHE ¥ q9T dRafder GEHsit et
e | g1 whates
f:G— G' = fer foam = &:

f(x) =log x,Vx € G,
T

(a) one-one, onto but not homomorphism/‘l%ﬁ,
TBIES T THEd Fal

(b) one-one, homomorphism but not ontom ,
THETAT ] STDEH el

Ans. (d) If f(x;) = f (x,) for some xy, X, € G then log, x; =
log.x, gives that x; = x,, proving the injectivity of f(x).
Let ye G then for some x € G we have x = ¢” which
gives log.(x) = log.(e") =y, proving surjectivity of f.
Now, we have f(x; x,) = log.(x;.X3)
= loge(xl) + loge(XZ)
= f(xy) + f(x2)
Showing that f is homomorphism.
40. Which of the following statements is not
correct?
frafafiaa & @ =9 O ®aa g T §7?
(a) Product of two odd permutations is an odd
permutatlon/?ﬁ faom el (permutations)
T SIS U fae e B
(b) Product of an even permutation and an odd
permutation is an odd permutation/Tsh TH
9T (permutations) 3R T foom =T
3 (product) fomm sHH=a &1
(c) Identity  permutation is
permutation/dcdHh hHad
permutations) Tsh HH hHIT 21
d) Ever roup has at least two normal
@ sungougmﬁ%Wliw T FH I TEEE
TR 2|
Ans. (a) :
a) Product of two even or odd permutations is even
permutation.
Product of an even permutation and an odd

permutation is odd permutation
Identity permutation for the finite n-element set

{1’2”"n}giV€nby e:(l 2 .n
12 ..n

permutation because it can be written as product of]
even number of transpositions

an cven

(identity

b)
¢)

j is an even

d) Every group has at least two normal subgroups i.e.

the trivial subgroups, {0} and group itself.

41. For the multiplicative group of residue classes
{i 2,3,4,5 E(m0d7)} the generating element is
v ATt {iEEZEG(moM)}'&—: U
HIE T -eh AT ¢
(a) 2 (®) 3
(c) 4 (d 6

<i>=1i)
Ans. (b): _ o
<2>={1,2,4|
<3> {i 2,3,4,5 E} U, (Multiplicative group
modulo7)
<4>={,2,4}& < 6 >={1,6}

42. Ifpis a prime number and G is a non-Abelian
(c) onto, homomorphism, but not one- group of order p*, then the number of elements
one/3ATeGeh, FHETT TI] TS AE in the centre of G is exactly:
(d) one-one, onto and homomorphism/‘l%ﬁ, afe Teh ©g W& T 3R Th IT-TAAT A AT
ATEBIESH SN FHETA TUE ¥, A % % W Nagdl @ e W
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(@ p-1 () p,
(c)pt+2 (d p
Ans. (b) : Let G be a group of order p’; p-prime

number.
Since G is a p-group then its center Z is not the trivial
group. So the order Z must be p or p* or p’.

If the order of Z is p’, then Z = G and which
gives that G is abelian, and G is not abelian. So order of|

Z #p.

Suppose order of Z = p’ then |G/ Z| =p; acyclic group
and that implies G is abelian, and G is not abelian. So
order of Z# p*. Thus we get |z| =

43.

Which statement is correct?

frafeafaa § & |1 9T 9 872

(a) The set of integers I is a subring as well as an
ideal of the ring of rational numbers

+,.)./qu FT e 1 W Semel & aad
(Q,+,.) F 3IUGTF T U (ideal) 2|

(b) The set of integers I is only a subring but not
ideal of the ring of rational numbers (Q,+,.)
/Uit & e g@st F e (Q,
£y 1 T S & W] oSTEA T 2

(c) The set of integers 1 is neither a subring nor an
ideal of the ring of rational numbers

+,.). QU T T | U St & ae
+,.) F USEE 8, W 3uer Tl 2|

(d) The set of integers I is an ideal but not a subring
of the ring of rational numbers (Q,+ )/CL[UTfEﬁ E

lwﬁﬁawaﬁ%aaa@ﬂaﬂ

w@r% W] Saed T 2

Ans. (b) : The set of integer I is a subring of ring of]
rational numbers (Q,+,.) under the usual addition and
multiplication of rational numbers.

Now let 3 € Iand% € (Q,+,.)then3% ¢ I and hence I is

not an ideal of (Q,+,.).
44. An ideal S of a commutative ring R with unity

isllglaximal if and only if the residue class ring

R[S is:

THE WA dit ShATSAT a7 R T Uk

TUSTEEt S ARTHAT (maximal) § Gl AR

hael afg a9 9t I R/ S #:

(a) a commutative ring/FHfAHT FTT

(b) a commutative ring with unity/gaﬁl'sF T e

qcy
(c) an integral domain with unity/%"cfﬁéc T AT
TH QUi I (domain)

(d) a field/T® &
Ans. (d) : Proposition- An ideal S of a commutative ring
R with identity is maximal if and only if R/S is a field.
PROOF- Since every ideal of R/S is of the form B/S,
where B is an ideal containing S, it follows that S is a
maximal ideal if and only if R/S is without proper
ideals, and a commutative ring with identity is a field if]
and only if it is without proper ideals.

45.

Which statement is false?

T T HYT ITH &2

(a) The set R [x] of all polynomials over a ring R
is a ring/fRdl I R W |l wgURl &
YI=a R [x] TH 979 2|

(b) The set D [x] of all polynomials over an
integral domain D is an integral domain./fgt
QUi e D R | 9g9al 1 9= D [x]
TS QUi 9T 2

(c) The set F [x] of all polynomials over a field F
is a field /5 &7 F W 9t agual o1 9q=ad
F [x] T &7 21

(d) If D is an integral domain with unity, then
any unit in D [x] must already be a unit in

D/eraD@s'a?rs‘ T @,
ﬁ@éméDﬁ%ﬂgé@ﬁwé
%ﬁ%rﬂ%m

Ans. (c) : Definition - A polynomial with coefficients
in a ring R is a (finite) linear combination of powers of]
the variable

f(x)=a,x"+a, x"'+...+ax+a,
The set of polynomials with coefficients in a ring R will
be denoted by R[x].
If g(x)=b _x"+b, x™"
is another polynomial with coefficient in R, then f(x)
and g(x) are equal if a;= b; for i=0,1,2,.....
Now
f(x)+g(x)=(a,+by)+(a, +b)x+....+

=Y (a, +b)x";a, +b, is addition in R
K

+...+bx+b,

andf(x)g(x)=(a, +a,x+...)(b, +bx +....)
=Zab x"™;a b, is product in R.

There is a unique commutative ring structure on the set
of polynomials R [x] with respect to the binary
operations defined above. The ring R becomes a
subbing of R[x] when the elements of R are identified
with the constant polynomial.

Proposition- If D is an integral domain then D[x] is an
integral domain.

Proof- We know that D[x] is a ring and so clearly D(x)
is commutative whenever D is commutative. If 1 is the
unity element of D, f(x)=1is the unity element of D[X].
now suppose that

f(x)=ax"+a, x""+.. +alx+a0
and g(x)=b,_x"+b_ x""+..+bx+b,

where a, # () and b, z 0 .Then by definition f(x)g(x) has
leading coefficient a,b,, and since, D is an integral
domain, a b_ #0

Proposition- If D be an integral domain with unity.
Then units of D[x] are those of D.

Proof- Since D is a subring of D[x] and the unity of D
is that of D[x], units of D are also units of D[x]. Let f(x)
be a unit of D[x]. Then there exists g(x) € D[x]such that
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f(x).g(x)=1. Comparing the degrees of both the sides,
we have that deg(f(x)) =0=deg(g(x)). Hence f(x) and
g(x) both belong to D. This shows that units of D[x] are
also units of D.

Proposition- F[x]; the set of polynomials over a field F
can never be a field

Proof- x # 0, and it cannot be a unit of F[x].
46. The degree of the field:

Q(ﬁ,ﬁ)dﬁf {a+b\/5+cx/§+dx/5x/§ :a,b,e,d e Q}
over Q is:
QW &33!‘:
Q(ﬁ,ﬁ)dﬁf{a+b«/§+cx/§+dx/§x/§ :a,b,e,de Q}
R B
(a) 1 (b) 2
(©) 3 (@) 4
Ans. (d) : Consider the ﬁeldQ(\/E,«/g ) generated over

Q by J2and /3. Since+/3 is of degree 2 over Q, the
degree of the extension Q (\/5,\/5)/()(«/5) is at most 2
and is precisely 2 if and only if x’-3 is irreducible over
Q(\/E) Since this polynomial is of degree 2, it is
reducible only if it has a root; i.e. if and only if
V5 =q[+3).

Suppose V3 =a+by2 with a,b € Q .Squaring
this we obtain 3=a’+2b>+2aby2 . If ab=0, then
we can solve this equation for V2 in terms of a and b
which implies that V2is rational, and V2is not
rational. If b = 0, then we would have that V3=ais
rational and /3 is not rational. F inally if a = 0 we have
V3 =by/2 and multiplying both sides by V2 we see that
J6 would be rational and +/6is not rational. These

shows /3 é(Q\/E),pIOVing[Q(\/E,\/g):Q]=4

47.

Let f(x)=0 be an equation. The sufficient
condition for the convergence of Newton
Raphson's iteration method for finding a real
root of the above equation is:

= feren T f(x) = 0 T Tt {1 Sudsh
TR & Uk aTEdfaeh g1 UTW i ahi
EA-TwE # gema fafr & d@wa
(convergent) &I T Uit Wfcra=er §:
(@) [FCOF ()| =[F' T () [FOF ()| < [F' ()T
(© [FEOF"()| > [F'COT (D[ FOF"(0)] = [£'(x)|

Ans. (b) : Newton-Raphson formula

f(x,) .

_—f'(xn) ..(1)

On comparing with (i) with

X,,; = ¢(x) :iterative method

n+l = “*n

d(x)=x F0)
[£')f '(x) - F(x)f "(x)]
[f'0]

1) - T

[f'())
Which converges if
o' <1
= |f(x).£"(x)| < [f'(x)]
for newton-Raphson formula

we have

1-—

o(x) =

Which gives

48. Given the initial value problem
y'= ? =1(x,y), where y(x,)=y,.In Runge-
y
Kutta method:
& ™ YRR = T
dX % o
b R v, 81 B-she ferfr
o
(a) k;=hf(x,) (b) ky=hi(x,,y,)
(©) k= f(yn) (d) k;=fi(x,)-h
Ans. (b) The Runge-Kutta method computes

approximate values yi, y,,
initial value problem

y, of the solution of an

,_d
y'= L= fx,y) . y(x0) = Yo
dx

The correct expression for k; in the Runge-kutta method
depends on the specific from f(x, y) generally in the
first stage of the method

ki =h f(Xp, yn)
Where h is size

X, is the current value of X, y, is the current
value of y
Therefore correct option is b.
49. Let V be a vector space over F of dimension n.
Then which of the following statements is not
true?
= i v uew farfrar afeer wafy F @@ #)
frafafaa & @ S w1 wew o @ E2
(a) Any set of n vectors is a basis./ n Hf<¥

of qUeeg T AR 2
(b) A setofn+ 1 vectors is linearly dependent./ n

+ 1 i & T s el g

(c) A set of n vectors which spans V is a basis./ n

Hfewr F1 9g=ag S 6V H1 fER F g,
T 3TER 2|
(d) A set of n linearly independent vectors is a
gasis/n g W@ e 1 T T ER
|

Ans. (a) : Let V be a vector space of dimension n over
the field F. The dimension n implies that any basis of V
consists of exactly n linearly independent vectors.

Now, let's analyze each statement:
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(a) Any set of n vectors is a basis
This is not true. A set of n vectors in V is a basis if and
only if the vectors are both linearly independent and
span V. Merely having n vectors does not guarantee
these properties. For example, a set of n vectors that are
linearly dependent will not from a basis.
(b) A set of n+ 1 vectors is linearly dependent
This is true. In a vector space of dimension n, any set
containing more than n vectors is necessarily linearly
dependent, as it exceeds the maximum number of
linearly independent vectors.
(c) A set of n vectors which spans V is a basis
This is true. If a set of n vectors spans V, it must be
linearly independent, as the dimension of V is n, Hence,
it satisfies the definition of a basis.
(d) A set of n linearly independent vectors is a basis
This is true. If a set of n vectors is linearly independent
in V, it must also span V, as the dimension of V is n.
Therefore, it is a basis.
50. Let V be a finite dimensional real vector space
and f and g be non-zero linear transformation
of V to 0 (The set of real numbers). Assume
that ker (f) < ker (g).Which of the following
statements are true?
= +fifve v ues aftfia feafiar awafess afesr
AU T AR 3R g, VA D (arEafaes st
T WO ) Teh YR gk SU=atur g1 WA
& ker (f) < ker (g) =t & & &= @1
T T §?

(i) ker(f) = ker(g)

(i) f=Agfor some real number

A#0/f=\g TS arAfasd T A =0 faw

(iii) The linear map A:V— R’defined by
Ax=(f(x),g(x)), is onto AR wfafmor AV
— RS 6 Ax=(f(x),g(x)) ¥ TR9fE 2, T
B 2
@) (), (ii) (b) (i), (iii)
(c) (), (iii) (d) (i)
Ans. (a) : If f,g:V — IR are non-zero linear functional,
then there exists voeV such that f(v,) # 0. As
f(f(vo)v- f(v)vp) = f(vo)f(v) — f(v)f(vg) =0 ; Vv e V
.. We conclude that
g(f(vo)v- f(v)vo) = f(vo)g(v) — f(v)g(vo) =0 ; Vv e V
By hypothesis ker (f) < ker (g)

Then;  g(v) = £ fv) swve v
f(v,)
f
- EVO; g(v), proving that f =g ;forsome A # 0
gLV,

Thus, we conclude that

ker (f) = ker (g)

as well by above.

51. Let V be a finite dimensional real vector space
and let A:V—> Vbe a linear map such that
A’=A. Assume that A # 0 and that A = I, which
of the following statements are true?

T #T V Tes aikfaa fadfie awafas afger
Y § AR U AT AV > vV S R A=A
Teh ek Wfaresur §1 6 St A= 0 3T A
# 1, frafafad # ¥ ;-9 ¥ ®aT 9 872
(1) Ker (A)={0}
(i) V =Ker (A) ® Range {A}
(ii1) The map %I-i-A is invertible./JfafeE0T  T+A
|
(a) (1),(ii) (b) (ii)
(c) (D),(iii) (d) (1),(i),(iii)
Ans. (d) : Let veV such that A(v) # v (because
A #0andA #1) forsomev=0 e V.
Then A(I-A)(v) =0
Which gives (I-A)v # 0 € ker (A)
Thus ker (A) # {0}.
Now, V=Av+ (I-A)v : ~»veV (AvisRange(A))
= V =ker(A) ® Range(A)
Suppose (I+A)v=0
SAv=-Vv=Alv=-Av=> Av=

—Av=>Av=0=>v=0
Thus, (I+A) is invertible because ker (I+A) is trivial.
52.

Let x € ?be a non-zero column vector and A
= xx'. Then what is the rank of A?

T ofifNT x e (] 2 IR shier aAfeer & it A

=xx', dF & e (rank) <=7 2?7
(a) 2 (b) 1
(c)n (@0

Ans. (b) : Let

T
X X
x={ 1}then xTz{ 1} =[x,x,]
XZ XZ
X 2
XXT=|: 1}[x1 xz]z{xl Xltz}
X2 XIXZ X2
X, X
=70 T2lIR, >R, - 2R,
0 0 X,

. Rank of A = (xx")is 1.
53. Let A and B be square matrices with complex

entries. Which of the following conditions
assure the similarity of A and B?

o= it A iR B ot oneyg €, Rt

wfafyat wftnsr @@ 8 fafatas @ 9 s

Ht ST A ST B I GHIRET GATHA et &7

(1) A and B have the same Eigen values/ A 3R
B =T HHIF eigen oI Gl

(ii)) A and B are diagonalizable/ A 3R B faeoifa

(iii)) A and B have the same Jordan form/ A 3N B
& A Jordan I&T &1

(iv) A and B represent a linear transformation of a
vector space with respect to different bases./A
B SC-3YA YR & Wfew wA{E &

s it i &9 7
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(a) (1) (b) (ii)

(c) (iii) and (iv) (d) (i) and (ii)
Ans. (¢) : To determine which conditions assure that A
and B are similar, let's analyze the options:
1. Condition (i): A and B have the same eigenvalues.
Similar matrices always have the same eigenvalues, but
the converse is not necessarily true. For instance, two
matrices with the same eigenvalues might not be similar
if their Jordan forms differ.
This condition alone does not assure similarity.
2. Condition (ii): A and B are diagonalizable.
Both being diagonalizable doesn't imply similarity
unless they are diagonalizable to the some diagonal
form. Hence, this condition alone is insufficient.
3. Condition (iii): A and B have the same Jordan form.
If two matrices have the same Jordan form, they are
necessarily similar. This condition assures similarity.
4. Condition (iv): A and B represent the same linear
transformation with respect to different base.
If two matrices represent the same linear transformation
in different bases, they are similar by definition.

54. Let A be a 4 x 4 invertible martix with real
entries. Which of the following statements is
not necesarily true?

W T A T 4 x 4 HoRAUE SR §
ﬁmarﬁ wrafat St wet §1 Rreta

T | IF | HYF T T HEYAR e &7

(i) The rows of A form a basis of R/ A &t ofepar
R SR ard §

(il)) Null space of A contains only the zero
vector/A @ Y WA H Fad I HiEw
wfeet & £

(iii)) A has 4 distinct eigen values/A F 4 fim
eigen I g

(a) (1) (b) (ii)

(c) (iii) (d) (i) and (ii)

Ans. (c) : Consider the identity matrix

1 000
10100

0010

00 0 1]jgeg

Now I is invertible then null space of I contains only
zero vector thus rank of I is 4 which implies that the
rows of I forms a basis for R*.

But I does not possess distinct Eigen values because
characteristic polynomial of I is given by

(1 —2)* which has A =1 as its repeated root .
55.

Let A, be the matrix whose (i, j)™ entry is given

by 28,,j-9,.,; —98,;,, . Then det A,=:

(a) n (b) ntl

(c) n—1 (d) n+2
Ans. (b) : We are given the matrix A, whose (i, j)"
entry is defined as
a; = 28ij _6i+i,j _61,j+1

where = is the kronecker delta function
@j=1lifi=jand §;=0if i=j)

this definition implies that A, is a tridiagonal matrix

with following entries

Then,

2 -1 0
-1 2
0 -1

Dn = 2])n—l - Dn—Z -
Where,
D, = det (A,)

2 -1
D, =2, D, = det
-1 2

D3:4,D4:5,D5:6
As so on
For this seem that D,=n + 1

=3

56. Let V be a finite dimensional linear product
space with inner product(,). For a subset

S#@of V,letS* ={v|(v,w)=0vweSLIf 0
0 ¢ S which of the following is true?

T AT VS qUE () o W T IRt
forfig o Tm Wiy & vV & Suwmeew

Szo® fag #Am  dfiwg  fw
St ={v|(v,w)=0vweS}mfE  0gS @
frafafas ¥ @ & o1 ®ew 9 772
(a) S=S" (b) ScS™
(©) S = (d) 87 =(0)

Ans. (b) : If weS and veS", we have <v, w>=0, and
<w, v>=0; since v is arbitrary <w, v>=0 for all
v e S* which implies that w e S™'and0eS* but 0 ¢ S

. Sc S
The matrix of the linear transformation
T:0? -0 defined by T(x,y)=(x—2y,y) with
respect to the standard basis {(1,0),(0,1)} is:
UM MR {(1,0),(0,1)} &% TUer # g
U T:02 502 ot f&f T(x,y) = (x-2y,y)
BRI TR ¥, T SR &

@ {1 0} ®) {1 —3}

1 -3 1 0

1 -3 1 2

@ 7] @y 7]
Ans. (d) : Here T(1,0) = (1,0) = 1(1,0) + 0(0,1)
T(0,1) = (-2,1)=-2(1,0) + 1(0,1)

|

57.

1
.. The matrix = {
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A, C
58. What is the nullity of the matrix [ 0" B },if
A, and B, are invertible matrices of order n
and m respectively?
A, C
W e | Y IMAT R § Al A, 3R
B,, AT n 3 m FIE & SHATTE T
&
(a) 0 (b) n
(¢) m (d) n+m
Ans. (a) : A matrix A of order m x n with rank r can be
placed in the form L Orns
Ol"l‘l*le' Om—rxn—r

Using elementary row and column matrices; where I; is
the r x r identity matrix and O, is the mxn zero
matrix.

An invertible matrix has a full rank and nullity is 0.

A
So, the matrix { 0 } has rank n + m and

m

. A, C
Nullity 0 B =0

Let f:[0,1] > R be a function defined by f(x) =
10, x €][0,1],then the Lebesgue integral
J‘an,“fd)», where Q is the set of rational
numbers, is given as:

= foram &6 £:[0,1] > R, T ®eH 39 T&K
ufterfia & foR f(x) = 10, x <[0,1], I af@= Q
el W wUTed €, @ SO Hihee
J- qeio A, B

(a) o (b) 1

(c) 10 (d o0

Ans. (d) : Because QN[0,1] is a set of measure zero we
musthave [ fdh:=10x2(QN[0,1])=0

59.

60. Let a be a bounded function on [a,b], then true

statement is:/AH foram ff o W T afe@
T § A AT T B
(a) a is always a function of bounded variation/a

Ush st fafer arem Ge 21
(b) a is always a continuous function/a. Tda Th
T Ho 2
(c) a is always a constant function/a Tda T
3R e 2|

(d) sup {|0L(X)| X € [a,b]} always exists/

sup {|oc(x)| X € [a,b]} REE T&I‘FT T B

Ans. (d) :If o is a bounded function on [a,b] then
Axiom of Completeness dictates that

sup{jou(x)|: x € [a,b]}

always exists.

61. Let A be the Lebesgue measure on R and Q be

the set of all rational numbers. Which of the
following is true?

= forar f6 A, R 9 &R 91uek § 991 Q |t
TR HEstt @ aeed g1 fAfeied § |
I W HIT T §?
(@) MQ)= (®) A(Q)=1
(c) MQ)=0 (d) MQ)=2

Ans. (¢) :The set {x} is measurable and for any

8>0,{x}c(x£,x+£j.
2 2

Therefore

0<A({x})

ﬂ((’;%ﬂiﬂ

So 0<A({x})<e.

Since €>0was arbitrary we conclude that A({x})=0
Now because the set of rational numbers are countable,

write Q= iCj)l{qi},so MQ) :ik({qi}) :iO:O

Thus, Lebesgue measure of the rational numbers Q is
zero.

62.

If S denotes the set of irrational numbers in
[0,1] and A is Lebesgue measure on R, then A(S)
is equal to:

e S,[0,1] ® Rera |t mafae wemedt =
|OeeT § 3R AR W &&T AUS &, a9 A(S)
TSR &

(a) 1 () 0

1
(c) © (d) >

Ans. (a) : Since the set [0,1] is the disjoint union of]
rationales and irrationals in [0,1] and Lebesgue measure
of Q = set of rational numbers is 0.
A ([0,11\Q)=1—-0=1 (because A ([0, 1])=1)
Thus, Lebesgue measure of set of irrational S in [0,1) is 1.
63. Letf:[0,1] > R,be a function defined by

f(x)= 1if x is a rational number in [0,1]

= 0 if x irrational number in [0,1]
then, the function f is:

= ferem f&f £:[0,1] > R, 30 Weh afitwnfa &

& f(x)= 1, T x,[0,1] T Teera uftva d@w ¥
=0 TfE x,[0,1] ¥ et saRea ¥ €

A we T £ 8

(a) Continuous/Hdq

(b) Riemann Integrable/dm  FHHe-T

(c) Lebesgue Integrable/aaﬂ A

(d) Non-measurable/3THT9-d
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Ans. (¢): Clearly f(x) is not continuous because both Q
and I (the set of irrationals) are dense in the real line, it
follows that for any z € R we can find sequences (x,)
Q and (y,) < I such that
limx, =limy,=z & lim g(x,) # lim g (y,).

Now if P is some partition of [0, 1], then the density of
the rationales in R implies that every subinterval of P
will contain a point where f(x) = 1. It follows that U (f,
P) = 1. On the other hand, L (f, P) = 0 because the
irrationals are also dense in R. Because this it the case
for every partition P, we see that the upper integral U (f)
= 1 and the lower integral L (f) = 0. The two are not
equal, so we conclude that function is not Riemann
integrable.
We have Lebesgue measure
A=(QnNJ0,1])=0and ([0, 1NQ) =1
Now, Lebesgue integral is given by
.[ (o TdA =1A({Q M [0,1]} + 0.A([0,1]\ Q)
=1.0+0.1
=0
(Because A ({QM[0,1]})=0

A({[0,1]/Q}) =1)

If h is the interval of differencing then which of
the following is true for the shift sperator E?

gfe h WSRIT (differencing) T ST &, ¥

E-URad"  (shift)y WoRes E o fog

frrefafaa o = o1 g §?

(a) E"f(x)=f(x+n) (b) EM(x)=f(x")

(¢) E'f(x)=f(x+nh) (d) EM(x)=f(x—nh)
Ans. (¢) : The shift operator for a function f(x) is
defined by

64.

Ef(x)=f(x th)
where h is the interval of differencing.
Then we have E" f(x) = f(x + nh)
65. The velocity components (u,v) in a two-
dimensional fluid flow, in terms of stream
function vy , is given by:
yaTg TEoTm we y % Tel § fEeremt @it waE
T 9T Uk (u,v) S

Equation of lines of flow or streamline is

d—X:ﬂ or vdx —udy =0
VA
Which shows that equation of streamline must be an

exact differential, dy(say).Then, wehave

vdx —udy = (%‘jj dx + (%’U] dy

oy

u =——andv=a—w

SO

y us stream function

66. Which of the following statements is true in
case of linear, programming?
frfafaa & 9

HIT-9T HIT gk NAHT &
e BT §7?

(a) An optimal solution exists at extreme %:_)ints ofa
set of feasible solutions./§¥™T B & g &
=T g T TH SRR g ANE A 8|

(b) An optimal solution gives a hyperplane which is
a supporting hyperplane to the set of feasible
solutions./3TIHATH BT & T 5
% T S U SR B gl

(c) Extreme points and basic feasible solutions
are in one-one correspondence./sH fog o

o & Theb! B &

(d) A set of feasible solutions_is not necessarily a
convex set/TFEA A =T I 3W
U= BT YT T & |

Ans. (a) : Let R be the feasible region for a Linear

programming problem then an optimal solution exists at

extreme points/corner points of the set of feasible
solutions

67. Consider the following linear programming

problem:

Maximize:

z =3x, —2x,

Subject to:

X, +x, <1

2x, +2x, >4

X;,X, 20
Which one of the following statements is true?
TUshHd THET W

oy oy ﬁﬁﬂ{:
a) u=——,v=——" )
(a) x oy tfereram:
z=3x, —2x
) u=2 - N Fomfw:
o0x oy
© u__a_wv oy X, +x, <1
- 6y’ - ox 2X1+2X2 >4
P P XX, >0
) u=-2Y, :a—w Prafafas o § @9 | HaT T §7
oy X (a) (0,0) is an optimal solution/(0,0) Teh 3F{hcAdH
Ans. (d) : For a two dimensional incompressible flow guTEeE 2l
parallel to the xy-plane in a rectangular Cartesian b) (1.0)i timal solution/(1.0 STTheATH
coordinate system, let u and v denote the velocity ®) S\TEIT%?HTI-TS grll optimal solution/(1,0) T
vectors in the x and y direction respectively. (c) Solutions are unbounded/SATe S 3
Equation of continuity :@ 4 o -0 or @: o(-u) (d) The cpnstrainys are  inconsistent/Sfda¥
ox Oy oy 0x (constraints) 3THITd 2
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Ans. (d) : Because given constraints are inconsistent as
given by
X, +x<landx, +x, >2
maximize
Z= 3X1 — 2X2
Subject to,
X1 + X2 f 1
2X; +2X, >4 ... In
X[, X220
equation (I)
X, |0
x, [ 1]0
equation (II)
x, |02
X, |20

‘{/\’3
"3;;. ma_”\
&II [ 15 ]

The problem is not well-defined.

68. The dual of the following linear programming
problem:
Maximize:
Z=C'X
AX=b
X>0
is:
Trefafad Wasw e aue:
Tfrehan:
Z=C'X
AX=b
X>0
<hl aﬂ' ‘%‘:

(a)Max Z = b' X,AX=C,X>0/
AR Z = b' X,AX=C,X>0
(b) Max Z= b'Y,AX>C\Y free/31f&®had Z= b'
Y, AX>C\Y free
(c) Min Z= b'Y,A'Y>CY free /3f¥&dd= b'
Y,A'Y>C', Yfree
(d) Min Z= b'Y,A'Y>C',Y>0 free /31¥aq Z= b'
Y,A'Y>C',Y>0 free
Ans. (c) : The dual of the given linear programming
problem takes the form

Minimize Z=0b'Y
Subject to A'Y>(C'
Y free

Where b, A", C'are the transposes of b,A,C.

69. If @=1 is a cube root of unity, then:

(a) 0
(c) 3n
Ans. (a) : If @ #1 is a cube root of unity, then
l +to+e’ =0

Now

40+’ +0 +0' + &+ 4 ©

=20+ (1+0+0 )+ v 0" 1+ 0+ 0°)
=0
70.  Which of the following functions are analytic
on C?
() f@)=z2

(ii) g(z) =a polynomial in z
(iii) h(z) = tan z
(iv) u(z) = cosh z

T | i< | T U fargarfien 2
() fz)=2

(ii) g(z) = a polynomial in z
(iii) h(z) = tan z
(iv) u(z) = cosh z
(a) (1)

(c) (iv)

(d) (ii) and (iv)/ (ii) 3R (iv)

(b) (iii)

Ans. (d): Letf(z)=u(x,y) tiv(x,y); Vz=x+1iy
eDcC is on open set. Assume that u & v have
continuous first order partial derivatives throughout D
and that they satisfy Cauchy- Riemann equations at z €
D. Then f (z) exists.
e Polynomial functions in z €C are analytic in a given
region
e u(z) = cos hz is analytic in given region.
e f(z)=zis non-analytic in a given region because
Cauchy- Riemann equations are not satisfied as
f(z)=z= f(x +iy) =x —iy
=u=Re(f)=x;v=Im(f)=-y
su =Lv =0u =0,v =-1=u #v,
at any point (x,y) in the region
. 1z =1z

e h(z) = tanz = Sz _ eiz — eiiz

cosz e“+e
The differentiation rules for analytic functions then
allow to conclude that tan is analytic in all points z € C
where e + e “# 0.
Now e + ¢ “=—¢ * (e®™-1) is equal to 0 iff

i(2z — m) = 2kmi, ke Z,

z:kn+g,keZ.
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[Exam Date-15.03.2022]

1. If the Nijenhuis tensor vanishes on an almost

complex manifold, then the F-connection is

Ife Tk T Wiy sggE W AeHge™

9|asl Sc\“q @ ST %’ ?ﬁ- F'H’dlsl:l

(a) Symmetric/FAfT g

(b) Half-symmetric/31€-gafid 8

(¢) Anti-symmetric/Sfa-gafia g

(d) Not necessarily symmetric/®T THEA BT

A Tl B

Ans. (d) If the Nijenhuis tensor vanishes on an almost
complex manifold, it means that the manifold can be
endowed with a complex structure. This implies that the
manifold is integrable, and a complex structure can be
applied to it.
However, even in this case, the F-connection, which is
the connection preserving the almost complex structure,
is not necessarily symmetric Thus, when the Nijenfuis
tensor vanishes, it is not required for the F-connection
to be symmetric.

2. For term by term integration of an infinite
series of integrable functions, the condition of
uniform convergence of the series is

feret TaTeReiar werel it 3= Siuft @R uewT:
AOTHRA wH o o vt w1 uwmEEe
stfaRa g o wiaee §

(a) Necessary and sufficient/3Tavas Td gafe
(b) Necessary but not sufficient/3TG%dsh T+

ERIEIE

(c) Sufficient but not necessary/tl'alflﬁ ]
EIERREAE G

(d) Neither sufficient nor necessary/ a T T
RCICEEE

Ans. (c¢) : If a series Zf“ (x)converges to f(x)

n=l]
uniformly on the interval [a, b] and also if each f,(x) is
integrable then f(x) is integrable on [a, b] and

i Lb f, (x)dx= Lb i f (x)dx = Jb f(x) dx and for term
n=| n=| :

by term integration of an infinite series of integrable
functions, the condition of uniform convergence of the
series is sufficient but not necessary.

3. Which of the following statements is/are true?
I: Union of two topologies on X is always a
topology on X.

II: Intersection of two topologies on X is always
a topology on X.

frafafiga gl @ @ *E-G1/F 99 T
282

I: X W & gl & @9 ¥dg X & Tk
wfterfer 2t €1

II: X W & it 1 @dfs wea X &t Tk
whterfer 2t €1

(a) Only I/#aa 1

(b) Only I/Faa 11

(¢) BothIand I/ 1 W& II =

(d) Neither I nor I/ @ 17 & 11

Ans. (b) :Let X ={a, b, c}and 1, = {(I), {a},X} ,

1, ={¢, {b}, X} then 1, and 1, are topologies on X
but T, urz={¢, {a},{b},X} is not a topology on X as
{a}, {b} etr,u t,but {a} U {b} ={a,b} ¢ T,UT,.

Therefore, union of two topologies on X need not be a
topology on X.

Now Let t,and 1, be two topologies on X.
To show that 1, N 1, is also a topology on X.
(1) "~ ¢and X e 1, as well as T,
=¢,Xe 1,NT,
(i) Let {U,}_ be a family of open sets such that U; €
.Mt ¥iel
=Uert andUe 1,,¥iel
= Ui Ui et and i U €71,
(" 7, and 1, are topologies on X)
= UVia Ui et, N1,
(i) Let Uy, Ly,

=Uert andUe 1, ,i=

n n
= n U,et, and N U, e,
i=1 i=1
(o7, andt, are topologies on X)

n

= nNnUernt,
i=l

Hence t, N1, is also a topology on X.
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4. Fourier sine transform of the function f (x)=

—is
X

% £ (x)= 1 a1 wifrer s wurew &
X

s
(b) \/;

T
Gy

(@) Vn

(© \/z
T

Ans. (b) : By Fourier sine transform.

F {f(x)} = \E jwf(x) sin sx dx
T 0
2F{1}—\/7'[ — sin sx dx
Wehave(j(

] sin sx dx

=F {l} = \/zrl sin sx dx = \/z tan™ (i]
X mYo0 X T 0

5. If p is a prime number, then any group of
order 2p has a normal subgroup of order

gfe p Teh WS HET 8, aF U 2p o ferelt
WUE & {0 T o1 Teh WA SUEHE BT
(a) P-1 (b) p

@ %(pﬂ)

Ans. (b) : Given order of group G is 2p, p is a prime
number, and it has a subgroup of order p whose index is
2. And any subgroup of index 2 is normal subgroup of]
G.

= It has a normal subgroup of order p.

(© p+l

6. The rate of convergence of Newton-Raphson
method is

eA-Yor fafy it arfirefar @ e
(a) Cubic/ad

(b) Fourth order/ﬂﬂi’ilc hH

(©) Linear/ A5

(d) Quadratic/at

Ans. (d) : By Newton- Raphson method we have
f(x,)
f'(x,)
Let a be root of f(x)
S X T 0T & & Xy T O €y
where g, & €, are errors.
f(a+e,)
f'(a+e,)

Xp+1 = Xn —

> oteg=ate, —

2
fo)+, £'(o)+ 8—' £Y0) + ...
= &nt1 T &n— 2!

fi(a)+e, (o) + 82—7 £(0L) + oo

Since higher power of g, are very small,
neglecting them we have

SO on

f(a)+g, f'(oc)+%f"(oc)
f'(a)+e,f"(a)

Ent1 R &y —

(oc)—O—%snzf"(oc)
f'(a)+e,f"(a)
f"(a)

Ept1 =

(o f(a)=0)

Ent1 ~ n’
n+ 2 f )
= Rate of Convergence is quadratic.

7. If ¢; and ¢, are arbitrary functions, then the
solutlon of the partial differential equation
Y= a’t, is

Wﬁ;’d)l@q)z!éwmm@ A TR reTher
y=a’t RIEA Y

(@) z=0,(y+ax)+d,(y-ax)
(b) z=¢,(y)+¢,(y—ax)
() z:¢1(y+ax)+¢2(y)
(d) z:¢1(x)+¢2(y)+axy

Ans. (a) : Giveny=a’t
2 2
We have y = % and t= %
Putting in (i), we get
0’z
ox’
0’z
aXZ

()

oz
0y
2

9 and D'= 9
0x oy
For Auxiliary equation put D=mand D = 1
m—-a’=0 = m==a

= Its general solution is

|z =¢, (y+ax)+¢2(y—ax)|

= (D’-a’(D"")z=0 whereD =

where ¢, and ¢, are arbitrary functions.
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8. Let f: [a, b]— R be a bounded function and P
be a partition of [a, b], then U (P, —f) =
= +fifsg fef £: [a, b]> R T AT §
QYT P, [a, b] T Teh fI9== &, 99 U (P,— ) =
(a) U(P, 1) (b) U (P, 1)
(c) —L(P, 1) (d) L (P,
Ans. (¢): LetP={a=x<x;<x,< ... <x,=Db} be
the partition of [a, b] then upper Riemann sum of f is
defined as

UP, 0= DM Ax
i=1
where M; is supremum of f in [X;_, X;] and Ax; = x; —1
Xi 1, i= 1, 2, cenoll
and lower Riemann sum of fis defined as

L, )= imi Ax,
i=1

where m; is infimum of fin [x;_1, X;] and Ax; = X; — X;_; ;
1=1,2,..,n

Consider U (P, —f) = Z:M'i Ax,

i=1
where Ml is supermum of —f in [X;_; , X;] which implies
that —M; is infimum of fin [x; , x;].

Hence, U (P, =) M, Ax;=-) —M; Ax;=—L(P, f).

i=1 i=1

9. The dimension of Lie group SL (n, C) is
+fi-"gg SL (n, C) st fmr &
(a) n’ (b) n*—1
(c) 2(*—1) (d) 2n®
Ans. (¢) : SL (n,c)={A € GL (n,c) | |A| =1}
Since |A| = 1 condition gives one constraint on a
complex number so there are 2(n°—1) arbitrary entry
- dim (SL(n, ¢)) =2 (n* —1)
10.

Which of the following set of vectors is a basis
for vector space R*?

frfaiad & -1 |ieel &1 \goaa aieer
|y R® 1 Teh MR &7

(a) {(1,—1,1), (1,0,2), (2,—1,3)}

(®) {(1L-11),(1,0,2),(2,11)}

© {(1.-11),(1,0,2),(0,1,1)}

@ {(1L-11),(1,0,2),(1,-2,0)}

Ans. (b) : (a) Vectors are not linearly independent as (1,
71, 1) + (19 07 2) = (2’ 717 3)

I -1 1
. R, >R, -R,
(b) Consider| 1 0 2 |;
R, >R, -2R,

2 1 1

I -1 1
gjo 1 1
0 0 4

therefore, the set {(1, -1, 1), (1, 0, 2), (2, 1, 1)} is
linearly independent set and generates R® because this
set has 3 elements which is same as dimension of R’.
Hence, it is a basis.

(c) vectors are also not linearly independent as
(1,0,2)—(1,-1,1)=(0, 1, 1).

(d) vectors are also not linearly independent as

(1,0,2)+(1,-2,00=(2,-2,2)=2(1,-1,1).

11.  The value of L! {

e—l/s .
1S
S

L {em }W e

S

(a) Jo (21) ®) Jo (2ﬁ )
© 5(V2 1) (d) Jo(+2t)

Ans. (b) : The Bessel function of first kind of order

. - (_l)n t2n
zero given as J, (t) = ZW
n=0 n:

1/s

e acd

Which of the following is a topology on X = {a,
b, ¢, d}? X={a,b, ¢, d} W
Ten diterfa 87

(a) {9,fa},{b},{b,c},X}

(b) {¢.{a}, X}

(©) {0,{a},{b}, X}

(d) {9, fc},{d},{b,c}, X}

Ans. (b) : Definition: Let X be a set and 1t be the
collection of subsets of X. The t is called a topology
on X if-

(1) ¢ And X areint.

(2) The arbitrary union of elements of t are alsoint.
(3) The finite intersection of elements of t are also
int.

In option (a) {a}u{b} = {a, b} ¢ {¢,{a}, {b}, {b, c},
X}

and L {

12.

= {d, {a}, {b}, {b, c}, X} is not a topology on X.

In option (b) consider t= {¢, {a}, X}

(1)¢ And X areint.

(2) Arbitrary union of elements of t are alsoin T.

(3) The finite intersection of elements of T are alsoint.
In option (c) {a} U {b} = {a, b} ¢ {0, {a}, {b}, X}

= {d, {a}, {b}, X} is not a topology on X.

In option (d) {c} U {d} = {c,d} ¢ {0, {c}, {d}, {b,c}, X}
= {d, {c}, {d}, {b, c}, X} is not a topology on X.
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13.  The order of the difference equation
A’y +3Ay -3y, =x,is

afaR wHfieRTur A’y +3Ay, -3y, =x, &l ®IfE §

(a) 1 (b) 2
(© 3 (d 4
Ans. (b) : Since Ay, = Vi1 — Yx . (D)
= Ay, = A (AY) = A (Yeo1 — Yx)
= (Yxs2 = Yxt1) = (Y1 — ¥x)
= A%y, = Yo — 25 + Vs Q)

Using (1) and (2) given difference equation becomes
AzyX +3 Ayx —3yx =X

=Yz — 2¥xr1 Yx T 3Yen = 3yx— 3y =X

= Yx2 T Yxe1 = SYx =X

and order of the difference equation is the difference
between the largest and smallest argument appearing in
difference equation divided by unit of increment

:>Order:$:2

14. General solution x = z (x, y) of the partial

differential equation y’zp + x’zq = xy?, is
amawwﬂwyzp+xzq—xy Ea)
Uch T x=2 (X, Yy) K}

(a) F(x X' -z )=O
(b) F(x3 v, X —zz):O
(c) F(x3+y X +zz) 0

(d) F(x +y,x' -z ):O

Ans. (a) : Lagrange's Auxiliary equation is
& _dy _ dz
v’z X’z xy
Consider de = dTy
yz Xz
2 _ 2
=>xdx=y dy
=x -y =C

dx dz
also —=

yZZ XyZ
= xdx = zdz
=>x -7 =G,
.. General solution will be
Fx*-y,x*-2)=0
Let N be a normed linear space and x, y € N,

then/mT +ifS& N Ueh WHfeha Raeh T0¥ &
@ﬁ'{'x,yeN,?‘ﬁ

@ [IxI=lyl<ix=yl
®) fIxl=lyll<ix=yl
© [Ixi=lyl=Ix=yl
@ JIxi=Iyll>Ix=yl

: C,= arbitrary constant

: C, = arbitrary constant

15.

Ans. (a) :
[xl=lx=-y+yl<lx=yl+lyl
= lxl=lyll<lx=yl
and ||y [| =l (y—x)+x <[y —x[+] x|
=yl=lxl<lx=yl
= [Ix =y ll<lx=yl

16. Inner product of tensors Al and

By will be a
mixed tensor of the type/Ufeym Al 31%'{' By oRT
TR U e Ty it g
(a) (2, 1)/(2,1) IBR T
(b) (1,2)/(1,2) IR T
(c) (2,2)/(2,2) IBR T
(d) (1, 1)/ (1, 1) IR &1

Ans. (d) : Inner product of two tensors is obtained by first
taking outer product and then contracting the outer product.

Now outer product of contravariant tensor A" of rank 2
and covariant tensor By, of rank 2 gives a mixed tensor

of type (2, 2) which on contraction gives a mixed tensor
of the type (1,1).

17. LetX={a,b,c}and T = {¢, {a}, {a, b},{a, ¢}, X}
be a topology on X. If A = {a, c}, then derived
set of A is

WHT X = {a, b, ¢} 94T T = {¢, {a}, {a, b},{a, c},
X} X W Uk dikefa 1 afg A = {a, ¢}, A A =T
RREREE R
(@) ¢

(b) {b,c}

(c) {a,c} (d) {a b}
Ans. (b) : Given X = {a, b, ¢,} and T = {9, {a}, {a, b},
{a, c}, X} is a topology on X.
If A = {a, c} then derived set A' of A is the set of all
limit points of A.
Now 'a' is not a limit point of A since {a} is a
neighbourhood of 'a' which does not contain any other
point of A other than 'a' itself. Whereas 'b' and 'c' are
limit points of A since {a, b} and X are neighbourhoods
of 'b' containing a point of A other than 'b' and {a, c}
and X are neighbourhoods of 'c' containing a point of A
other than 'c'

S A'={b, c}
18.  For all a, b in Boolean algebra, the value of
(at+b)a'b'is
it sfemrura ® weft a, b & T2, (a + b) a’
b' ST 0T &
(a) a (b) 1
(c) a+b (d o0
Ans. (d) :
a|bla'|b'|a+b|a'b'|(a+b)a'b
00111 0 1 0
1001 1 0 0
0|1|11]0 1 0 0
1(1{0]0 1 0 0
= (at+b)ab' =0
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19. Newton-Raphson iterative formula to obtain

the cube root of N is /N ST ST F@ & o
Tt =re=-Yoe ot g 9 €

1 N 1 N
(@) x;, :g(zxi _7] (d) x, :g[zxi +?)

i

(©) x;, :l[in +£] d x,, :l[in —E)
3 X; 3 X;

Ans. (b) : Let x be cube root of N

= x= N>

= xX-N=0

Consider f(x) =x’ - N

or fix)=x; - N

= f’(Xi) =3 Xiz

Newton — Raphson iterative formula is given as

i

Xit1 = Xi—
f'(x;)
- x.—-N
Xit1 = Xj
3x,
3%, —x;+N
= Xi+1 = P
3x,
2x) +N
= Xi+l = 3X12
1 N
= X1 = —| 2X, +—
30 :
Xy

20. The set of points in the interval [2, 4] and in

interval (1, 2) are

ST TS S o forgell o Agwerd &d §
(a) Finite /aRfHa

(b) Cardinally equivalent/FIETd 9 ¥ THEHT
[FEfe a9 g

(c) Cardinally unequivalent
SINEER)
(d) None of the above/SWh ¥ T Hig Tal
Ans. (b) : Both the interval [2, 4] and (1, 2) are
uncountable having cardinality 'Continuum' therefore
they are cardinally equivalent.

21. Given KE. = T = %mf‘z and P.E. = V=

2
% 1 +f—2 , then Hamiltonian H=?
c

feem € KE. = T = %mP qar PE. = V

2
1+iﬁ—2 , @ SR Ea H=2
C

1
2

212
(a) T+V (b) T+V +—
c
2 2
() T-S-V—zP2 (d T+V +2i
rc c
. | 1 12
Ans. (*) : GivenT=—m r* and V= —|1+—
2 2 c
Now Lagrangian L=T -V
1 02 1 %2 .
= L=—mr'——|1+—| ... 1
S| 1t (@)

and Hamiltonian H is defined as

H=—L+Yp.q,

r=1
Where p, = generalized momentum of particle
and q, = generalized co-ordinates of particle.

oL

and p, = — Hereq,=r
aq,
o o |1 1 2 .
=>p=— = — “mrio— 1+r—2 (From(l))
or or |2 c
0 ]
=p = mr—i2
c

15} 0
H=— | tmr 2 15| 4 mr-L o
2
i) Jap)
H=Llmrral 1+ -5
2 2 c
U2
H=T+V-L
c
22. Let Q be the field of rational numbers. Then
over Q, \/E +\/§ is algebraic of degree
T e Q uRty dwmeit @ &% ¥ A«
V2 +43 , Q una @t st §
(a) 2 (b) 3
(c) 4 (d) 6
2
Ans. (¢) : (\E+J§) —2+3+2J6 =5+2V6
and

(JE+J§)4=(5+2JE)2:25+24+20JE —49+20v6
= (V2+43) =50+20¥6-1=10(5+2J6)-1
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= (ﬁ+¢§)4—10(5+2%)+1:0
= (ﬁ+¢§)4—10(\/§+ﬁ)2+1=0

= V2 ++/3 Satisfies a polynomial

(let N2 ++/3 =x)

x*~10x*+1=0 over Q which is of

degree 4. It is also a minimal polynomial for (\/5 +3 )

Therefore (\/5 +3 ) is algebric of degree 4.

n/2

23. The curve, for which J(y'2+2xyy') dx
0

subjected toy (0) =1,y (§]= 1 is extremised,
is

/2

deh, oo fo=& J(y'z +2xyy') dx, y0) =1,y

[%)=1'&33ﬂ8ﬁ?m%,%

(a) y=2sinx +cosx
(c) y = sinx — cosx
Ans. (d) : Here functional F(x, y, y")

*. By Euler's equation we have
oF d[oJF
oy dx\dy'

= 2xy' — di(2y'+2xy) =0
X

(b) y=sinx + 2 cosx
(d) y=sinx + cosx

— yv2 + zxyyl

= 2xy'-2y"-2(xy'+y)=0

=>y'"+y=0

Auxiliary equation is
m+1=0

= m=x=xi

=  y(x)=C, cosx + C, sinx

y0)=1=1=C,

Y
y(aj—l 21:(:2

. ¥(X) = cosx + sinx = sinx + cosx

Ans. (a) : Given f(z) = © s1£1hz
z
z ez _e z z _ —Z
:e—4><( ) ('.'sinhz= ¢ ]
z 2 2
_lera
2 7z
2 3
= L 1+2z + ( Z) ..... 1
27* 3!
1,1 21
= 22 35 o
Now residue at z = 0 is coefficient of lin Laurent
z
series expansion of f(z) about z=0is =2/3

25. If two bounded lattices A and B are

complemented, then which of the following is

complemented?/afe a UReg Wit A 3R B

T ¢, 9 =feiad ¥ | i I 87
(a) A-B (b) A+B
(c) AxB

(d) All of the above/3WRIh Tt

Ans. (¢): A lattice L is complemented if every element
a € L has a complement b € L, such that:

a vb=1 and a A b=0 where 1 and 0 are the greatest
and least elements of the lattice, respectively.

¢ A and B are two bounded complemented lattices

e A = B: The difference operation between two lattices
doesn't necessarily preserve the complemented
property.

e A + B: The direct sum of two lattice does not always
result in a complemented lattice unless certain
conditions are met.

e AB: The Cartesian product (or direct product) of two
complemented lattices is always complemented. This is
because the complement of an element (a, b) € AB is
(a', b'), where a' and b' are complements of a in A and b
in B, respectively.

The Cartesian product AB of two complemented lattices
is always complemented.

Hence, the answer is (c).

26. If P,(x) denotes Legendre's polynomial, then
the value of P',;; (x) — xP',(x) is equal to

afe P,(x) AL JEUE Rt OIT §, A P,y

(x) — xP',(x) AT U =& §

24. Forf(z)= smhz , the residue at z= 0 is (@) (n+ 1) P, (x) (b) 1’
e’sinhz (©) Pu(x) (d) P'a(x)
f(z)= 4 o foTdr, 2= 0 W STa9w & Ans. (a) : By recurrence relations we have
nP,(x)=xP, (x) -P1(x) (1)
@ 2 ) + and 2n + 1) Py(x) = P'yt(x) — Py 1(%) (i)
3 3 Subtract (ii) from (i), and we get
1 1 (n+1) Py(x) = P'1(X) — xP'y(x)
© 3 @5 = Pyt —xXPy(x) = (0 + 1) Py(x)
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27. Unique polynomial f(x) of degree 2 or less such

that £ (0) =1, f(1) =3 and f(3) =55 is
29 2 § &A feifi & wwhs wgue f(x) R
R f0)=1,f1)=3 AR 3)=55%, ¢
(a) 1+6x—8x" (b) 1—6x + 8x*
(c) 1+ 6x + 8% (d) 1-6x-8x"
Ans. (b) :

x 0|13
f(x)|1|3]55

Given

By Lagrange's Interpolation formula, we have
(x—x)(x—x,) ¢ (x—x,)(x—x,)

f(x)= (XO_Xl)(XO_X2) XI—XO)(Xl_Xz)

(x0)+

x> —4x+3 3x*-9x 55x% —55x
+ +
3 -2 6
= flx)=1-6x+ 8x’
28. IfT:R?(R)— R*(R)is defined by T(2, 3) = (4,
5) and T (1, 0) = (0, 0), then T (x, y) will be
e T: R (R) — R? (R) &t TR T(2, 3) = 4, 5)
qAqT T (1, 0) = (0, 0), & TR &, A T (x, y)

T /T BT
0 (39)

= f(x) =

373

4y Sy 3y—-4y 3y-x
c - d | ——,
(c) (X 373 j (d) ( 3 3
Ans. (a) : We have that {(2, 3), (1, 0)} is a basis of]
R*(R) and hence for every (X, y) eR? (R)
(x,y)=0a(2,3)+p(1,0)
for some scales a, B R which gives

a=Ygp-x-2
3 3

Now if a linear transformation T:R? — R?is defined
by T(2,3)=(4,5)and T (1,0)=(0, 0)
then we must have

T, y)=aT(®2,3)+BT(,0)

= T(x,y)=a(4,5)+B(0,0)
= T(x,y) = (4a,50) = (2—}],5?}/]

29. The maximum number of normals, which can

be drawn from a given point to the
paraboloid, ax’ + by* = 2cz is

T e gu forg & Waetast ax’ +by? =2cz W
srfireRaw ferar stfireier Tier T Hehd &2

(a) 3 (b) 4

(© 5 (46

Ans. (¢) : Given paraboloid is ax® + by” = 2cz

The equation of normal to (i) at (a, B, y) is

Xx-a _y-p_z—y

ao bp o —¢

If it passes through point (x; ,y; ,z;) then

AT O il . e QPO

ao bp —C
Y1

» b= 1+br

also (a., B, y) lies on (i)
. ao’ + bp* =2cy

Putting values of a, B, y from (iii), we have
by;

(1+ ar)2 (1+ br)2
which is a fifth degree equation in r. Hence there can be

atmost five normals from a given point to (i).

30. Which one of the following is NOT a topology
on X={a, b, c}?
frafaflga & @ &4 X = {a, b, ¢} W Akl
& 2?

(a) {9,{a},{b,c}, X}

(b) {9,{b},{a,c}, X}

(c) {9.{a},{b},{a,b},X}
(d) {0,{a},{b}.{c},{a,b}, X}

Ans. (d) : Definition: Let X be a set and t be the

collection of subsets of X. The t is called a topology

on X if-

(1) ¢ And X areint.

(ii) The arbitrary union of elements of t are also in~t.

X

....(iii)

= o=

" , Y=z +cr
ar

2
ax,

=2c(z; +cr)

(iii) The finite intersection of elements of t are also
int.

Verify that options (a), (b) and (c) satisfies the all above
conditions.

In option (d) let T = {¢, {a}, {b}, {c}, {a, b}, X}

As {b}, {c} e 1

but {b} U {c} ={b,c} ¢ 1

. T is not a topology on X = {a, b, c}.

31.

The plane ax + by + ¢z = 0 cuts the cone yz + zx
+xy = 0 in perpendicular lines, if
Wax+by+cz=09'i§§yz+zx+xy=03ﬂ
e TSl | e, At
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(a) a+b+c=0 ®) —+—+—=0
a b ¢
2,12, 2 1 I 1

(c) a+b +c =0 (d) ?+b_2+c_2:0

Ans. (b) :
X y z . . .
Let —=-—=— be line of intersection of plane and cone
m n

thenmn+n/+/m=0anda/+bm+cn=0

= (m+)) (_—(al+bm)] +m=0
c

—=a (éj2+(a+b—c)(éj +b=0

. / l
Let its roots be —— and —2
ml m2
l / —(a+b-c
Then sum of roots -+ —2-= g
m, m, a

L 1 b
and product of roots ——x—2% =—
m m, a

a

b
nn,

1

Similarly %:
b c

L, _mm, npn,
1/a  1/b  1/c
Since the plane cuts the cone in perpendicular lines if]
1112 +mym; +nn, = 0

which is only possible when 1 + % + 1 =0
a c

b
32. If for the functional J[y]=J.F(x,y,y')dX, the

integrand does not depend on x, then the first
integral of Euler's equation is

TeAh J[y]=J.F(x,y,y')dx,a3 & =i

a

AT &1 U x W it 7 oar g,
TR o WHIHIUT ST T WHTRA ST
(a) Fy=C (b) F—y'F,=C

(c) F-y'F,=C (d) Fy—iFy:O
dx

Ans. (b) : Given Functional is J[y] = J.bF(x,y,y') dx in

which F (x, y, y') does not depend on x i.e. ? =0
X

So by Euler's equation

4 F—y’a—F —a—F:O gives
dx oy' 0x

o] oy
dx oy'

=F-y 6—F' = C (Constant)
ay

X3 +y3

(xy)>(0,0) x—y

(a) Exists and equals to zero/&T 3 g IR
I F T

(b) Exists but not equal to zero/T &= 2 ]
T % SR T8 8

(c) Exists but not unique/® RAE & W
A 78 7

(d) Does not exist/ 3 T 8

Ans. (d) : Take y=0. Then we have
3 3

lim Y

(x,y)a(0,0) X — y

Take y = sin x. Then we have

33.

=limx* =0

x—0

. X +sin’x
lim——=
x=0 X —sInX

3x? +3sin’ x cos x

=lim

x>0 1—cosx

. 6x+6sinxcos’ x —3sin’ x
=lim :

x—0 sinx

. 6x .
=lim| —— + 6¢cos’ x — 3sin’ x

x=01 sin X
=12

Since limits are different on different paths to the origin,
the conclusion is that limit does not exist.

1( s—1
s’ —6s+13

L s—1
s’ —6s+13
(a) e™sin2x

(b) e* cos2x
(c) e™(sin3x+cos3x)

(d) e™ (sin2x+cos2x)

Ans. (d) :
s—1

Ll{ : }:Ll s—32+2
s°—6s+13 (5_3) +4

e}l
(s=3) +2° (s=3) +2°

= e™cos2x + ¢ sin2x
= ¢* (cos2x + sin2x)
Let X ={a, b, ¢} and T = {¢, {a},{a, b}, X} be a
topology on X. Then (X, T) is
WX = {a, b, ¢} 3T = {4, {a},{a, b}, X} X W
T dRufa g1 aa (X, T) &

34, j is equal to

TR &

35.
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(a) Compact only/éﬂa Hgd

(b) Connected only/é?ﬁ[ HHls

(c) Both compact and connected/Hgd Td Hwlg
GEll

(d) Neither compact nor connected/d ar ed T &
TS

Ans. (¢) :
Given X = {a, b, c} and T = {¢, {a}, {a, b}, X}
Topological space (X, T) is Connected if and only if
non-empty subset of X which is both open and Closed
in X is X itself. In T there is no non-empty proper
subset of X which is both open and closed therefore (X,
T) is Connected. Since X is a finite set, so it is compact.

2

X

The Fourier transform of e ? is
eJL22 T HIET VU §

(@) ame *
(©) V2n e% (d) V2 7teis7

Ans. (a) : Let F (s) be Fourier transform of f(x) =

36.

s
2

(b) 2 me

=X

e 2 then

F(s) = IZ f(x) e ™dx

_Y e
=e zj c
-0

dx

Let X408y

V2 2 V2
x »>—othen y >—ocand x - o then y - o
=F(s) = \/Ee’ﬂf Y J2e? XZf e’yzdy
dz dz

2y 27"
As y— 0 then z— 0 and y —» o then z >

. _ s
Zx/fe 2.[0 ez 2dz =\/§€ 2 x\/;

2

= dy = dx=2dy

Lety’=z=2ydy=dz = dy=

= V2ne?

37. A subspace of a normal space is

AT qAlY it Suenty gt

(a) Normal/S€qmE—=

(b) Hausdorff/grdsTd

(¢) Need not normal/SHMH BT STl Tl
(d) Closed/dgd

Ans. (¢) : A normal space is topological space where
any two disjoint closed sets can be separated by disjoint
open neighborhoods. However, this property does not
always transfer to subspaces. For example, while
[J with the standard topology is normal, certain
subspaces of it (with their subspace topology) may fail
to be normal.

This demonstrates that being normal is not hereditary.
(i.e., the property is not guaranteed for subspaces).

38. The second order partial differential equation
2 2 2
~ —2sinx 2 _cos’x ~ — oS xﬂ=0is
ox 10) ) oy oy
Teefter R T ATTYTeR STasheT THieRTuT
2 2 2
0 f _2sinx 22 —coszxa—f—cos oy g
ox 10) ) oy oy
(a) Parabolic for all values of x, y/¥4 x, y Ed
= % o waars
(b) Parabolic in half plane x > o/e7d T x >0 H
RICRIRED
(c) Parabolic in the half plane y > 0/31d T@ y20
H aafas
(d) Hyperbolic for all values of x, y/q4l x, y Ed
e % o stfaaafaes
Ans. (d) : Given P.D.E. is
2 2 2
0 f — 2 sinx 0z - cos’x a—f — cosx (44 =0
0x 0x0y oy
b*—4ac
b = -2sinx, a=1, c¢c=- cos’x

Consider (— 2sinx)* — 4 (1) (- cos’x)
= 4 sin’x + 4 cos’x
=4 >0
= Given P.D.E. is hyperbolic for all values of x, y.
39. Let V=4{ab,c,d:b—-2c+d=0} bea
subspace of R*. Then dimension of V is
WHAT V ={@a b, c,d):b-2c+d=0} & T&
UGy 1A v i fomr §
(a) 0 (b) 1
(c) 2 @3
Ans. (d) : Given V = {(a, b, c,d) : b—2c +d =0}
Subspace of R*
=V={(,2c-d,c,d):a,c,d e R}
Showing that there are 3 arbitrary entries
=dimV=3
40. Let f;(x)=4, f,(x) =x and f; (x) = 1 + Ax + Bx’.
If f; (x) is orthogonal to f; (x) and f, (x) on the
interval (-2, 2). Then
T fi(x) = 4, f(x) = x° QT f5 (x) =1 + Ax +
Bx? I f; (x) A (=2, 2) W f; (x) AR £, (x)
W AffereR &,

(a) A=0,B=1 (b) A=0,B=0
3 3
A=0,B=> d) A=0,B=— =~
(© 2 (d 2
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Ans. (d) :

Given fi(x) = 4, f5(x) = x* and fi(x) = 1+Ax+Bx*

Also f3(x) is orthogonal to fj(x) and f,(x) on the interval
(-2,2)

= fzf3(x) £(x) dx=0

= [*(1+Ax+Bx*)(4) dx =0

%2 3 2
=4 |x+A>+BX| =0
2 3

= f[onet)- (2+2A__Bﬂ :

= 4+16—B:0 =B=
3 16
= B:—E
4
2
and Lf3 x)f,(x)dx=0

= fz(l+Ax+Bx2)(x3)dx =0

2 3 4 5 _
= J:z(x +Ax" +Bx )dx—O

x* x’ x° ?
=>|—+A—+B—

4 5 6

[4+£A+32 } [4_2A
5 3 5
64

32 j 0
3
SA=0 =

The relativistic form of Newton's second law of
motion is

e & e % e Em @ g ' §

mc?  dv

a) F=—m¢ &V

@ ¢t —v? dt
dV

myc?
c dt

mc dv
¢) Ferm—m—e—
© P

m(c2 —Vz) dv
@Or=—4%

Ans. (¢) : The relativistic form of Newton’s second law

=0

41.

(b) F=2¥¢ —V

of motion is given as F = \/_ — where m =
c -V

mass, ¢ = velocity of light, v = velocity of mass m.

42. In the Laurent series expansion of the function
1 1
f(z) = —————,valid in the region |z| > 2,

z-1 z-2

He T f(z) = II—L, &% TR Juft gEr w,
z-1 z

AT |z >2 HAE, — a;rmmm‘%

(@ 0 (b) 1

(c) —1 (d 2
Ans. (¢) : Given f(z)fL - L, lz|>2 ..(30)

z—-1 z—-2
f(z) can also be written as
1 1

f(z) = -

(=2 A=)

z z
....(i1)

So- fi-2) 2 (1-2)
Z Z VA Z

1

—| <

= f(z) = (l+—+%+i4+
z z z
1,2 (2 (@)
—|—+—=+ + +...
(Z Z2 23 Z4
3 7
:>f(Z):*—2——3——4 .......

1
the coefficient of —- is
z

... Coefficient of iz is —1
z

43.  Which of the following is a generator of the
cone 2x’ -3y’ +4z>=0?
frafafea & & &9 9ig 2x* -3y’ +42° =0
T Teh WTeh &7
z X 'y z
a —:—:— b _——= = —
@ 3 4 ® V21
X 'y z z
C _————=— d —:—:—
© 1 -1 @ -1 2 1

Ans. (b) : The direction cosines of generator of a cone
satisfies the equation of the cone. In option (b)

X zZ . . .
x_y_ 2 direction cosines of generators are 1, \/5 R

1 2

1 which satisfy 2x* — 3y> + 42" = 0 ie. 2 (1)’ — 3
2
(\/5 ) +4(1)*> =0 Therefore ?zlzf is a generator

NA

of the cone.
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44. If all vertices are of degree at least 2, then the

largest number of vertices in a graph with 35

edgesis/ﬂﬁ{'ﬁ‘iﬁsﬁ'ﬁf‘éﬁqﬁ‘éﬁq 2 ‘él'l?r‘a'?fr,
W 35 fRAml Ot T § vfrel @t StireRaw
e gt
(a) 25
(c) 21
Ans. (¥*) : We have
2 (number of edges) = sum of degree of vertex
and because each vertex of graph is of at least degree 2
with 35 edges we get
2 (35) = sum of degree of vertex
2242442
=2n
which gives n <35

45.

(b) 23
(d) 27

The spheres x2 +y2 +z2 =25and

2,2

x2+y2 +2% _24x—40y —182+225=0

M x2 +y2 +2% =25 qAT

x4y +2% —24x - 40y -182+225=0

(a) Do not intersect/Jfesg Tl Hd 7
(b) Intersect in two points/a fagai W wf=s’
T 7

(c) Touch internally/3=: T3 Hd &
(d) Touch externally/dTeld: wyl Fd 7
Ans. (d) : Given spheres can be written as
(x—072+(y—0’+(z-0y =) and ..»3)
(x - 12)*+ (y — 20)* + (z— 9)* = (20)° (i)
Sphere (i) has centre C; = (0, 0, 0) and radius r; =5
and Sphere (ii) has centre C, = (12, 20, 9) and radius r,
=20
.. Distance between both the centres

G = J(12-0)’ +(20-0)’ +(9-0)’
— 1445400+

= /625

=25
and sum of both the radius r; + r, = 25
= CC=r1+n,
= both the spheres touch externally.
46.

If A and B are measurable subsets of interval
[a, b], then which of the following is correct?

gfe A 3R B A [a, b], F BA SUATTTA
&, o frmferfaa o &9 wd €

(a) AuBisnot measurable/S8 A U B &l &

(b) AnBisnot measurable/S A N B & &

(c) AuBand AN B both are measurable/ A U
B @91 A ~ B 1 87 &

(d) Neither A U B nor A N B are measurable/d
MAUBTATANB IR

Ans. (¢) : I. A countable union of measurable sets is
measurable.
II. A countable intersection of measurable sets is
measurable.

47.

Solution of the integral equation

y(x)=x+]:sin(x—t)y(t) dt is

o WAy (x) = x+ [sin(x— t)y(€) dt

A
2

X
(a) y(x)— x+?

3

X
X ——
6

3

X
(c) y(x)— x+?

(®) y(x)=

(d) y(x) =x"+x’

Ans. (¢) 1 y(x) =x + JOX sin(x —t) y(t)dt
L{y(x)]=L[x+sinxy(x)] (by Convolution theorem)
L[y(x)] = L[x] + L[sin x] L[y(x)]

= L[y(x)]{l—L[sinx]}:L[x]

LBl

=L[yx)]= ”Si
I+s’

= L[y()]= Szl//liz

=L [y(]= 1:452

=L [y()] =Si4+si2

=yx=L" (%}Ll (i]
S S

= y09= 5 K x

3

X

> vyXx)=x+ —
y(x) 5

48. IfL (F(t)) = f (s), then L (t"F(t)) is equal to

TfE L (F(0) =1 (5), T L ("F(0)) 1 717 §

@ () © (1)
© (0" G lr6) @ (G {)
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